Burrows-Wheeler Transform & FM Index

Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

Indexing with suffixes

Reversible permutation of the characters of a string, used originally for compression

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. *Digital Equipment Corporation, Palo Alto, CA* 1994, Technical Report 124; 1994

All rotations

```
a b a a b a $
b a a b a $
a a b a $
a a b a $
a b a $
a b a a b a
b a $
a b a a b
a a b a a b
a b a a b a
(then they repeat)
```

Reversible permutation of the characters of a string, used originally for compression

How is it useful for compression?

How is it reversible?

How is it an index?

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. *Digital Equipment Corporation, Palo Alto, CA* 1994, Technical Report 124; 1994

```
def rotations(t):
   """ Return list of rotations of input string t """
                                                             Make list of all rotations
   tt = t * 2
   return [ tt[i:i+len(t)] for i in range(0, len(t)) ]
def bwm(t):
   """ Return lexicographically sorted list of t's rotations
   return sorted(rotations(t))
def bwtViaBwm(t):
   """ Given T, returns BWT(T) by way of the BWM
                                                             Take last column
   return ''.join(map(lambda x: x[-1], bwm(t)))
 >>> bwtViaBwm("Tomorrow_and_tomorrow_and_tomorrow$")
 'w$wwdd nnoooaattTmmmrrrrrooo ooo'
 >>> bwtViaBwm("It_was_the_best_of_times_it_was_the_worst_of_times$")
 's$esttssfftteww hhmmbootttt ii woeeaaressIi
 >>> bwtViaBwm('in_the_jingle_jangle_morning_Ill_come_following_you$')
 'u_gleeeengj_mlhl_nnnnt$nwj__lggIolo_iiiiarfcmylo_oo_'
```


BWT(T) orders T's characters according to alphabetical order of their right contexts in T

Right context

The right context of a position in *T* consists of everything that comes after it with "wrap around"

Right context: b a a b a \$

Right context: b a \$ a b a

```
Right context:

a b a $ a b

a b a $ a b

a b a $ a b

a b a $ a b

a b a $ a b

a b a $ a b

a b a $ a b

a b a $ a b

b a $ a b a a

b a $ a b

a b a $ a b

b a $ a b a $

b a $ a b a $

a b a $ a b

b a $ a b a $

b a $ a b a $

b a $ a b a $

c a b a $ a b

b a $ a b a $

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b

c a b a $ a b
```

Sorted by right-context

Gives "structure" to BWT(T), making it more compressible

final	
char	sorted rotations
(<i>L</i>)	
a	n to decompress. It achieves compression
0	n to perform only comparisons to a depth
0	n transformation This section describes
0	n transformation} We use the example and
0	n treats the right-hand side as the most
a	n tree for each 16 kbyte input block, enc
a	n tree in the output stream, then encodes
i	n turn, set \$L[i]\$ to be the
i	n turn, set \$R[i]\$ to the
0	n unusual data. Like the algorithm of Man
a	n use a single set of probabilities table
e	n using the positions of the suffixes in
i	n value at a given point in the vector \$R
e	n we present modifications that improve t
e	n when the block size is quite large. Ho
i	n which codes that have not been seen in
i	n with \$ch\$ appear in the {\em same order
i	n with \$ch\$. In our exam
0	n with Huffman or arithmetic coding. Bri
0	n with figures given by Bell~\cite{bell}.

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the sorted list of rotations of a version of this paper are shown, together with the final character of each rotation.

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

BWM is related to the suffix array

```
$ a b a a b a a b a $ 5 a $ a a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ b a $ a b a $ b a $ b a a b a $ b a a b a $ SA(T)
```

Same order whether rows are rotations or suffixes

In fact, this gives us a new definition / way to construct BWT(T):

$$BWT[i] = \begin{cases} T[SA[i] - 1] & \text{if } SA[i] > 0\\ \$ & \text{if } SA[i] = 0 \end{cases}$$

"BWT = characters just to the left of the suffixes in the suffix array"

```
$ a b a a b a a b a $ 5 a $ a a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ a b a $ b a $ a b a $ b a $ b a a b a $ b a $ b a a b a $ SA(T)
```

```
def suffixArray(s):
   """ Given T return suffix array SA(T). We use Python's sorted
       function here for simplicity, but we can do better. """
                                                              Make suffix array
   satups = sorted([(s[i:], i) for i in xrange(0, len(s))])
   # Extract and return just the offsets
   return map(lambda x: x[1], satups)
def bwtViaSa(t):
   """ Given T, returns BWT(T) by way of the suffix array.
                                                              Take characters just
   bw = []
                                                              to the left of the
   for si in suffixArray(t):
       if si == 0: bw.append('$')
                                                              sorted suffixes
       else: bw.append(t[si-1])
   return ''.join(bw) # return string-ized version of list bw
>>> bwtViaSa("Tomorrow_and_tomorrow_and_tomorrow$")
 'w$wwdd nnoooaattTmmmrrrrrooo ooo'
>>> bwtViaSa("It_was_the_best_of_times_it_was_the_worst_of_times$")
 's$esttssfftteww_hhmmbootttt_ii__woeeaaressIi_
>>> bwtViaSa('in_the_jingle_jangle_morning_Ill_come_following_you$')
 u gleeeengj_mlhl_nnnnt$nwj__lggIolo_iiiiarfcmylo_oo_'
```

Python example: http://bit.ly/CG_BWT_SimpleBuild

How to reverse the BWT? \$ a b a a b a a \$ a b a a b aaba\$ab aba\$aba abaaba\$ abaaba\$ BWT(T) All rotations ba\$abaa Last column baaba\$a **Burrows-Wheeler** Sort **Matrix**

BWM has a key property called the LF Mapping...

Burrows-Wheeler Transform: T-ranking

Give each character in *T* a rank, equal to # times the character occurred previously in *T*. Call this the *T-ranking*.

Ranks aren't explicitly stored; they are just for illustration

Now let's re-write the BWM including ranks...

```
F
BWM with T-ranking: $ a_0 b_0 a_1 a_2 b_1 a_3 a_3 $ a_0 b_0 a_1 a_2 b_1 a_3 a_2 b_1 a_3 $ a_0 b_0 a_1 a_2 b_1 a_0 b_0 a_1 a_2 b_0 a_1 a_2 b_0 a_0 b_0 a_1 a_2 b_
```

Look at first and last columns, called F and L

And look at just the **a**s

as occur in the same order in F and L. As we look down columns, in both cases we see: $\mathbf{a_3}$, $\mathbf{a_1}$, $\mathbf{a_2}$, $\mathbf{a_0}$

```
F
BWM with T-ranking: $ a_0 b_0 a_1 a_2 b_1 a_3 a_3 $ a_0 b_0 a_1 a_2 b_1 a_3 a_2 b_1 a_3 $ a_0 b_0 a_1 a_2 b_1 a_0 b_0 a_1 a_2 b_0 a_1 a_2 b_0 a_0 b_0 a_1 a_2 b_
```

Same with **b**s: **b**₁, **b**₀

```
BWM with T-ranking: $ a_0 b_0 a_1 a_2 b_1 a_3 a_3 $ a_0 b_0 a_1 a_2 b_1 a_0 b_0 a_1 a_2 b_1 a_0 $ a_0 b_0 a_1 a_2 b_1 a_3 $ a_0 b_0 a_1 a_2 b_1 a_0 b_0 a_1 a_2 b_0 b_0 a_1
```

LF Mapping: The i^{th} occurrence of a character c in L and the i^{th} occurrence of c in F correspond to the same occurrence in T (i.e. have same rank)

However we rank occurrences of c, ranks appear in the same order in F & L

Why does the LF Mapping hold?

Why are these as in this order relative to each other?

\$ a b a a a b a a a b a a b a a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a a b a a a a b a a a a b a a

Occurrences of c in F are sorted by right-context. Same for L!

Whatever ranking we give to characters in *T*, rank orders in *F* and *L* will match

BWM with T-ranking:

```
$ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub>
a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub>
a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub>
a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub>
a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $
b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub> b<sub>0</sub> a<sub>1</sub> a<sub>2</sub>
b<sub>0</sub> a<sub>1</sub> a<sub>2</sub> b<sub>1</sub> a<sub>3</sub> $ a<sub>0</sub>
```

We'd like a different ranking so that for a given character, ranks are in ascending order as we look down the F / L columns...

BWM with B-ranking:

```
F L

$ a_3 b_1 a_1 a_2 b_0 a_0
a_0 $ a_3 b_1 a_1 a_2 b_0
a_1 a_2 b_0 a_0 $ a_3 b_1
a_2 b_0 a_0 $ a_3 b_1 a_1
a_3 b_1 a_1 a_2 b_0 a_0 $
b_0 a_0 $ a_3 b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2 b_0 a_0 $
a_3 b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a_1 a_2
b_1 a_1 a_2 b_0 a_0 $ a_3
b_1 a
```

F now has very simple structure: a \$, a block of **a**s with ascending ranks, a block of **b**s with ascending ranks

Say *T* has 300 **A**s, 400 **C**s, 250 **G**s and 700 **T**s and \$ < **A** < **C** < **G** < **T**

Which BWM row (0-based) begins with G_{100} ? (Ranks are B-ranks.)

Skip row starting with \$ (1 row)

Skip rows starting with **A** (300 rows)

Skip rows starting with **C** (400 rows)

Skip first 100 rows starting with \mathbf{G} (100 rows)

Answer: row 1 + 300 + 400 + 100 = row 801

Burrows-Wheeler Transform: reversing

Reverse BWT(T) starting at right-hand-side of *T* and moving left

Start in first row. *F* must have **\$**.

L contains character just prior to \$: a₀

Jump to row beginning with **a**₀.

L contains character just prior to **a**₀: **b**₀.

Repeat for **b**₀, get **a**₂

Repeat for a2, get a1

Repeat for **a**₁, get **b**₁

Repeat for **b**₁, get **a**₃

Repeat for **a**₃, get \$ (done)

In reverse order, we saw = $\mathbf{a_3} \mathbf{b_1} \mathbf{a_1} \mathbf{a_2} \mathbf{b_0} \mathbf{a_0} \mathbf{s} = T$

Burrows-Wheeler Transform: reversing

Another way to visualize:

```
F
                                                                                                 a<sub>0</sub>
                                                                                                                                       a<sub>0</sub>
                                                                                                                                                                                                                       a<sub>0</sub>
                                                                                                                                                                                a<sub>0</sub>
                                                                                                                                                                                                                                                               a<sub>0</sub>
                                       a_0 \rightarrow b_0
                                                                               a<sub>0</sub>
                                                                                                                      a<sub>0</sub>
                                                                                                                                        b<sub>1</sub>
                                                                                                                                                             ,a<sub>1</sub>→b<sub>1\</sub>
                                                                              a<sub>1</sub>
a<sub>2</sub>
                                                                                                                     a_2 \rightarrow a_1
                                                                                                                                                                                                                       a<sub>2</sub>
                                                         a<sub>2</sub>
                                                                              b_0 \rightarrow a_2
                  a<sub>3</sub>
                                                                                                                                        a<sub>3</sub>
                                                                                                                                                                                a<sub>3</sub>
                                                                                                                                                                                                    b_1 \rightarrow a_3
```

 $T: a_3 b_1 a_1 a_2 b_0 a_0 $$

Burrows-Wheeler Transform: reversing

http://bit.ly/CG_BWT_reverse

```
def rankBwt(bw):
    ''' Given BWT string bw, return parallel list of B-ranks. Also
        returns tots: map from character to # times it appears.
    tots = dict()
    ranks = []
    for c in bw:
        if c not in tots: tots[c] = 0
        ranks.append(tots[c])
        tots[c] += 1
    return ranks, tots
                      { a: 4, b: 2, $: 1}
           b
                   But ranks is big! We'll fix this later
```

Like when we did it by eye, the code depends on *knowing the* ranks of all the characters in L

We've seen how BWT is useful for compression:

Sorts characters by right-context, making a more compressible string

And how it's reversible:

Repeated applications of LF Mapping, recreating T from right to left

How is it used as an index?

FM Index

FM Index: an index combining the BWT with a few small auxiliary data structures

Core of index is **F** and **L** from BWM:

L is the same size as T

F can be represented as array of $|\Sigma|$ integers

L is compressible (but even uncompressed, it's small compared to suffix array)

We're discarding T

\$ a b a b a a b a b a a b a b a b a a b

Paolo Ferragina, and Giovanni Manzini. "Opportunistic data structures with applications." *Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on.* IEEE, 2000.

How to query?

```
$ a b a a b a a b a a b a a b a $ a b a $ a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a b a a b a b a a b a b a a b a b a a b a b a b a a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b
```

Can we query like the suffix array?


```
5
a $
a a ba$
a ba$
a baaba$
ba$
baaba$
```

We don't have these columns, and we don't have T. Binary search not possible.

Look for range of rows of BWM(T) with P as prefix

Start with shortest suffix, then match successively longer suffixes

We have rows beginning with **a**, now we want rows beginning with **ba**

Now we have the rows with prefix **ba**

We have rows beginning with **ba**, now we seek rows beginning with **aba**

Now we have the rows with prefix **aba**

P = aba Got the same range, [3, 5), we would have got from suffix array

Unlike suffix array, we don't immediately know where the matches are in T...

When *P* does not occur in *T*, we eventually fail to find next character in *L*:

If we scan characters in the last column, that can be slow, O(m)

FM Index: lingering issues

(1) Scanning for preceding character is slow

```
$ a b a a b a<sub>0</sub>

a<sub>0</sub> $ a b a a b<sub>0</sub>

a<sub>1</sub> a b a $ a b<sub>1</sub>

a<sub>2</sub> b a $ a b a<sub>1</sub>

a<sub>3</sub> b a a b a $

b<sub>0</sub> a $ a b a a<sub>2</sub>

b<sub>1</sub> a a b a $ a<sub>3</sub>
```

(2) Storing ranks takes too much space

```
def reverseBwt(bw):
    """ Make T from BWT(T) """
    ranks, tots = rankBwt(bw)
    first = firstCol(tots)
    rowi = 0
    t = "$"
    while bw[rowi] != '$':
        c = bw[rowi]
        t = c + t
        rowi = first[c][0] + ranks[rowi]
    return t
```

(3) Need way to find where matches occur in *T*:

```
$ a b a a b a<sub>0</sub>
a<sub>0</sub> $ a b a a b<sub>0</sub>
a<sub>1</sub> a b a $ a b<sub>1</sub>
a<sub>2</sub> b a $ a b a<sub>1</sub>
a<sub>3</sub> b a a b a $
b<sub>0</sub> a $ a b a a<sub>2</sub>
b<sub>1</sub> a a b a $ a<sub>3</sub>
```

Is there an fast way to determine which **b**s precede the **a**s in our range?

```
$ a b a a b a<sub>0</sub>
a<sub>0</sub> $ a b a a b<sub>0</sub>
a<sub>1</sub> a b a $ a b<sub>1</sub>
a<sub>2</sub> b a $ a b a<sub>1</sub>
a<sub>3</sub> b a a b a $
b<sub>0</sub> a $ a b a a<sub>2</sub>
b<sub>1</sub> a a b a $ a<sub>3</sub>
```

Idea: pre-calculate cumulative # **a**s, **b**s in *L* up to every row:

Idea: pre-calculate cumulative # **a**s, **b**s in *L* up to every row:

O(1) time; 2 lookups regardless of range size

Next idea: pre-calculate # \mathbf{a} s, \mathbf{b} s in L up to *some* rows, e.g. every 5th row. Call pre-calculated rows *checkpoints*.

Next idea: pre-calculate # \mathbf{a} s, \mathbf{b} s in L up to *some* rows, e.g. every 5th row. Call pre-calculated rows *checkpoints*.

To resolve a lookup for a non-checkpoint row, walk to nearest checkpoint. Use tally at that checkpoint, adjusted for characters we saw along the way.

FM Index: a few problems

Solved! At the expense of adding checkpoints (O(m) integers) to index.

O(1) with checkpoints

(2) Ranking takes too much space

```
def reverseBwt(bw):
    """ Make T from BWT(T) """
    ranks, tots = rankBwt(bw)
    first = firstCol(tots)
    rowi = 0
    t = "$"
    while bw[rowi] != '$':
        c = bw[rowi]
        t = c + t
        rowi = first[c][0] + ranks[rowi]
    return t
```

Still O(m) space to store checkpoints, but we control the constant

FM Index: a few problems

Not yet solved:

(3) Where are these occurrences in *T*?

```
$ a b a a b a<sub>0</sub>
a<sub>0</sub> $ a b a a b<sub>0</sub>
a<sub>1</sub> a b a $ a b<sub>1</sub>
a<sub>2</sub> b a $ a b a a<sub>1</sub>
a<sub>3</sub> b a a b a $
b<sub>0</sub> a $ a b a a<sub>2</sub>
b<sub>1</sub> a a b a $ a<sub>3</sub>
```

If we had suffix array, we could look up offsets...

...but we don't; we are trying to avoid storing *m* integers

FM Index: resolving offsets

Idea: store some suffix array elements, but not all

Lookup for row 4 succeeds

Lookup for row 3 fails - SA entry was discarded

FM Index: resolving offsets

LF Mapping tells us that "a" at the end of row 3 corresponds to... "a" at the beginning of row 2

Row 2 of suffix array = 2

Missing value in row 3 = 2 (row 2's SA val) + 1 (# steps to row 2) = **3**

If saved SA values are O(1) positions apart in T, resolving offset is O(1) time

FM Index: resolving offsets

Many LF-mapping steps may be required to get to a sampled row:

Missing value = 0 (SA elt at destination) + 3 (# steps to destination) = 3

FM Index: problems solved

Solved!

At the expense of adding some SA values (O(m) integers) to index Call this the "SA sample"

(3) Need a way to find where these occurrences are in *T*:

```
$ a b a a b a<sub>0</sub>
a<sub>0</sub> $ a b a a b<sub>0</sub>
a<sub>1</sub> a b a $ a b<sub>1</sub>
a<sub>2</sub> b a $ a b a<sub>1</sub>
a<sub>3</sub> b a a b a $
b<sub>0</sub> a $ a b a a<sub>2</sub>
b<sub>1</sub> a a b a $ a<sub>3</sub>
```

With SA sample we can do this in O(1) time per occurrence

$$|T| = m$$

	F	L	F	L	F	L	F	L	F	L	F	L	F	L
→	\$ -	>a ₀	\$	a ₀	\$	a ₀	\$	a ₀	\$	a ₀	\$	a ₀	\$	a ₀
(a _o	b ₀	a ₀ -	→ b _{0\}	a ₀	b ₀	a ₀	b ₀	a ₀	b ₀	a ₀	b ₀	a ₀	b ₀
(a ₁	b ₁	a ₁	b ₁	a ₁	b ₁	a ₁	b ₁	√ a ₁ −	> b _{1\}	a ₁	b ₁	a ₁	b ₁
	a ₂	a 1	a ₂	a ₁	a ₂	a ₁	_a_	→a ₁	a ₂	a ₁	a ₂	a ₁	a ₂	a ₁
(a ₃	\$	a ₃	\$	a ₃	\$ /	a ₃	\$	a ₃	\$	a ₃	\$	a ₃ -	> \$
	b ₀	a ₂	b ₀	a ₂	b ₀ –	→ a ₂	b ₀	a ₂	b ₀	a ₂	b ₀	a ₂	b ₀	a ₂
	b ₁	a ₃	b ₁	a ₃	b ₁	a ₃	b ₁	a ₃	b ₁	a ₃	b ₁ –	>a₃	b ₁	a ₃
O(1) rank calculation				O(1) rank calculation			O(1) rank calculation							
O(1) racalcul							O(1) rank calculation			O(1) rank calculation				

Reversing BWT(T) in FM Index is O(m) time

$$|T| = m, |P| = n$$

Determining of P occurs in T in FM Index is O(n) time

rows we keep

Let a = fraction of Let b = fraction of SAelements we keep

a	b
•	•
482	432
488	439

FM Index consists of these, plus *L* and *F* columns

Note: suffix tree/array didn't have parameters like **a** and **b**

Components of FM Index:

First column (F): $\sim |\Sigma|$ integers

Last column (L): m characters

SA sample: $m \cdot a$ integers, a is fraction of SA elements kept

Checkpoints: $m \cdot |\Sigma| \cdot b$ integers, b is fraction of tallies kept

For DNA alphabet (2 bits / nt), T = human genome, a = 1/32, b = 1/128:

First column (F): 16 bytes

Last column (*L*): 2 bits * 3 billion chars = 750 MB

SA sample: 3 billion chars * 4 bytes / $32 = \sim 400 \text{ MB}$

Checkpoints: 3 billion *4 alphabet chars *4 bytes / $128 = \sim 400 \text{ MB}$

Total ≈ 1.5 GB

(blue indicates what we can adjust by changing a & b) ~ 0.5 bytes per input char

FM Index: small memory footprint

Paolo Ferragina, and Giovanni Manzini. "Opportunistic data structures with applications." *Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on.* IEEE, 2000.

FM Index described here is simplified version of what's described in paper

Also discussed in paper: compressing BWT(T) for further savings (and selectively decompression portions of it at query time)

FM Index: small memory footprint

Suffix tree

≥ 45 GB

5
A\$
ANA\$
ANANA\$
BANANA\$
NA\$
NA\$

Suffix array

≥ 12 GB

\$ BANANA
A\$ BANAN
ANA\$ BANANA\$ B
BANANA\$
NA\$ BANA
NA\$ BANA

FM Index

~ 1.5 **GB**

Suffix index bounds

	Suffix tree	Suffix array	FM Index	
Time: Does P occur?	O(n)	O(n log m)	O(n)	
Time: Count <i>k</i> occurrences of P	O(n+k)	O(n log m)	O(n)	
Time: Report <i>k</i> locations of P	O(n+k)	$O(n \log m + k)$	O(n+k)	
Space	O(m)	O(m)	O(m)	
Needs T?	yes	yes	no	
Bytes per input character	>15	~4	~0.5	

m = |T|, n = |P|, k = # occurrences of P in T