
Writeup for first project of
CMSC 420: “Data Structures”

Section 0102 , Summer 2017

Theme: Threaded AVL Trees

Handout date: 06-01
On-time deadline: 06-09, 11:59pm

Late deadline (30% penalty): 06-11, 11:59pm

1 Overview

In this programming project, you will combine two powerful ideas that we have talked about
in class in a common framework: Threaded Binary Search Trees and AVL Trees. The
goal is this: we want to combine the efficient lookup guarantees of an AVL tree as well as
the amortized constant time of finding the inorder successor of any particular node, which
is given to us by threaded trees. All programming will be done in Java, and you will be
graded automatically by the CS department’s submit server. This write-up contains mostly
suggested guidelines and hints as well as instructions about how to submit your project on
the submit server.

2 Prerequisites

All prerequisites for handling this project are reasonable for an advanced CS student. We
expect that you are well-familiar with Binary Search Trees and Java coding. Skills harnessed
by a typical UMD freshman course such as CMSC 131 / 132 are sufficient. Also, the material
presented in class on both Threaded and AVL trees will prove to be indispensable for you
while implementing this project.

3 General Programming Guidelines

• The required public methods for implementation are available on the instructor’s
GitHub, under src.edu.umd.cs.datastructures.projectskeletons.ThreadedAVL

1

www.submit.cs.umd.edu
https://github.com/JasonFil/


Tree.Java. Download this file, read the source code comments carefully and proceed
with your implementation. 1 The description of what the public methods should be
doing is available in the relevant JavaDoc.

• It is supremely important that you check your code for consistency by creating your
own jUnit tests. The unit tests that we test your code against tend to be very com-
prehensive in terms of code coverage, so the more corner cases you make sure your
code passes, the better. Most IDEs like Eclipse or NetBeans make it very easy to define
your own jUnit tests, but if you need help or work outside IDEs, talk to us during office
hours or post your questions on Piazza. Big, big recommendation: author your
unit tests before your implementation. Do not even open ThreadedAVLTree.java
until you have authored your tests. Another suggestion: have a classmate write
your unit tests for you while you write their own. In addition to guaranteeing that you
are not in any way influenced by how you are thinking about the implementation of
the structure, this division will make you have some very elementary practice with the
real-life division between an SDE and an SDET.

• Grading of the assignment is handled by the performance of your code against the
submit server tests. Passing a test gives you the points attached next to it on the
submit server interface. As we mention later in the writeup, there is one test where
just passing the test itself will not guarantee credit, since the method through which the
test is passed is really the essence of the test. For that test, we will be also inspecting
your source code to make sure you have utilized an element of your tree correctly.

4 Provided Code

You will need to fill in the implementation of class ThreadedAVLTree. All the details of what
the interface (the public methods) of this class should be doing are available for you in the
- very simple - JavaDoc.

Note that the class is a generic, which means that it is designed to contain objects of
other classes. We constrain it to hold Comparable objects. Comparable is a Java interface
that provides access to a method called compareTo 2. All typical classes that you have used
so far in your academic careers to represent numerical or string data are Comparable classes.
In essence, any class of objects that implements the Comparable interface is one that induces
a total ordering between its objects (or, alternatively, the entire set of objects is isomorphic
to the natural numbers). For example, Integers are Comparable, since the set Z of integers
is totally ordered. Same for Strings or general CharSequences. A large portion of this class
is dedicated to learning about data structures that allow for efficient operations on such
totally ordered data. Later on, we will discuss data structures suitable for querying data for
which there does not exist a total ordering, such as points in two or more dimensions.

Some notes on the implementation:

1For example, one crucial thing mentioned in the source code comments is the need for you to change the
package declaration at the very top of the file!

2More information on this interface is available on Oracle’s website.

2

https://github.com/JasonFil/CMSC420_summer_17/tree/master/doc
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html


• As mentioned in lecture and on the slides, Threaded Trees need one bit of information
per pointer to allow the implementation code to discern between ordinary pointers and
threads. In a high-level programming language like Java, it is simply impossible to
store one bit of information in a variable. Hence, for the purposes of this assignment,
you may use any bit scheme that makes sense to you. For example, you can use
a primitive int which will have values 0 or 1, or, even better, a byte or a char such
that you minimize data storage redundancy.

• A (rooted) tree’s height is defined as the length of the longest path that connects
the root to a leaf node. By definition of path length (number of edges connecting the
origin with the terminal node), we conclude that a stub tree (a tree consisting of a
single node) has a height of 0. We follow these definitions in our unit tests,
where we test your trees against their expected heights. By convention,
the height of a null tree is -1.

• For this project, we assume that there are no duplicate keys in your data structure.
This means that, in our unit tests, whenever we delete a key from your tree, we expect
it to no longer be found in the tree. You may deal with this invariant in any way
you please, e.g. throw an exception if a duplicate is inserted, or delete all instances of
a key when we ask for a deletion.

5 Suggested workflows

You are free to implement this project in any way you want. We will not grade you on read-
ability / maintanability of your code, comments, or backwards compatibility. The following
are just suggestions.

1. Testing first, hardest stuff second (recommended): Read the documentation
and this PDF thoroughly, and spend two days authoring unit tests based only
on the contract given to you by the documentation. Alternatively, as mentioned
above, do this for a friend and have a friend do it for you. It would even be better if
the friend was not in the class, since they presumably will be completely untethered
from possible implementation specifics! Seriously, spend two days doing this.
Our model implementation is just under 500 lines of code, whereas our unit tests are
just under 900 lines of code!

After you’re done with this, take several pieces of paper and try to figure out how
insertions and deletions should maintain both the threaded tree and the AVL tree
invariants. Examine all corner cases. Write pseudocode and verify with your pencil
and paper whether all cases are covered. You can rest assured that our unit tests cover
virtually everything that you can imagine!

2. AVL first: Build an AVL tree first and write a unit test file just for the AVL component
(hint: you should probably make several assertions based on height). Then, write
another unit test file where you check for inorder traversal functionality. Remember:
nothing in your inorder traversal should be recursive!

3



3. Threaded first: Similar to the previous one, only you start with the Threaded BST
functionality first.

6 Hints / Tips

:
1. When inserting elements, your code should correctly maintain the tree’s threads and

re-balance the tree as needed. You do not have to actually use the existing threads in
order to implement this method and, in fact, if you were to do so you would largely
ignore the AVL structure of the tree, which guarantees that you will never traverse
more than log2 n + 1 levels in the tree in order to insert a node.

You might be originally mystified about how to properly update the tree’s threads after
an insertion. To point you towards the right direction, refer to the simple example in
figure 1, with two insertions about the root which do not impose any rotations.

Figure 1: Insertion of a node either on the left or right of a root in a threaded tree. When we
insert a node on the left of the root, our inorder predecessor is the root’s inorder predecessor,
and our successor will be (at most) the root. The converse logic applies when inserting a
node on the right.

2. Deletion is, without a doubt, the most complex operation that you will have to im-
plement for this data structure. You will need to figure out the algorithm for proper
deletion of a node from an AVL tree. Furthermore, you must also maintain the threads
properly. Recall that there are 4 different cases for deletion of a particular node:

• Deletion of a leaf node.

• Deletion of a node who does not have a left child.

• Deletion of a node who does not have a right child.

4



• Deletion of a purely inner node, with both a left and a right child.

In addition to considering all of the above, it might be helpful for you to clarify what
it means for a node to be a leaf of a threaded tree.

3. For inorderTraversal, you absolutely need to make use of the threads stored in
some of the tree’s nodes. It is not ok to implement this method recursively, as in
a standard BST (or even a non-threaded AVL tree). We have access to your source
code after submission, and we will be making sure that you use the algorithm
for finding the inorder successor of a threaded tree in order to implement
inorderTraversal! Submissions that pass the unit test but do not use the tree’s
threads will not receive credit for the test!

7 Submission / Grading

Projects in this class are different from your typical 131/2 projects in that we do not maintain
a CVS repository for you or us. This means that you can no longer use the Eclipse Course
Management Plugin to submit your project on the submit server. This turns out to be a good
thing, since it frees you up from the need to use Eclipse (or any IDE for that matter) if you
don’t want to. To submit your project, make a .zip file off of your ENTIRE PROJECT
FOLDER and upload it on the submit server. See figure 2 for the part of the online interface
where you can upload your project.

Figure 2: Uploading your project on the submit server.

All tests are release tests, and you can submit up to 5 times every 24 hours. We
urge you to unit-test your code thoroughly before submitting: treat every token like a gold
bar that is not to be wasted! We will not share the source code of the unit tests with you
until after the late deadline for the project!

We maintain your highest-scoring submission for grading purposes.

5



Finally, for the late deadline, we take 30% off your maximum possible score. This
means that, if you submit late, passing all the unit tests and implementing inorder traversal
as discussed will give you 70% of the total grade.

Good luck!

6


	Overview
	Prerequisites
	General Programming Guidelines
	Provided Code
	Suggested workflows
	Hints / Tips
	Submission / Grading

