Burrows-Wheeler Transform & FM Index

Ben Langmead

=X
@
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
|@ ® | to tell me briefly how you are using the slides. For original Keynote

files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Indexing with suffixes

Suffix Tree

$

AS
ANAS
ANANAS
BANANAS
NAS
NANAS

BEEREER

Suffix Array

SBANANA
ASBANAN
ANASBAN
ANANASB
BANANAS
NASBANA
NANASBA

FM Index

Burrows-Wheeler Transform

Reversible permutation of the characters of a string, used originally for compression

Sabaaba

aSabaab

aabas$ab

abaaba$ abaSaba abba$aa
! 4 abaabas BWT(T)
/fo’%- baSabaa
N baaba $ a Last column
Sort Burrows-Wheeler
Matrix

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

All rotations

abaaba$

baa;;E}

T
aabaSab

abaSaba
baSabaa

aSabaab
Sabaaba

(then they repeat)

Burrows-Wheeler Transform

Reversible permutation of the characters of a string, used originally for compression

Sabaaba

aSabaab

aabas$ab

abaaba$ abaSaba abba$aa
! 4 abaabas BWT(T)
/fo’%- baSabaa
N baaba $ a Last column
Sort Burrows-Wheeler
Matrix

How is it useful for compression? How is it reversible? How is it an index?

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

def rotations(t):
" Return list of rotations of input string t """

tt =t * 2 Make list of all rotations
return [tt[i:i+len(t)] for i in range(0, len(t))]

def bwm(t):
""" Return lexicographically sorted list of t’s rotations """ Sort them
return sorted(rotations(t))

def bwtViaBwm(t):

" Given T, returns BWT(T) by way of the BWM """ Take |ast Column
return ''.join(map(lambda x: x[-1], bwm(t)))

>>> bwtViaBwm("Tomorrow and_tomorrow_and tomorrow$")
'‘wdwwdd___nnoooaattTmmmrrrrrrooo 000’

>>> bwtViaBwm("It was the best of times it was the worst of times$")
's$esttssfftteww hhmmbootttt ii woeeaaressIi '

>>> bwtViaBwm('in_the_jingle jangle morning Il11 come_ following you$')

'u_gleeeengj _mlhl nnnnt$nwj 1gglolo iiiiarfcmylo oo_

http://j.mp/CG_BWT

Burrows-Wheeler Transform

abaabas$
T
Sabaaba a
aSabaab b
aabaS$ab b
abaSaba > a
abaabas$ S
baSabaa 2
baaba$a a
T
BWT

BWT(T) orders T's characters according to
alphabetical order of their right contexts in T

Sabaab
aSabaa
aabas$a
abaSab
abaaba
baSaba
baabas$
T
Right
contexts

Right context

The right context of a position in T consists of everything that comes
after it with "wrap around"

I: lalbaabas$

Rightcontextt b a a b a S

2

Y ‘e
. ~
. .
. .
o ‘e
. -
) 3 I

I: abalalbas$

Right context: b a $ aba

Burrows-Wheeler Transform

Sabaaba

aSabaab
Right context: ala 3 3

aba $ ab -a—b—a—$—a—B a Right context:
abaabag abasab

baSabaa
baabas$a

Burrows-Wheeler Transform

final
char sorted rotations

(L)

to decompress. It achieves compression
to perform only comparisons to a depth

transformation} This secticn describes
transformation} Wwe use the example anc
treats the right-hand side as the most

tree for each 16 kbyte input block, enc
tree in the output stream, then encodes
turn, set SL[i]$ to be the

turn, set $R[i]$ to the

unusual data. Like the algorithm of Nan
nse a single set of probabilities table
using the positicns of the suffixes in

value at a given point in the vector $R
we present modifications that improve t
when the block size is quite large. Ho
which codes that have not been seen in

with ch appear in the {\em same order
with $chs. In our exam
with Euffman or arithmetic coding. Bri
with figures given by Bell \cite{bell}.

o

Sorted by right-context

(= J= Jit = R~ i

-~
L

Gives “structure” to BWT(T),
making it more compressible

O O F-F - O ® H ® % O F- - P O OO O

888 B8B83 3B B B3B8

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the
sorted list of rotations of a version of this paper are shown, together with the final
character of each rotation.

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

BWM is related to the suffix array

Sabaaba 6|9
aSabaab 5/a $
aabaS$Sab 2laabas$
abaSaba 3labas$
abaaba$ Olabaabas$
baSabaa 41b a$
baaba$a llbaabas$
BWM(T) SA(T)

Same order whether rows are rotations or suffixes

Burrows-Wheeler Transform

In fact, this gives us a new definition / way to construct BWT(T):

T[SA[] —1] if SAfi] > 0

BWTli] = { $ if SAJi] =0

"“BWT = characters just to the left of the suffixes in the suffix array”

Sabaaba 6|$
aSabaab 5/a $
aabaS$Sab 2laabas$
abaSaba 3labas$s
abaaba$ Olabaabas$
baSabaa 41bas$
baaba$a llbaabas$

BWM(T) SA(T)

Burrows-Wheeler Transform

def suffixArray(s):
" Given T return suffix array SA(T). We use Python's sorted
function here for simplicity, but we can do better. """
satups = sorted([(s[i:], i) for i in xrange(@, len(s))])
Extract and return just the offsets
return map(lambda x: x[1], satups)

Make suffix array

def bwtViaSa(t):

bw"=G%\]/en T, returns BWT(T) by way of the suffix array. """ Take CharaCterSjUSt
for §i ir.m suffixArray(t): to the left of the

if si == 0: bw.append('$")

else: bw.append(t[si-1]) sorted suffixes
return ''.join(bw) # return string-ized version of List bw

>>> bwtViaSa("Tomorrow_and tomorrow_and tomorrow$")
'‘wgwwdd __nnoooaattTmmmrrrrrrooo_ ooo'

>>> bwtViaSa("It was the best of times it was the worst of times$")
's$esttssfftteww hhmmbootttt ii woeeaaressIi '

>>> bwtViaSa('in_the jingle jangle morning I1l come_following you$')

'u_gleeeengj _mlhl nnnnt$nwj 1gglolo iiiiarfcmylo oo_

Python example: http://bit.ly/CG_BWT_SimpleBuild

http://bit.ly/CG_BWT_SimpleBuild

Burrows-Wheeler Transform

How to reverse the BWT?

§~~
~N

Last column

?
"""" Sabaaba

E aSabaab
v aabas$ab
abaabas$ abaSaba
T . abaabas$
ey baSabaa
s baaba$a
Sort Burrows-Wheeler

Matrix

BWM has a key property called the LF Mapping...

abba$aa
BWT(T)

Burrows-Wheeler Transform: T-ranking

Give each character in T a rank, equal to # times the character
occurred previously in T. Call this the T-ranking.

aoboaiazbiaz$

Ranks aren’t explicitly stored; they are just for illustration

Now let’s re-write the BWM including ranks...

Burrows-Wheeler Transform

F L
BWM with T-ranking: as
as
ai
a2 ai
do
d>2
do

Look at first and last columns, called Fand L
And look at just the As

as occur in the same orderin Fand L. As we look down columns, in

both cases we see: A3, A1, A2, Ao

Burrows-Wheeler Transform

F
BWM with T-ranking:

oF
bo

Same with bs: b1, bo

Burrows-Wheeler Transform: LF Mapping

F L
BWM with T-ranking: § as
ds b1
di bo
a> ai
do S
b1 d>2
bo do

LF Mapping: The ith occurrence of a character cin L and the jth occurrence
of cin F correspond to the same occurrence in T (i.e. have same rank)

However we rank occurrences of ¢, ranks appear in the same order in F &L

Burrows-Wheeler Transform: LF Mapping

Why does the LF Mapping hold?

Why are these

as in this order

relative to
each other?

$abaaba:

"b1a$abaaz
boaabas$ a

They're sorted by
right-context

$abaab|a3

azs $abaab;
aiaba$ abo

az b a$ abla;

aobaabas$

biaSabala:

do

bpaabas$

They're sorted by
right-context

Occurrences of ¢ in F are sorted by right-context. Same for L!

\ Why are these

as in this order
« relative to

/each other?

Whatever ranking we give to characters in T, rank orders in F and L will match

Burrows-Wheeler Transform: LF Mapping

BWM with T-ranking:

F L

$ ao bo a1 a2 by as
as $ ao bo a1 a2 by
airaxbias $ aobo
a: bias $ ao bo a;
aoboaiazbiaz $
bias $ ao bo a1 a>
boaiax biaz $ ao

We'd like a different ranking so that for a given character, ranks are in
ascending order as we look down the F / L columnes...

Burrows-Wheeler Transform: LF Mapping

BWM with B-ranking:

F L

S do

do bo

a b1

a- ai Ascending rank
- $

bo a2

\ 4 b1 d3 v

F now has very simple structure: a S, a block of @s with ascending ranks, a
block of bs with ascending ranks

Burrows-Wheeler Transform

Say T has 300 As, 400 Cs, 250 Gsand 700 Tsand $ <A< C<G<T

Which BWM row (0-based) begins with G100? (Ranks are B-ranks.)

Skip row starting with $ (1 row)

Skip rows starting with A (300 rows)

Skip rows starting with € (400 rows)

Skip first 100 rows starting with G (100 rows)

Answer:row 1 + 300 + 400 + 100 = row 801

Burrows-Wheeler Transform: reversing

Reverse BWT(T) starting at right-hand-side of T- az bia: a> bo ao $
T and moving left
F L
Start in first row. F must have $.
L contains character just prior to $: @o >$ ao
do bo
Jump to row beginning with ao.
L contains character just prior to ao: bo. ai b
a2 ai
Repeat for bo, get a2 Az > $
Repeat for a2, get a1 bo a-

Repeat for a1, get b1

Repeat for b1, get a3

Repeat for a3, get $ (done) In reverse order, we saw =az b1atazboao$=T

Burrows-Wheeler Transform: reversing

Another way to visualize:

F L F L F L F L F L F L
—>$—>ao\

ao—>bo

b1—>a3

T: asbiatazboao$

as-»>$S

Burrows-Wheeler Transform: reversing

http://bit.ly/CG_BWT_reverse

def rankBwt(bw):
' Given BWT string bw, return parallel list of B-ranks. Also
returns tots: map from character to # times it appears. ''’
tots = dict()
ranks = []
for ¢ in bw:
if ¢ not in tots: tots[c] = ©
ranks.append(tots[c])
tots[c] += 1
return ranks, tots

\

L {a:4,b:2,S: 1}

do
bo
Like when we did it by eye, the oF
code depends on knowing the 1| Butranks is big! We'll fix this later
ranks of all the charactersin L
2
3

http://bit.ly/CG_BWT_reverse

Burrows-Wheeler Transform

We've seen how BWT is useful for compression:

Sorts characters by right-context, making a more compressible string

And how it's reversible:
Repeated applications of LF Mapping, recreating T from right to left

How is it used as an index?

FM Index

FM Index: an index combining the BWT with a few small auxiliary

data structures

Core of index is F and L from BWM:
L is the samesizeas T
F can be represented as array of || integers

L is compressible (but even uncompressed,
it's small compared to suffix array)

We're discarding T

Paolo Ferragina, and Giovanni Manzini. "Opportunistic data
structures with applications." Foundations of Computer Science,
2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.

CO Y QY O™
Q0N OO O -

Not stored in index

FM Index: querying

How to query?

CO Y Y QY WU

U OWNY OTCT 9

FM Index: querying

Can we query like the suffix array?

S a 6($S

a b 5la$

a b 2laabas$

a a 3labas$

a S Olabaaba$
b a 4|bas$

b) llbaabas$

\

We don't have these columns, and we don't have T.
Binary search not possible.

FM Index: querying

Look for range of rows of BWM(T) with P as prefix

Start with shortest suffix, then match successively longer suffixes

p=aba

F L

S ao

do bo
Easy to find all the ai b
rows beginning witha | |az ai

as S

bo d>

FM Index: querying

We have rows beginning with @, now we want rows beginning with ba

p=aba p=aba
F L F L
3 ao S ao
ao bo: ao bo
ai b1 <« Look at those rows in L. ai b1
a2 ai bo, b1 are bs occuring just to left. a» a1
as $ | _ as S
bo a2 Use LF Mapping. Let new bo a>
—
b- as range delimit those bs b- as

Now we have the rows with prefix ba

FM Index: querying

We have rows beginning with ba, now we seek rows beginning with aba

Pp=aba P=aba

F L F L

S do S ao
ao bo do bo
ai b ai b1
d d

a; $1 Use LF Mapping — :; a$1
bo azi < a2, A3 occur just to left. bo a
b a3 b1 d3

Now we have the rows with prefix aba

FM Index: querying

Got the same range, [3, 5), we would

P=aba have got from suffix array
F L
S ao 6%
do bo 51]a $

_an b [2|laaba$
az ai abal$

[3,5)“ a- § [3,5)“a baabas
bo a 4lba$
Where are b as Tlfbaabas$

these?

Unlike suffix array, we don't immediately know where the
matches areinT...

FM Index: querying

When P does not occur in T, we eventually fail to find next character in L:

P=bba
F L
S do
do bo
ai b
a2 ai
a3 S
Rows with ba prefix I EO 9 14— No bs!
1 as

FM Index: querying

If we scan characters in the last column, that can be slow, O(m)

P=aba

F L

S do

do bo

a by Scan, looking for bs
a> ai

as S -

bo -)

FM Index: lingering issues

(2) Storing ranks takes too much space

def reverseBwt(bw):

(1) Scanning for preceding """ Make T from BWT(T) '
ranks, tots = rankat(bw)
character is slow /ﬁrst - firstCol(tots)
m rowi = 0
t
S ao INtEgErs while bufrowi] 1= 's':
¢ = bw[rowi]
do bo t=c+t
rowi = first[c][0] + ranks[rowi]
ai t)1 ()(I77) return t
d2 a1 | SCan
a S (3) Need way to find where matches
3 v
b occurin T:
) -)
b; ds S do
ao bo
ai b
Where? |92 a1
as S
bo a2

FM Index: fast rank calculations

Is there an fast way to
determine which bs

precede the as in our range? as

FM Index: fast rank calculations

Tally

|dea: pre-calculate
cumulative # as, bs
in L up to every row:

0 0O VoY OO 9 —

FM Index: fast rank calculations

Tally

L ab

2 110

|dea: pre-calculate E 1 ;
cumulative # as, bs 3 >T5
in L up to every row: $ 51
2 3|2

a 412

FM Index: fast rank calculations

Tally
F L ab
$ a 1[0 |«— 0bs up to &including this row
alb 1
alb 2
al a 2|2
als 2 | 2 |[«— 2 bsup to &including this row
b a 3|2
b a 412

So bo and b1 must be in there!

FM Index: fast rank calculations

CT O 0 09 9 WM ™M

Tally

Q
Oo| T

O OV OO O ™~

PIWININ
K 7
NININININ|[—

2 a’s up to & including this row
4 a’s up to & including this row

So a2 and a3z must be in there!

O(1) time; 2 lookups
regardless of range size

FM Index: fast rank calculations

Tally
F L ab
$ a 110
ab T
ab 2 . .

Tally is m x | X | integers

a a 2|2 |m Too big!
a $ 2 (2
b a 3(2
b a 412

T
™
L

FM Index: fast rank calculations

Next idea: pre-calculate # as, bs in L up to some rows, e.g. every 5th row. Call
pre-calculated rows checkpoints.

Tally

ab
110 | Checkpoint 1

312 | Checkpoint 2

0 O WY OO O ™

CT O O 9 W T

FM Index: fast rank calculations

Next idea: pre-calculate # as, bs in L up to some rows, e.g. every 5th row. Call
pre-calculated rows checkpoints.

Tally
F L ab
$ a 110 |«— Lookup here succeeds as usual
alb
alb
d|ad
als <— Qops: not a checkpoint
b a 3 | 2 |«— Butthere’s one nearby
b a

To resolve a lookup for a non-checkpoint row, walk to nearest checkpoint.
Use tally at that checkpoint, adjusted for characters we saw along the way.

FM Index: fast rank calculations

Tally
L a b
What goes here? d 4| 482 | 432
482+ g< 484 E
Checkpoint
above as along the way \a\\
a
What's goes here? 3
439 -2 =437 a
Checkpgint \
below bs along the way b \
b ™
a
If checkpoints are O(1) distance apart, lookups are O(1) E
b| | 488 | 439
a
b

FM Index: a few problems

Solved! At the expense of adding checkpoints (O(m) integers) to index.

(1) £ | (2) Ranking takes too much space
$ aO def reverseBwt(bw):
- '" Make T from BWT(T) """
ranks, tots = rankBwt(bw)
a0 bo / first = firstCol(tots)
i i . rowi = 0
ai b . Thisscanis mintegers ©i"
while bw[rowi] != "$":
aZ a1 O(m) WOrk c = bw[rowi]
t=c+ t
a3 $ rowi = first[c][@] + ranks[rowi]
bO aZ - return t
b as

Still O(m) space to store
O(1) with checkpoints checkpoints, but we control
the constant

FM Index: a few problems

Not yet solved: (3) Wherearethese $ ao
occurrencesin 7?2 @0 bo
ai b1
a2 ai
as S
bo a2
b as
If we had suffix array, we could look up offsets...
F L SA
S a 6|$
a b 5(a$
a b 2laaba$
a a >[3|laba$
a S >|0labaaba$
b a Offsetsi0.3 pag ..but we don't; we
b 3 1lbaabas$ are trying to avoid

storing m integers

FM Index: resolving offsets

ldea: store some suffix array elements, but not all

F L SA' (evens only)
S a 6

a b

a b 2

a a—>X

a S >[0

b a 4

b a

Lookup for row 4 succeeds

Lookup for row 3 fails - SA entry was discarded

FM Index: resolving offsets

LF Mapping tells us that “a” at the end of row 3 corresponds to...

I/

.."a” at the beginning of row 2

SA' (evens only)
6

T 0000 VT
mmm4c‘ml~
N)

Row 2 of suffix array = 2

Missing value in row 3 = 2 (row 2’s SA val) + 1 (# steps torow 2) =3

If saved SA values are O(1) positions apartin T, resolving offset is O(1) time

FM Index: resolving offsets

Many LF-mapping steps may be required to get to a sampled row:

SA' (every 4th)

Missing value = 0 (SA elt at destination) + 3 (# steps to destination) = 3

FM Index: problems solved

At the expense of adding some SA values (O(m) integers) to index
Call this the “SA sample”

Solved!

(3) Need a way to find where these
occurrences arein T:

S dao
do bo
a1 b,
d> a1
as S
bo d>2
b as

With SA sample we can do this in
O(1) time per occurrence

FM Index | T|=m

F L F L F L F L F L F L F L
—>$—>ao\

ao—>bo

d>—>ad1

/ as->$
bo—a: /

b —as

0(1) ran.k O(1) rank O(1) rank
calculation calculation calculation

O(1) rank O(1) rank O(1) rank
calculation calculation calculation

Reversing BWT(T) in FM Index is O(m) time

FM Index

P=aba

Determining of P occurs in Tin FM Index is O(n) time

P=aba

L F
a 3
ibog ao
b1 ai
ai a>
S ds
a2 bo
as b1
2 O(1) rank
calculations

L F
do S
bo do
b1 di
di d>2
S Jlas
a2 bo
as | bs

2 O(1) rank

calculations

FM Index

Let a = fraction of Let b =fraction of SA

rows we keep elements we keep
a b SA
482 | 432
FM Index consists of these,
44 plus L and F columns
Note: suffix tree/array
didn't have parameters like
aand b
11
488 | 439
0

FM Index

Components of FM Index:

First column (F): ~ |2 | integers

Last column (L): m characters
m - a integers, a is fraction of SA elements kept

SA sample:
m-| X |- bintegers, b is fraction of tallies kept

Checkpoints:

For DNA alphabet (2 bits / nt), T=human genome,a=1/32,b=1/128:

First column (F): 16 bytes
pits * 3 billion chars = 750 MB

pillion chars * 4 bytes / 32 = ~ 400 MB
pillion *4 alphabet chars *4 bytes / 128 = ~ 400 MB

Last column (L): 2
SA sample: 3

Checkpoints: 3
Total = 1.5 GB

(blue indicates what we can
adjust by changing a & b) ~0.5 bytes per input char

FM Index: small memory footprint

Paolo Ferragina, and Giovanni Manzini. "Opportunistic data structures with
applications." Foundations of Computer Science, 2000. Proceedings. 41st Annual
Symposium on. |IEEE, 2000.

FM Index described here is simplified version of what’s described in paper

Also discussed in paper: compressing BWT(T) for further savings (and
selectively decompression portions of it at query time)

FM Index: small memory footprint

6] $ SBANANA

- aangnas 5] As ASBANAN
B 3| ANAS ANASBAN

s/ \NA s/ \as 1] ANANAS ANANASB
- [E] 0| BANANAS BANANAS
5/ \ Nas 4] NAS NASBANA

2| NANAS NANASEBA

Suffix tree Suffix array FM Index
> 45 GB >12GB ~1.5GB

Suffix index bounds

Suffix tree Suffix array FM Index
Time: Does P occur? O(n) O(n log m) O(n)
Time: Count k
occurrences of P O(n + k) O(n Iog m) O(n)
TLT;&SES(;?PI(O(n + k) Onlogm+k)| O(n+k)
Space O(m) O(m) O(m)
Needs T? yes yes no
Bytes per input
character >15 ~4 ~0.5

m=|T|,n=|P|, k=#occurrencesof Pin T

