
Writeup for third project of
CMSC 420: “Data Structures”
Section 0102 , Summer 2017

Theme: KD Trees and Priority Queues

Handout date: Wednesday, 07-12-2017
On-time deadline: 07-22-2017, 11:59pm

Late deadline (30% penalty): 07-24-2017, 11:59pm

1 Overview

For this project, you will be implementing two data structures that we’ve talked about
in class: (Bounded) Priority Queues and K-D Trees. To that end, you will design and
implement two Java classes: BoundedPriorityQueue and KDTree. The reason for having
you implement two separate classes for each data structure is because you will be using the
first one to solve a certain class of queries for the second one, and separating the interfaces
allows us to write tests for both that will help you out with debugging!

The Priority Queue part of the project is somewhat straightforward to explain, yet has
some interesting twists to make you think about Priority Queue implementations. You will
have full freedom to implement BoundedPriorityQueue in whichever way allows you to pass
our unit tests. This includes modifying Priority Queue libraries given by the Java standard
library or a third-party implementation you trust.

The K-D tree part of the project is self-explanatory as well. You will implement K-D
Trees for an arbitrary k, supplied as information by the user. KDTree will support standard
structure operations (insertion, deletion, lookup) and spatial queries (range, (m-)nearest
neighbor(s)). Our unit tests are very comprehensive in terms of code coverage and param-
eter ranges, so you will need to think about many corner cases of your algorithms! To
establish a common interface between your code and ours, we define a class that describes a
k-dimensional point in Euclidean space and provide it for you so that you can use it. More
details are given in Section 2.

1



2 Provided code base and documentation

For this project, we supply you with an implementation of two Java classes called KDPoint

and KNNComparator, as well as Javadocs for these classes. We also include tests for KDPoint
both to give you ideas for quality unit testing and to pacify any concerns regarding the state
of KDPoints. KDPoint is a simple abstraction over k-dimensional points in Euclidean space.
KNNComparator is a class that implements a Comparator that sorts KDPoints based on the
Euclidean distance towards a given “anchor” KDPoint.

Among those two classes, KDPoint is the only one that is really interesting. KNNCompara
tor is only useful for testing (i.e we use it in our own unit tests, so your submission needs
to contain it such that the tests don’t break). You are most welcome to use it for your own
tests if you deem it worthwhile.

When it comes to KDPoint, you will notice this class’s objects have 8-byte accuracy and
they can be constructed in various ways. Make sure you read either the documentation
for this class before you proceed with your project! In particular, it is important
to understand how to properly construct objects of this class. Make sure you examine the
documentation for the constructors in order to avoid any pitfalls.

Furthermore, while you are most welcome to add to the functionality of KDPoint and
KNNComparator if you so desire, we recommend that you do not alter their existing func-
tionality. As you will see in section 3.2, some of your public methods will play around
with KDPoints, and our unit tests depend on the functionality provided to function
smoothly. When it comes to KNNComparator, while it is true that we do not require it
anywhere on the interface, we use it on our tests, so its current functionality is also needed.

Lastly, you will notice that the implementation of those classes is contained within
a sub-directory called utils. Please maintain this directory-file structure, since our unit
tests treat the name utils as that of a package which is imported at compile-time. Both
BoundedPriorityQueue.java and KDTree.java will have to be in the default package, as
with our previous projects this summer session. Refer to 5 for more details.

3 Interface

As with project 1, we will need you to provide some public methods which will implement
the desired interface. Those methods will be checked against through our unit tests. All
private, protected or package access data members and methods that you use are your
own business.

The code bundle mentioned in section 2 contains Javadoc that explains the expected
behavior of the methods of both BoundedPriorityQueue and KDTree. This Javadoc only
contains public method descriptions; as always, you are free to implement those in any way
you wish, subject to some constraints mentioned in section 3.2.

Important note: Read every method’s Javadoc very carefully!!! Some methods require
that you throw appropriate exceptions when certain conditions are met; our unit tests depend
that these exceptions are thrown wherever appropriate!

2



3.1 BoundedPriorityQueue

BoundedPriortyQueue’s (hereafter called BPQ for brevity) interface is described in the docs.
A BPQ is different from a classic PQ in that it only allows one to store a certain number m
of elements. If it already does have m elements (so it’s full) and a certain candidate element
for insertion has a priority smaller than that of the last element in the BPQ, then that last
element is removed from the queue and the candidate is inserted in the appropriate space,
which is dependent on the implementation of the queue itself (linked / array-based heap, list
of lists, etc).

3.2 KDTree

KDTree’s interface is also described in the docs. Notice that the method that implements the
m-nearest neighbor queries returns a BoundedPriorityQueue over KDPoints to the caller.
You are thus required to use your BoundedPriorityQueue to solve these queries, and of
course you have to use our familiar branch-and-bound algorithm to fill in this BoundedPriorit
yQueue. That is, submissions that just fill in this queue by solving the m-nearest neighbor
problem in a brute-force manner 1 will not be considered for credit with respect to
the relevant unit tests! This is also true for range queries: The naive approach of
amassing all points and then only inserting those that are within the desired range in the
Collection instance that is returned is not acceptable, and the relevant unit tests will not
receive any credit!

4 Code Structure / Directives

Naturally, there are various different ways that you can approach this project with. You can
handle the KD-Tree part first, assuming the Bounded Priority Queue (BPQ) implemented,
switch to the BPQ before implementing KNN, and then implement KNN. Or you can handle
the BPQ first, and then move on to the KD-Tree. There is no right or wrong way to approach
the project, so the following should only be considered general directives rather than strict
guidelines:

• Think about how a BPQ differs from a Priority Queue. Is there anything in a BPQ
that warrants additional thought when compared to a standard Priority Queue? What
would be a reasonable implementation of a BPQ?

• Your algorithms should really be agnostic towards the dimensionality of the space.
More informally, you should be able to generalize everything you know about “2D-
trees” to arbitrary-dimensional KD-Trees. For k ≥ 3, it is unlikely that you will be
able to even produce a meaningful visualization; that’s not a problem, so long as you
understand all corner cases of KD-Tree operations. You can be certain that our unit
tests cover a number of various dimensions!

1The brute-force algorithm in this case would be to recurse over all elements, sort them based on distance
to the anchor element, and insert the first k ones into the BoundedPriorityQueue instance that is returned.

3



• Make sure that you avoid some common pitfalls associated with range and nearest
neighbor queries:

– The query points themselves should not be part of your answer. If they were, this
would make nearest neighbor queries for points that are part of your tree
trivial to implement; you would just need to return the point itself.

– Range queries are ‘‘range-inclusive”; that is, points exactly within the specified
range should be part of your answer.

– In nearest neighbor queries, is there any possibility of ties? The answer is yes, but
one needs to be careful to understand the nature of those tie-breakers. Consider
the case of Figure 1. For the query point q, a 2 (two) -NN query would return
points p1 and p2, without any tie-breaker issues. For m = 3 (three), we need to
decide which point among p3 and p4 we should pick as our third nearest neighbor.
For m ≥ 4, both of these points need to be in our solution set, and the question
then is which one we consider the closest to our query point such that we sort
them appropriately! In our unit tests, we assume that the point that is first
to be admitted to our solution set as we traverse the KD-Tree is the
one that ends up being considered “closest”. If you think about it, this is
consistent with Priority Queue primitives, where tied elements are stored in FIFO
order!

– Recall that there is absolutely no reason for the query point of a range or
nearest neighbor query to be actually contained by the tree itself.

Figure 1: A query point and various near neighbors of the point. The blue points are the 2
nearest neighbors of the point. The green points are equi-distant to q, and p5 is the furthest
neighbor of all. Figure best viewed in color.

4



5 Submission

Submission of your project will occur in exactly the same fashion as the previous projects.
Both KDTree.java and BoundedPriorityQueue.java will need to be in the default package.
You will also need to leave the package utils AS IS. This package structure is required by
our unit tests.

When you feel ready to submit, please create a ZIP,TAR.GZ or JAR archive off of your
ENTIRE PROJECT DIRECTORY and upload it on the submit server as Figure 2
shows.

Figure 2: Uploading your project on the submit server.

5


	Overview
	Provided code base and documentation
	Interface
	BoundedPriorityQueue
	KDTree

	Code Structure / Directives
	Submission

