
Miscellaneous Topics

Amol Deshpande  
CMSC424

Topics

■ Distributed Databases and Transactions

■ Cloud Computing
ê Data centers, Map-reduce, NoSQL Systems

■ OLAP/Data Warehouses

■ Object Oriented, Object Relational

■  Information Retrieval

©Silberschatz, Korth and Sudarshan19.3Database System Concepts - 6th Edition

Distributed Database System

■  A distributed database system consists of loosely coupled sites that share
no physical component

■  Database systems that run on each site are independent of each other
■  Transactions may access data at one or more sites

©Silberschatz, Korth and Sudarshan19.4Database System Concepts - 6th Edition

Homogeneous Distributed Databases

■  In a homogeneous distributed database
●  All sites have identical software
●  Are aware of each other and agree to cooperate in processing user

requests.
●  Each site surrenders part of its autonomy in terms of right to change

schemas or software
●  Appears to user as a single system

■  In a heterogeneous distributed database
●  Different sites may use different schemas and software

! Difference in schema is a major problem for query processing
! Difference in software is a major problem for transaction

processing
●  Sites may not be aware of each other and may provide only  

limited facilities for cooperation in transaction processing

©Silberschatz, Korth and Sudarshan19.5Database System Concepts - 6th Edition

Data Replication
■  A relation or fragment of a relation is replicated if it is stored

redundantly in two or more sites.
■  Full replication of a relation is the case where the relation is stored at all

sites.
■  Fully redundant databases are those in which every site contains a copy

of the entire database.

©Silberschatz, Korth and Sudarshan19.6Database System Concepts - 6th Edition

Data Replication (Cont.)

■  Advantages of Replication
●  Availability: failure of site containing relation r does not result in

unavailability of r is replicas exist.
●  Parallelism: queries on r may be processed by several nodes in parallel.
●  Reduced data transfer: relation r is available locally at each site

containing a replica of r.
■  Disadvantages of Replication

●  Increased cost of updates: each replica of relation r must be updated.
●  Increased complexity of concurrency control: concurrent updates to

distinct replicas may lead to inconsistent data unless special
concurrency control mechanisms are implemented.
! One solution: choose one copy as primary copy and apply

concurrency control operations on primary copy

©Silberschatz, Korth and Sudarshan19.7Database System Concepts - 6th Edition

Data Fragmentation

■  Division of relation r into fragments r1, r2, …, rn which contain
sufficient information to reconstruct relation r.

■  Horizontal fragmentation: each tuple of r is assigned to one
or more fragments

■  Vertical fragmentation: the schema for relation r is split into
several smaller schemas
●  All schemas must contain a common candidate key (or

superkey) to ensure lossless join property.
●  A special attribute, the tuple-id attribute may be added to

each schema to serve as a candidate key.

©Silberschatz, Korth and Sudarshan19.8Database System Concepts - 6th Edition

Horizontal Fragmentation of account Relation

branch_name account_number balance

Hillside
Hillside
Hillside

A-305
A-226
A-155

500
336
62

account1 = σbranch_name=“Hillside” (account)

branch_name account_number balance

Valleyview
Valleyview
Valleyview
Valleyview

A-177
A-402
A-408
A-639

205
10000
1123
750

account2 = σbranch_name=“Valleyview” (account)

©Silberschatz, Korth and Sudarshan19.9Database System Concepts - 6th Edition

Vertical Fragmentation of employee_info Relation

branch_name customer_name tuple_id

Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

deposit1 = Πbranch_name, customer_name, tuple_id (employee_info)

1
2
3
4
5
6
7

account_number balance tuple_id

500
336
205
10000
62
1123
750

1
2
3
4
5
6
7

A-305
A-226
A-177
A-402
A-155
A-408
A-639

deposit2 = Πaccount_number, balance, tuple_id (employee_info)

©Silberschatz, Korth and Sudarshan19.10Database System Concepts - 6th Edition

Advantages of Fragmentation

■  Horizontal:
●  allows parallel processing on fragments of a relation
●  allows a relation to be split so that tuples are located where

they are most frequently accessed
■  Vertical:

●  allows tuples to be split so that each part of the tuple is
stored where it is most frequently accessed

●  tuple-id attribute allows efficient joining of vertical fragments
●  allows parallel processing on a relation

■  Vertical and horizontal fragmentation can be mixed.
●  Fragments may be successively fragmented to an arbitrary

depth.

©Silberschatz, Korth and Sudarshan19.11Database System Concepts - 6th Edition

Data Transparency

■  Data transparency: Degree to which system user may remain unaware
of the details of how and where the data items are stored in a distributed
system

■  Consider transparency issues in relation to:
●  Fragmentation transparency
●  Replication transparency
●  Location transparency

©Silberschatz, Korth and Sudarshan19.12Database System Concepts - 6th Edition

Naming of Data Items - Criteria

1. Every data item must have a system-wide unique name.
2. It should be possible to find the location of data items efficiently.
3. It should be possible to change the location of data items

transparently.
4. Each site should be able to create new data items autonomously.

©Silberschatz, Korth and Sudarshan19.13Database System Concepts - 6th Edition

Distributed Transactions

■  Transaction may access data at several sites.
■  Each site has a local transaction manager responsible for:

●  Maintaining a log for recovery purposes
●  Participating in coordinating the concurrent execution of the

transactions executing at that site.
■  Each site has a transaction coordinator, which is responsible for:

●  Starting the execution of transactions that originate at the site.
●  Distributing subtransactions at appropriate sites for execution.
●  Coordinating the termination of each transaction that originates at

the site, which may result in the transaction being committed at all
sites or aborted at all sites.

©Silberschatz, Korth and Sudarshan19.14Database System Concepts - 6th Edition

Transaction System Architecture

TM1 TMn

computer 1 computer n

TC1 TCn transaction
coordinator

transaction
manager

©Silberschatz, Korth and Sudarshan19.15Database System Concepts - 6th Edition

System Failure Modes

■  Failures unique to distributed systems:
●  Failure of a site.
●  Loss of massages

! Handled by network transmission control protocols such as
TCP-IP

●  Failure of a communication link
! Handled by network protocols, by routing messages via

alternative links
●  Network partition

! A network is said to be partitioned when it has been split into
two or more subsystems that lack any connection between
them
–  Note: a subsystem may consist of a single node

■  Network partitioning and site failures are generally indistinguishable.

©Silberschatz, Korth and Sudarshan19.16Database System Concepts - 6th Edition

Commit Protocols

■  Commit protocols are used to ensure atomicity across sites
●  a transaction which executes at multiple sites must either be

committed at all the sites, or aborted at all the sites.
●  not acceptable to have a transaction committed at one site and

aborted at another
■  The two-phase commit (2PC) protocol is widely used
■  The three-phase commit (3PC) protocol is more complicated and more

expensive, but avoids some drawbacks of two-phase commit protocol.
This protocol is not used in practice.

©Silberschatz, Korth and Sudarshan19.17Database System Concepts - 6th Edition

Two Phase Commit Protocol (2PC)

■  Assumes fail-stop model – failed sites simply stop working, and do
not cause any other harm, such as sending incorrect messages to
other sites.

■  Execution of the protocol is initiated by the coordinator after the last
step of the transaction has been reached.

■  The protocol involves all the local sites at which the transaction
executed

■  Let T be a transaction initiated at site Si, and let the transaction
coordinator at Si be Ci

©Silberschatz, Korth and Sudarshan19.18Database System Concepts - 6th Edition

Phase 1: Obtaining a Decision

■  Coordinator asks all participants to prepare to commit transaction Ti.
●  Ci adds the records <prepare T> to the log and forces log to

stable storage
●  sends prepare T messages to all sites at which T executed

■  Upon receiving message, transaction manager at site determines if it
can commit the transaction
●  if not, add a record <no T> to the log and send abort T message

to Ci

●  if the transaction can be committed, then:
●  add the record <ready T> to the log
●  force all records for T to stable storage
●  send ready T message to Ci

©Silberschatz, Korth and Sudarshan19.19Database System Concepts - 6th Edition

Phase 2: Recording the Decision

■  T can be committed of Ci received a ready T message from all the
participating sites: otherwise T must be aborted.

■  Coordinator adds a decision record, <commit T> or <abort T>, to the
log and forces record onto stable storage. Once the record stable
storage it is irrevocable (even if failures occur)

■  Coordinator sends a message to each participant informing it of the
decision (commit or abort)

■  Participants take appropriate action locally.

©Silberschatz, Korth and Sudarshan19.20Database System Concepts - 6th Edition

Handling of Failures - Site Failure

When site Si recovers, it examines its log to determine the fate of
transactions active at the time of the failure.
■  Log contain <commit T> record: txn had completed, nothing to be done
■  Log contains <abort T> record: txn had completed, nothing to be done
■  Log contains <ready T> record: site must consult Ci to determine the

fate of T.
●  If T committed, redo (T); write <commit T> record
●  If T aborted, undo (T)

■  The log contains no log records concerning T:
●  Implies that Sk failed before responding to the prepare T message

from Ci

●  since the failure of Sk precludes the sending of such a response,
coordinator C1 must abort T

●  Sk must execute undo (T)

©Silberschatz, Korth and Sudarshan19.21Database System Concepts - 6th Edition

Handling of Failures- Coordinator Failure

■  If coordinator fails while the commit protocol for T is executing then
participating sites must decide on T’s fate:

1.  If an active site contains a <commit T> record in its log, then T must be
committed.

2.  If an active site contains an <abort T> record in its log, then T must be
aborted.

3.  If some active participating site does not contain a <ready T> record in its
log, then the failed coordinator Ci cannot have decided to commit T.
●  Can therefore abort T; however, such a site must reject any

subsequent <prepare T> message from Ci
4.  If none of the above cases holds, then all active sites must have a <ready

T> record in their logs, but no additional control records (such as <abort
T> of <commit T>).
●  In this case active sites must wait for Ci to recover, to find decision.

■  Blocking problem: active sites may have to wait for failed coordinator to
recover.

©Silberschatz, Korth and Sudarshan19.22Database System Concepts - 6th Edition

Handling of Failures - Network Partition
■  If the coordinator and all its participants remain in one partition, the

failure has no effect on the commit protocol.
■  If the coordinator and its participants belong to several partitions:

●  Sites that are not in the partition containing the coordinator think
the coordinator has failed, and execute the protocol to deal with
failure of the coordinator.
! No harm results, but sites may still have to wait for decision

from coordinator.
■  The coordinator and the sites are in the same partition as the

coordinator think that the sites in the other partition have failed, and
follow the usual commit protocol.

! Again, no harm results

©Silberschatz, Korth and Sudarshan19.23Database System Concepts - 6th Edition

Topics

■ Object Oriented, Object Relational

■ Client-server, Parallel, Distributed Systems

■ OLAP/Data Warehouses

■  Information Retrieval

■ Cloud Computing
● Data centers, Map-reduce, NoSQL Systems

©Silberschatz, Korth and Sudarshan19.24Database System Concepts - 6th Edition

■  Technologies behind cloud computing

●  Data centers

●  Virtualization

●  Programming Framework: Map-reduce

●  Distributed Key-Value Stores

■  Some observations about the marketplace

Cloud Computing: Outline

©Silberschatz, Korth and Sudarshan19.25Database System Concepts - 6th Edition

■  Computing as a “service” rather than a “product”

●  Everything happens in the “cloud”: both storage and computing

●  Personal devices (laptops/tablets) simply interact with the cloud

■  Advantages

●  Device agonstic – can seamlessly move from one device to
other

●  Efficiency/scalability: programming frameworks allow easy
scalability (relatively speaking)

●  Reliability

●  Cost: “pay as you go” allows renting computing resources as
needed – much cheaper than building your own systems

Cloud Computing

©Silberschatz, Korth and Sudarshan19.26Database System Concepts - 6th Edition

■  Basic ideas have been around for a long time (going back
to 1960’s)

●  Mainframes + thin clients (more by necessity)

●  Grid computing a few year ago

●  Peer-to-peer

●  Client-server models

●  …

■  But it finally works as we wished for…

●  Why now?... A convergence of several key pieces over the
last few years

●  Does it really? … Still many growing pains

Cloud Computing

©Silberschatz, Korth and Sudarshan19.27Database System Concepts - 6th Edition

■  The key infrastructure piece that enables CC

■  Everyone is building them

■  Huge amount of work on deciding how to build/design
them

Data Centers

©Silberschatz, Korth and Sudarshan19.28Database System Concepts - 6th Edition

■  Amazon data centers: Some
recent data
●  8 MW data center can include about

46,000 servers

●  Costs about $88 million to build
(just the facility)

●  Power a pretty large portion, but
server costs still dominate

Data Centers

“Every day, Amazon Web Services adds enough new
capacity to support all of Amazon.com’s global
infrastructure through the company’s first 5 years,
when it was a $2.76B annual revenue enterprise”

source: James Hamilton Presentation

©Silberschatz, Korth and Sudarshan19.29Database System Concepts - 6th Edition

Data Centers

■  Power distribution
●  Almost 11% lost in distribution – starts mattering when

the total power consumption is in millions
■  Modular and pre-fab designs

●  Fast and economic deployments, built in a factory

source: James Hamilton Presentation

©Silberschatz, Korth and Sudarshan19.30Database System Concepts - 6th Edition

Data Centers

■  Networking equipment
●  Very very expensive
●  Bottleneck – forces workload placement restrictions

■  Cooling/temperature/energy issues
●  Appropriate placement of vents, inlets etc. a key issue

! Thermal hotspots often appear and need to worked around
●  Overall cost of cooling is quite high

! So is the cost of running the computing equipment
–  Both have led to issues in energy-efficient computing

●  Hard to optimize PUE (Power Usage Effectiveness) in small data
centers
! è may lead to very large data centers in near future

source: James Hamilton Presentation

©Silberschatz, Korth and Sudarshan19.31Database System Concepts - 6th Edition

Virtualization

■  Virtual machines (e.g., running Windows inside a Mac)
etc. has been around for a long time
●  Used to be very slow…
●  Only recently became efficient enough to make it a key for CC

■  Basic idea: run virtual machines on your servers and sell
time on them
●  That’s how Amazon EC2 runs

■  Many advantages:
●  Security: virtual machines serves as almost impenetrable

boundary
●  Multi-tenancy: can have multiple VMs on the same server
●  Efficiency: replace many underpowered machines with a few high-

power machines

©Silberschatz, Korth and Sudarshan19.32Database System Concepts - 6th Edition

Virtualization

■  Consumer VM products include VMWare, Parallels (for
Mac) etc…

■  Amazon uses “Xen” running on Redhat machines (may
be old information)
●  They support both Windows and Linux Virtual Machines

■  Some tricky things to keep in mind:
●  Harder to reason about performance (if you care)
●  Identical VMs may deliver somewhat different performance

■  Much continuing work on the virtualization technology
itself

©Silberschatz, Korth and Sudarshan19.33Database System Concepts - 6th Edition

Programming Frameworks
■  Third key piece emerged from efforts to “scale out”

●  i.e., distribute work over large numbers of machines (1000’s
of machines)

■  Parallelism has been around for a long time
●  Both in a single machine, and as a cluster of computers

■  But always been considered very hard to program, especially the
distributed kind

●  Too many things to keep track of
! How to parallelize, how to distribute the data, how to

handle failures etc etc..

■  Google developed MapReduce and BigTable frameworks, and
ushered in a new era

©Silberschatz, Korth and Sudarshan19.34Database System Concepts - 6th Edition

Programming Frameworks
■  Note the difference between “scale up” and “scale out”

●  scale up usually refers to using a larger machine – easier to do
●  scale out refers to distributing over a large number of machines

■  Even with VMs, I still need to know how to distribute work across
multiple VMs
●  Amazon’s largest single instance may not be enough

©Silberschatz, Korth and Sudarshan19.35Database System Concepts - 6th Edition

MapReduce Framework
■  Provides a fairly restricted, but still powerful abstraction for programming

■  Programmers write a pipeline of functions, called map or reduce
●  map programs

!  inputs: a list of “records” (record defined arbitrarily – could be images,
genomes etc…)

! output: for each record, produce a set of “(key, value)” pairs

●  reduce programs
!  input: a list of “(key, {values})” grouped together from the mapper
! output: whatever

●  Both can do arbitrary computations on the input data as long as the basic
structure is followed

©Silberschatz, Korth and Sudarshan19.36Database System Concepts - 6th Edition

MapReduce Framework
input files mappers intermediate

files
reducers output

files

©Silberschatz, Korth and Sudarshan19.37Database System Concepts - 6th Edition

Word Count Example

for a rewrite of our production indexing system. Sec-
tion 7 discusses related and future work.

2 Programming Model

The computation takes a set of input key/value pairs, and
produces a set of output key/value pairs. The user of
the MapReduce library expresses the computation as two
functions: Map and Reduce.
Map, written by the user, takes an input pair and pro-
duces a set of intermediate key/value pairs. The MapRe-
duce library groups together all intermediate values asso-
ciated with the same intermediate key I and passes them
to the Reduce function.
The Reduce function, also written by the user, accepts
an intermediate key I and a set of values for that key. It
merges together these values to form a possibly smaller
set of values. Typically just zero or one output value is
produced per Reduce invocation. The intermediate val-
ues are supplied to the user’s reduce function via an iter-
ator. This allows us to handle lists of values that are too
large to fit in memory.

2.1 Example
Consider the problem of counting the number of oc-
currences of each word in a large collection of docu-
ments. The user would write code similar to the follow-
ing pseudo-code:

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));

The map function emits each word plus an associated
count of occurrences (just ‘1’ in this simple example).
The reduce function sums together all counts emitted
for a particular word.
In addition, the user writes code to fill in a mapreduce
specification object with the names of the input and out-
put files, and optional tuning parameters. The user then
invokes the MapReduce function, passing it the specifi-
cation object. The user’s code is linked together with the
MapReduce library (implemented in C++). Appendix A
contains the full program text for this example.

2.2 Types

Even though the previous pseudo-code is written in terms
of string inputs and outputs, conceptually the map and
reduce functions supplied by the user have associated
types:
map (k1,v1) → list(k2,v2)
reduce (k2,list(v2)) → list(v2)

I.e., the input keys and values are drawn from a different
domain than the output keys and values. Furthermore,
the intermediate keys and values are from the same do-
main as the output keys and values.
Our C++ implementation passes strings to and from
the user-defined functions and leaves it to the user code
to convert between strings and appropriate types.

2.3 More Examples

Here are a few simple examples of interesting programs
that can be easily expressed as MapReduce computa-
tions.

Distributed Grep: The map function emits a line if it
matches a supplied pattern. The reduce function is an
identity function that just copies the supplied intermedi-
ate data to the output.

Count of URL Access Frequency: The map func-
tion processes logs of web page requests and outputs
⟨URL,1⟩. The reduce function adds together all values
for the same URL and emits a ⟨URL,total count⟩
pair.

Reverse Web-Link Graph: The map function outputs
⟨target,source⟩ pairs for each link to a target
URL found in a page named source. The reduce
function concatenates the list of all source URLs as-
sociated with a given target URL and emits the pair:
⟨target, list(source)⟩

Term-Vector per Host: A term vector summarizes the
most important words that occur in a document or a set
of documents as a list of ⟨word, frequency⟩ pairs. The
map function emits a ⟨hostname,term vector⟩
pair for each input document (where the hostname is
extracted from the URL of the document). The re-
duce function is passed all per-document term vectors
for a given host. It adds these term vectors together,
throwing away infrequent terms, and then emits a final
⟨hostname,term vector⟩ pair.

To appear in OSDI 2004 2

©Silberschatz, Korth and Sudarshan19.38Database System Concepts - 6th Edition

MapReduce Framework: Word Count

input files mappers intermediate
files

reducers

(a, 8)
(c, 5)

output
files

a b a c d b

b c d a a a

a b a b a b

c c c c c

(a, 1)
(a, 1)
(c, 1)
(a, 1)
(a, 1)
(a, 1)

…

(a, 1)
(b, 1)
(a, 1)
(c, 1)
(d, 1)
(b, 1)

(b, 1)
(d, 1)
(b, 1)
(b, 1)
(d, 1)
(b, 1)

…

(b, 6)
(d, 2)

©Silberschatz, Korth and Sudarshan19.39Database System Concepts - 6th Edition

More Efficient Word Count

input files mappers intermediate
files

reducers

(a, 8)
(c, 5)

output
files

a b a c d b

b c d a a a

a b a b a b

c c c c c

(a, 2)
(a, 3)
(c, 1)
(c, 5)

(a, 2)
(b, 2)
(c, 1)
(d, 1)

…

(b, 6)
(d, 2)

Called “mapper-side” combiner

©Silberschatz, Korth and Sudarshan19.40Database System Concepts - 6th Edition

MapReduce Framework
■  Has been used within Google for:

●  Large-scale machine learning problems
●  Clustering problems for Google News etc..
●  Generating summary reports
●  Large-scale graph computations

■  Also replaced the original tools for large-scale indexing
●  i.e., generating the inverted indexes etc.
●  runs as a sequence of 5 to 10 Mapreduce operations

■  Hadoop:
●  Open-source implementation of Mapreduce
●  Supports many other technologies as well
●  Very widely used
●  Many startups focusing on providing Hadoop services, different points in the

Hadoop/DB space etc…

©Silberschatz, Korth and Sudarshan19.41Database System Concepts - 6th Edition

Bigtable/Key-Value Stores
■  MapReduce/Hadoop great for batch processing of data

●  Much ongoing work on efficiency, other programming frameworks (e.g., for
graph analytics, scientific applications)

■  There is another usecase
●  Very very large-scale web applications that need real-time access with few ms

latencies

■  Bigtable (open source implementation: HBase)
●  Think of it as a very large distributed hash table
●  Support “put” and “get” operations

! With some additional support to deal with versions

■  Much work on these systems
●  Issues with “consistency” and “performance” quite challenging

©Silberschatz, Korth and Sudarshan19.42Database System Concepts - 6th Edition

Key-Value Stores
■  Some Interesting (somewhat old) numbers (http://highscalability.com)

●  Twitter: 177M tweets sent on 3/1/2011 (nothing special about the date),
572,000 accounts added on 3/12/2011

●  Dropbox: 1M files saved every 15 mins
●  Stackoverflow: 3M page views a day (Redis for caching)
●  Wordnik: 10 million API Requests a Day on MongoDB and Scala
●  Mollom: Killing Over 373 Million Spams at 100 Requests Per Second

(Cassandra)
●  Facebook's New Real-time Messaging System: HBase to Store 135+

Billion Messages a Month
●  Reddit: 270 Million Page Views a Month in May 2010 (Memcache)

■  How to support such scale?
●  Databases typically not fast enough
●  Facebook aims for 3-5ms response times

©Silberschatz, Korth and Sudarshan19.43Database System Concepts - 6th Edition

Issues
■  Data Consistency, High Availability, and Low Latency hard to guarantee

simultaneously

●  Impossible in some cases especially if networks can fail
■  Distributed transactions

●  If a transaction spans multiple machines, what to do ?
●  Correct solution: Two-phase Commit

! Multi-round protocol
! Too high latencies

■  Dealing with replication
●  Replication of data is a must
●  How to keep them updated?

! Eager vs lazy replication
! Significant impact on consistency and availability

■  Many systems in this space sacrifice consistency

©Silberschatz, Korth and Sudarshan19.44Database System Concepts - 6th Edition

Systems
■  Numerous systems designed in last 10 years that look very similar

●  Differences often subtle, and if not hard to pin down, hard to
understand

●  Often the differences are about the implementations
■  Often called key-value stores

●  The main provided functionality is that of a hashtable
■  Some earlier solutions

●  Still very popular
! Memcached + MySQL + Sharding

–  Sharding == partitioning
–  Store data in MySQL -- use Memcached to cache the data

! Memcached not really a database, just a cache
! All kinds of consistency issues
! But... very very fast

©Silberschatz, Korth and Sudarshan19.45Database System Concepts - 6th Edition

Systems
■  MySQL + Memcached: End of an era? (High Scalability Blog)

●  “If you look at the early days of this blog, when web scalability was still
in its heady bloom of youth, many of the articles had to do with
leveraging MySQL and memcached. Exciting times. Shard MySQL to
handle high write loads, cache objects in memcached to handle high
read loads, and then write a lot of glue code to make it all work
together. That was state of the art, that was how it was done. The
architecture of many major sites still follow this pattern today, largely
because with enough elbow grease, it works.”

■  Digg moved to Cassandra in 2009; LinkedIn to Voldemort
■  Twitter moved to Cassandra recently

●  “.. the rate of growth is accelerating.. a system in place based on
shared mysql + memcache .. quickly becoming prohibitively costly (in
terms of manpower) to operate.

©Silberschatz, Korth and Sudarshan19.46Database System Concepts - 6th Edition

Systems
■  Tokyo, Redis

●  Very efficient key value stores
■  BigTable (Google), HBase (Apache open source), Cassandra (original Facebook,

open sourced), Voldemort (originally LinkedIn)...
●  At least in original iterations, focused on performance
●  Cassandra later developed more sophisticated {\em tunable}

consistency (maybe others too)
■  PNUTS (Yahoo!)

●  Focus on geographically distributed stuff
! Easier to deal with some issues if we assume everything is a single

data center
! Support tunable consistency for reads: read-any, read-latest etc..

●  Form of master-slave replication
●  No real support for multi-record transactions

©Silberschatz, Korth and Sudarshan19.47Database System Concepts - 6th Edition

Systems
■  Megastore (Google)

●  Built on top of BigTable -- powers Google App Engine
! Full ACID using Paxos, replication, two-phase commit

●  Supports notion of “entity groups”
! e.g., all emails of a user is a single entity group
! Transactions that span a single entity group are generally fine
! Transactions that span multiple entity groups would use two-phase

commit -- not preferred
■  MongoDB

●  Perhaps the poster child of key-value NoSQL stores
●  Very scalable

! Document-oriented storage with JSON-style documents
! JSON becoming more popular than XML as the interchange format

●  Very loose consistency guarantees

©Silberschatz, Korth and Sudarshan19.48Database System Concepts - 6th Edition

In Summary…
■  Three key pieces of cloud computing

●  Data centers
!  Increasingly growing in numbers
! Many challenges in building them, maintaining them etc..

●  Virtualization

●  Programming frameworks
! Simplest (to explain): just use the virtual machines directly

–  But much harder to manage
! Using Hadoop or HBase (as appropriate) simplifies the programming quite a

bit
–  But Hadoop is open source, and managing hadoop installations not much easier

■  Still many technical challenges to be solved

©Silberschatz, Korth and Sudarshan19.49Database System Concepts - 6th Edition

■  Technologies behind cloud computing

●  Data centers

●  Virtualization

●  Programming Frameworks

■  Some observations about the marketplace

Cloud Computing: Outline

©Silberschatz, Korth and Sudarshan19.50Database System Concepts - 6th Edition

■  Perhaps the best current solution to cloud computing
●  However alternatives become attractive depending on your needs

●  Current prices are very low and likely to remain that way

Amazon Web Services

©Silberschatz, Korth and Sudarshan19.51Database System Concepts - 6th Edition

■  A very nice solution to build your websites on top of
Google infrastructure
●  e.g., http://cidrassgn.appspot.com/

●  No virtual machines or any other way to access the computing, just
through a web app

■  Recently (two weeks ago) increased their pricing quite a bit
●  A lot of developers are very unhappy

●  Google Groups Thread

●  Also serves as a very nice reference to competing services, differences
between them etc…

●  Also, bunch of discussion on how people spent optimizing their apps for
the “wrong” metrics (i.e., Google is starting to charge for things they
weren’t)

Google App Engine

Topics

■ Object Oriented, Object Relational

■ Client-server, Parallel, Distributed Systems

■ OLAP/Data Warehouses

■  Information Retrieval

■ Cloud Computing
ê Data centers, Map-reduce, NoSQL Systems

Motivation
■  Relational model:

ê Clean and simple
ê Great for much enterprise data
ê But lot of applications where not sufficiently rich

Ø  Multimedia, CAD, for storing set data etc
■  Object-oriented models in programming languages

ê Complicated, but very useful
Ø  Smalltalk, C++, now Java

ê Allow
Ø  Complex data types
Ø  Inheritance
Ø  Encapsulation

■  People wanted to manage objects in databases.

History

■  In the 1980’s and 90’s, DB researchers recognized benefits of
objects.

■  Two research thrusts:
ê OODBMS: extend C++ with transactionally persistent objects

Ø  Niche Market
Ø  CAD etc

ê ORDBMS: extend Relational DBs with object features
Ø  Much more common
Ø  Efficiency + Extensibility
Ø  SQL:99 support

■  Postgres – First ORDBMS
ê Berkeley research project
ê Became Illustra, became Informix, bought by IBM

©Silberschatz, Korth and Sudarshan22.55Database System Concepts - 6th Edition

Object-Relational Data Models

■  Extend the relational data model by including object orientation and
constructs to deal with added data types.

■  Allow attributes of tuples to have complex types, including non-atomic
values such as nested relations.

■  Preserve relational foundations, in particular the declarative access to
data, while extending modeling power.

■  Upward compatibility with existing relational languages.

©Silberschatz, Korth and Sudarshan22.56Database System Concepts - 6th Edition

Structured Types and Inheritance in SQL
■  Structured types (a.k.a. user-defined types) can be declared and used in SQL
 create type Name as 

 (firstname varchar(20), 
 lastname varchar(20)) 

 final
create type Address as  
 (street varchar(20), 
 city varchar(20), 
 zipcode varchar(20))

not final
●  Note: final and not final indicate whether subtypes can be created

■  Structured types can be used to create tables with composite attributes
 create table person (

name Name,
address Address,
dateOfBirth date)

■  Dot notation used to reference components: name.firstname

©Silberschatz, Korth and Sudarshan22.57Database System Concepts - 6th Edition

Structured Types (cont.)

■  User-defined row types
create type PersonType as ( 

name Name, 
address Address, 
dateOfBirth date) 
not final

■  Can then create a table whose rows are a user-defined type  
 create table customer of CustomerType

■  Alternative using unnamed row types.
 create table person_r(

name row(firstname varchar(20),
 lastname varchar(20)),

address row(street varchar(20),
 city varchar(20),
 zipcode varchar(20)),

dateOfBirth date)

©Silberschatz, Korth and Sudarshan22.58Database System Concepts - 6th Edition

Methods

■  Can add a method declaration with a structured type.
method ageOnDate (onDate date)

returns interval year
■  Method body is given separately.

create instance method ageOnDate (onDate date)
returns interval year
for CustomerType

begin
return onDate - self.dateOfBirth;

end
■  We can now find the age of each customer:

select name.lastname, ageOnDate (current_date)
from customer

©Silberschatz, Korth and Sudarshan22.59Database System Concepts - 6th Edition

Type Inheritance
■  Suppose that we have the following type definition for people:

 create type Person
 (name varchar(20),

 address varchar(20))

■  Using inheritance to define the student and teacher types
 create type Student
 under Person
 (degree varchar(20),
 department varchar(20))

■ 
 create type Teacher
 under Person
 (salary integer,
 department varchar(20))

■  Subtypes can redefine methods by using overriding method in place of
method in the method declaration

©Silberschatz, Korth and Sudarshan22.60Database System Concepts - 6th Edition

Array and Multiset Types in SQL
■  Example of array and multiset declaration:
 create type Publisher as 

 (name varchar(20), 
 branch varchar(20));

 
 create type Book as  

 (title varchar(20), 
 author_array varchar(20) array [10], 
 pub_date date, 
 publisher Publisher, 
 keyword-set varchar(20) multiset);

 create table books of Book;

©Silberschatz, Korth and Sudarshan22.61Database System Concepts - 6th Edition

Creation of Collection Values
■  Array construction
 array [‘Silberschatz’,`Korth’,`Sudarshan’]

■  Multisets
 multiset [‘computer’, ‘database’, ‘SQL’]

■  To create a tuple of the type defined by the books relation:
(‘Compilers’, array[`Smith’,`Jones’],  

 new Publisher (`McGraw-Hill’,`New York’),
 multiset [`parsing’,`analysis’])

■  To insert the preceding tuple into the relation books
 insert into books 

values  
 (‘Compilers’, array[`Smith’,`Jones’],  
 new Publisher (`McGraw-Hill’,`New York’), 
 multiset [`parsing’,`analysis’]);

©Silberschatz, Korth and Sudarshan22.62Database System Concepts - 6th Edition

Querying Collection-Valued Attributes
■  To find all books that have the word “database” as a keyword,

select title 
from books 
where ‘database’ in (unnest(keyword-set))

■  We can access individual elements of an array by using indices
●  E.g.: If we know that a particular book has three authors, we could write:

select author_array[1], author_array[2], author_array[3] 
from books 
where title = `Database System Concepts’

■  To get a relation containing pairs of the form “title, author_name” for each
book and each author of the book

 select B.title, A.author
from books as B, unnest (B.author_array) as A (author)

■  To retain ordering information we add a with ordinality clause
 select B.title, A.author, A.position

from books as B, unnest (B.author_array) with ordinality as
A (author, position)

©Silberschatz, Korth and Sudarshan22.63Database System Concepts - 6th Edition

Path Expressions

■  Find the names and addresses of the heads of all departments:
select head –>name, head –>address 
from departments

■  An expression such as “head–>name” is called a path expression
■  Path expressions help avoid explicit joins

●  If department head were not a reference, a join of departments
with people would be required to get at the address

●  Makes expressing the query much easier for the user

An Alternative: OODBMS
■  Persistent OO programming

ê  Imagine declaring a Java object to be “persistent”
ê Everything reachable from that object will also be persistent
ê You then write plain old Java code, and all changes to the persistent

objects are stored in a database
ê When you run the program again, those persistent objects have the

same values they used to have!
■  Solves the “impedance mismatch” between programming

languages and query languages
ê E.g. converting between Java and SQL types, handling rowsets, etc.
ê But this programming style doesn’t support declarative queries

Ø  For this reason (??), OODBMSs haven’t proven popular
■  OQL: A declarative language for OODBMSs

ê Was only implemented by one vendor in France (Altair)

OODBMS

■  Currently a Niche Market
ê Engineering, spatial databases, physics etc…

■  Main issues:
ê Navigational access

Ø  Programs specify go to this object, follow this pointer
ê Not declarative

■  Though advantageous when you know exactly what you want,
not a good idea in general
ê Kinda similar argument as network databases vs relational

databases

©Silberschatz, Korth and Sudarshan22.66Database System Concepts - 6th Edition

Comparison of O-O and O-R Databases

■  Relational systems
●  simple data types, powerful query languages, high protection.

■  Persistent-programming-language-based OODBs
●  complex data types, integration with programming language, high

performance.
■  Object-relational systems

●  complex data types, powerful query languages, high protection.
■  Object-relational mapping systems

●  complex data types integrated with programming language, but built
as a layer on top of a relational database system

■  Note: Many real systems blur these boundaries
●  E.g. persistent programming language built as a wrapper on a

relational database offers first two benefits, but may have poor
performance.

Summary, cont.

■  ORDBMS offers many new features
ê  but not clear how to use them!
ê  schema design techniques not well understood

Ø  No good logical design theory for non-1st-normal-form!
ê  query processing techniques still in research phase

Ø  a moving target for OR DBA’s!

■  OODBMS
ê Has its advantages
ê Niche market
ê  Lot of similarities to XML as well…

Topics

■ Object Oriented, Object Relational

■ Client-server, Parallel, Distributed Systems

■ OLAP/Data Warehouses

■  Information Retrieval

■ Cloud Computing
ê Data centers, Map-reduce, NoSQL Systems

OLAP

■  On-line Analytical Processing
■  Why ?

ê Exploratory analysis
Ø  Interactive
Ø  Different queries than typical SPJ SQL queries

ê Data CUBE
Ø  A summary structure used for this purpose

–  E.g. give me total sales by zipcode; now show me total sales
by customer employment category

Ø  Much much faster than using SQL queries against the raw data
–  The tables are huge

■  Applications:
ê Sales reporting, Marketing, Forecasting etc etc

Data Warehouses

■  A repository of integrated information for querying and analysis
purposes

■  A (usually) stand-alone system that integrates data from
everywhere
ê Read-only, typically not kept up-to-date with the real data
ê Geared toward business analytics, data mining etc…
ê HUGE market today

■  Heavily optimized
ê Specialized query processing and indexing techniques are used
ê High emphasis on pre-computed data structures like summary

tables, data cubes
■  Analysis cycle:

ê Extract data from databases with queries, visualize/analyze
with desktop tools

ê E.g., Tableau

Data Warehouses

Data Warehouses
Query processing algorithms heavily
 optimized for these types of schemas

Many queries of the type:
 Selections on dimension tables
 (e.g., state = ‘MD’)
 Join fact table with dimension tables
 Aggregate on a “measure” attribute
 (e.g., Quantity, TotalPrice)

For example:
 select c_city, o_year, SUM(quantity)
 from Fact, Customer, Product
 where p_category = ‘Tablet’;

Database Management
Systems

-73-

Need Generalized SQL Groupbys
■  drill-down and roll-up

Not relational
(null values in the keys)

Database Management
Systems

-74-

More problems with Groubys

■  roll-up is asymmetric (e.g. does not aggregate by year or by color alone)
■  cross-tabulation (spreadsheets)

■  even if SQL syntax can be devised, a 6D cross-tab requires 64 groupby

queries to generate it and 64 scans and sorts of the data

◆  most of these are not relational expressions but are in many report writers

Database Management
Systems

-75-

CUBE:
A Relational Aggregate Operator Generalizing Group By

By Make & Color

1990
1991

RED
WHITE
BLUE

By Color

By Make & Year

By Color & Year

By Make
By Year

Sum

The Data Cube and
The Sub-Space Aggregates

RED
WHITE
BLUE

Chevy Ford

By Make

By Color

Sum

Cross Tab

Sum

Aggregate
RED

WHITE
BLUE

By Color

Sum

Group By
(with total)

Database Management
Systems

-76-

An Example

 SALES
Model Year Color Sales
Chevy 1990 red 5
Chevy 1990 white 87
Chevy 1990 blue 62
Chevy 1991 red 54
Chevy 1991 white 95
Chevy 1991 blue 49
Chevy 1992 red 31
Chevy 1992 white 54
Chevy 1992 blue 71
Ford 1990 red 64
Ford 1990 white 62
Ford 1990 blue 63
Ford 1991 red 52
Ford 1991 white 9
Ford 1991 blue 55
Ford 1992 red 27
Ford 1992 white 62
Ford 1992 blue 39

 DATA CUBE
Model Year Color Sales
ALL ALL ALL 942
chevy ALL ALL 510
ford ALL ALL 432
ALL 1990 ALL 343
ALL 1991 ALL 314
ALL 1992 ALL 285
ALL ALL red 165
ALL ALL white 273
ALL ALL blue 339
chevy 1990 ALL 154
chevy 1991 ALL 199
chevy 1992 ALL 157
ford 1990 ALL 189
ford 1991 ALL 116
ford 1992 ALL 128
chevy ALL red 91
chevy ALL white 236
chevy ALL blue 183
ford ALL red 144
ford ALL white 133
ford ALL blue 156
ALL 1990 red 69
ALL 1990 white 149
ALL 1990 blue 125
ALL 1991 red 107
ALL 1991 white 104
ALL 1991 blue 104
ALL 1992 red 59
ALL 1992 white 116
ALL 1992 blue 110

CUBE

Data Mining

■  Searching for patterns in data
ê Typically done in data warehouses

■  Association Rules:
ê When a customer buys X, she also typically buys Y
ê Use ?

Ø  Move X and Y together in supermarkets
ê A customer buys a lot of shirts

Ø  Send him a catalogue of shirts
ê Patterns are not always obvious

Ø  Classic example: It was observed that men tend to buy beer and
diapers together (may be an urban legend)

■  Other types of mining
ê Classification
ê Decision Trees

Data Warehouses

■  Data analytics a major industry right now, and likely to grow in
near future
ê BIG Data !!
ê Extracting (actionable) knowledge from data really critical

Ø Especially in real-time
■  Some key technologies:

ê Parallelism – pretty much required
ê Column-oriented design

Ø  Lay out the data column-by-column, rather than row-by-row
ê Heavy pre-computation (like Cubes)
ê New types of indexes

Ø  Focusing on bitmap representations
ê Heavy compression
ê Map-reduce??

Topics

■ Object Oriented, Object Relational

■ Client-server, Parallel, Distributed Systems

■ OLAP/Data Warehouses

■  Information Retrieval

■ Cloud Computing
ê Data centers, Map-reduce, NoSQL Systems

Information Retrieval
■  Relational DB == Structured data
■  Information Retrieval == Unstructured data
■  Evolved independently of each other

ê Still very little interaction between the two
■  Goal: Searching within documents

ê Queries are different; typically a list of words, not SQL
■  E.g. Web searching

ê  If you just look for documents containing the words, millions of them
Ø  Mostly useless

■  Ranking:
ê This is the key in IR
ê Many different ways to do it

Ø  E.g. something that takes into account term frequencies
ê Pagerank (from Google) seems to work best for Web.

©Silberschatz, Korth and Sudarshan21.81Database System Concepts - 6th Edition

Relevance Ranking Using Terms

■  TF-IDF (Term frequency/Inverse Document frequency) ranking:
●  Let n(d) = number of terms in the document d
●  n(d, t) = number of occurrences of term t in the document d.
●  Relevance of a document d to a term t  
 
 
 

! The log factor is to avoid excessive weight to frequent terms
●  Relevance of document to query Q

n(d)
n(d, t)

1 + TF (d, t) = log

r (d, Q) = ∑ TF (d, t)
n(t) t∈Q

©Silberschatz, Korth and Sudarshan21.82Database System Concepts - 6th Edition

PageRank
■  The probability that a random surfer (who follows links randomly) will

end up at a particular page
●  Intuitively: Higher the probability, the more important the page

■  Surfer model:
●  Choose a random page to visit with probability “alpha”
●  If the number of outgoing edges = n, then visit one of those pages

with probability (1 – alpha)/n

