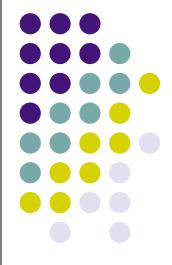
CMSC424: Database Design

Instructor: Amol Deshpande amol@cs.umd.edu



Databases

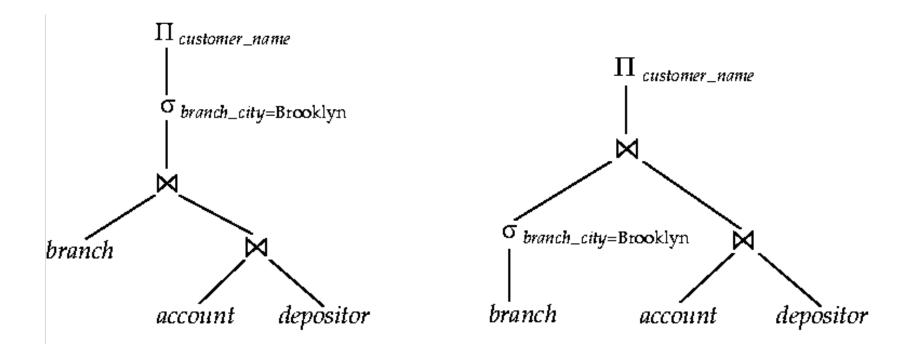
- Data Models
 - Conceptual representation of the data
- Data Retrieval
 - How to ask questions of the database
 - How to answer those questions
- Data Storage
 - How/where to store data, how to access it
- Data Integrity
 - Manage crashes, concurrency
 - Manage semantic inconsistencies

- Overview
- Statistics Estimation
- Transformation of Relational Expressions
- Optimization Algorithms

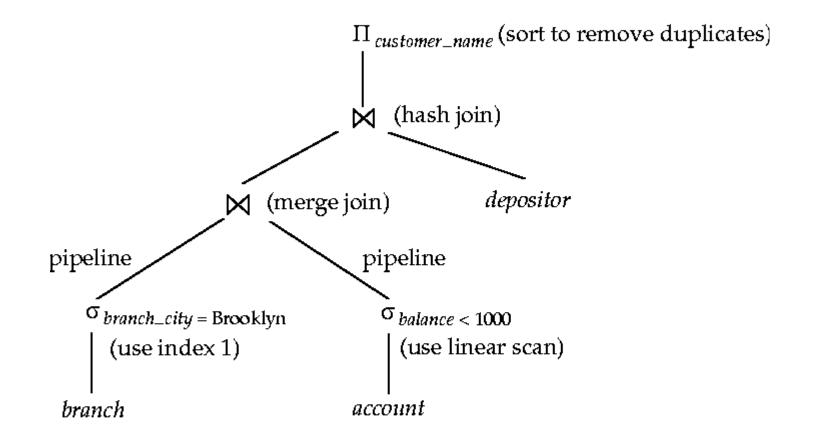
- Why?
 - Many different ways of executing a given query
 - Huge differences in cost
- Example:
 - select * from person where ssn = "123"
 - Size of *person* = 1GB
 - Sequential Scan:
 - Takes 1GB / (20MB/s) = 50s
 - Use an index on SSN (assuming one exists):
 - Approx 4 Random I/Os = 40ms

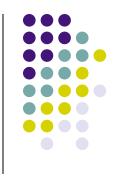
- Many choices
 - Using indexes or not, which join method (hash, vs merge, vs NL)
 - What join order ?
 - Given a join query on R, S, T, should I join R with S first, or S with T first ?
- This is an optimization problem
 - Similar to say traveling salesman problem
 - Number of different choices is very very large
 - Step 1: Figuring out the *solution space*
 - Step 2: Finding algorithms/heuristics to search through the solution space

- Equivalent relational expressions
 - Drawn as a tree
 - List the operations and the order



- Execution plans
 - Evaluation expressions annotated with the methods used





- Steps:
 - Generate all possible execution plans for the query
 - Figure out the cost for each of them
 - Choose the best

- Not done exactly as listed above
 - Too many different execution plans for that
 - Typically interleave all of these into a single efficient search algorithm

• Steps:

- Generate all possible execution plans for the query
 - First generate all equivalent expressions
 - Then consider all annotations for the operations
- Figure out the cost for each of them
 - Compute cost for each operation
 - Using the formulas discussed before
 - One problem: How do we know the number of result tuples for,

say, $\sigma_{balance<2500}(account)$

- Add them !
- Choose the best

- Introduction
- Example of a Simple Type of Query
- Transformation of Relational Expressions
- Optimization Algorithms
- Statistics Estimation

Cost estimation

• Computing operator costs requires information like:

- Primary key ?
- Sorted or not, which attribute
 - So we can decide whether need to sort again
- How many tuples in the relation, how many blocks?
- RAID ?? Which one ?
 - Read/write costs are quite different
- How many tuples match a predicate like "age > 40" ?
 - E.g. Need to know how many index pages need to be read
- Intermediate result sizes
 - E.g. (R JOIN S) is input to another join operation need to know if it fits in memory
- And so on...

Cost estimation

- Some information is static and is maintained in the metadata
 - Primary key ?
 - Sorted or not, which attribute
 - So we can decide whether need to sort again
 - How many tuples in the relation, how many blocks ?
 - RAID ?? Which one ?
 - Read/write costs are quite different
- Typically kept in some tables in the database
 - "all_tab_columns" in Oracle
- Most systems have commands for updating them

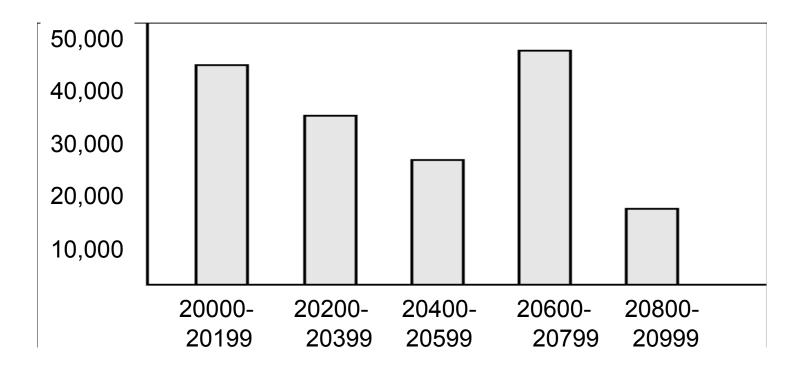
Cost estimation

- However, others need to be estimated somehow
 - How many tuples match a predicate like "age > 40" ?
 - E.g. Need to know how many index pages need to be read
 - Intermediate result sizes
- The problem variously called:
 - "intermediate result size estimation"
 - "selectivity estimation"
- Very important to estimate reasonably well
 - e.g. consider "select * from R where zipcode = 20742"
 - We estimate that there are 10 matches, and choose to use a secondary index (remember: random I/Os)
 - Turns out there are 10000 matches
 - Using a secondary index very bad idea
 - Optimizer also often choose Nested-loop joins if one relation very small... underestimation can result in very bad

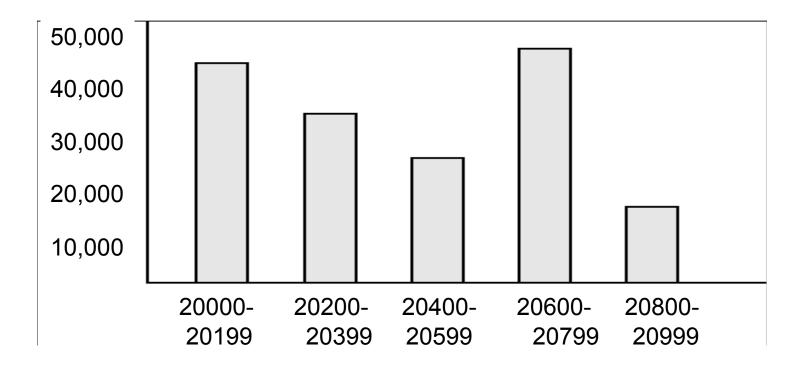
Selectivity Estimation

- Basic idea:
 - Maintain some information about the tables
 - More information → more accurate estimation
 - More information \rightarrow higher storage cost, higher update cost
 - Make uniformity and randomness assumptions to fill in the gaps
- Example:
 - For a relation "people", we keep:
 - Total number of tuples = 100,000
 - Distinct "zipcode" values that appear in it = 100
 - Given a query: "zipcode = 20742"
 - We estimated the number of matching tuples as: 100,000/100 = 1000
 - What if I wanted more accurate information ?
 - Keep histograms…

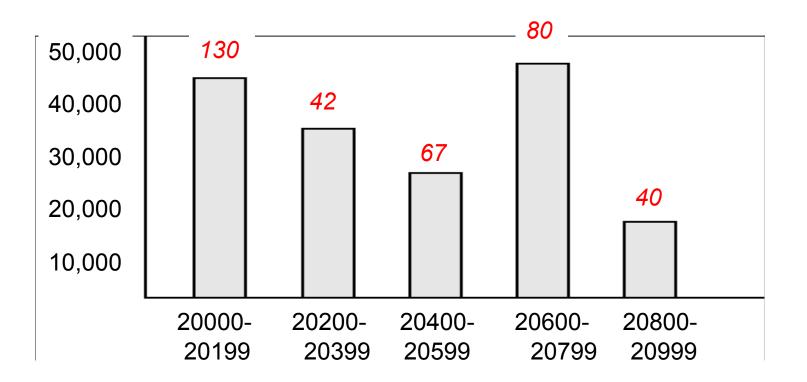
- A condensed, approximate version of the "frequency distribution"
 - Divide the range of the attribute value in "buckets"
 - For each bucket, keep the total count
 - Assume uniformity within a bucket



- Given a query: zipcode = " 20742"
 - Find the bucket (Number 3)
 - Say the associated cound = 45000
 - Assume uniform distribution within the bucket: 45,000/200 = 225



- What if the ranges are typically not full ?
 - ie., only a few of the zipcodes are actually in use?
- With each bucket, also keep the number of zipcodes that are valid
- Now the estimate would be: 45,000/80 = 562.50
- More Information → Better estimation



- Very widely used in practice
 - One-dimensional histograms kept on almost all columns of interest
 - ie., the columns that are commonly referenced in queries
 - Sometimes: multi-dimensional histograms also make sense
 - Less commonly used as of now
- Two common types of histograms:
 - Equi-depth
 - The attribute value range partitioned such that each bucket contains about the same number of tuples
 - Equi-width
 - The attribute value range partitioned in equal-sized buckets
 - VOptimal histograms
 - No such restrictions
 - More accurate, but harder to use or update

- Estimating sizes of the results of various operations
- Guiding principle:
 - Use all the information available
 - Make uniformity and randomness assumptions otherwise
 - Many formulas, but not very complicated...
 - In most cases, the first thing you think of

Basic statistics

- Basic information stored for all relations
 - n_r : number of tuples in a relation *r*.
 - b_r : number of blocks containing tuples of r.
 - I_r : size of a tuple of *r*.
 - *f_r*: blocking factor of *r* i.e., the number of tuples of *r* that fit into one block.
 - V(A, r): number of distinct values that appear in r for attribute A; same as the size of $\prod_{A}(r)$.
 - MAX(A, r): th maximum value of A that appears in r
 - *MIN(A, r)*
 - If tuples of *r* are stored together physically in a file, then:

$$b_{\mathcal{F}} = \left[\frac{n_{\mathcal{F}}}{f_{\mathcal{F}}}\right]$$

Selection Size Estimation

- $\sigma_{A=v}(r)$
 - $n_r / V(A,r)$: number of records that will satisfy the selection
 - Equality condition on a key attribute: *size estimate* = 1
- $\sigma_{A \leq V}(r)$ (case of $\sigma_{A \geq V}(r)$ is symmetric)
 - Let c denote the estimated number of tuples satisfying the condition.
 - If min(A,r) and max(A,r) are available in catalog
 - c = 0 if v < min(A,r)

•
$$\mathbf{C} = n_r \cdot \frac{v - \min(A, r)}{\max(A, r) - \min(A, r)}$$

- If histograms available, can refine above estimate
- In absence of statistical information *c* is assumed to be $n_r/2$.

Size Estimation of Complex Selections

- **selectivity**(θ_i) = the probability that a tuple in *r* satisfies θ_i .
 - If s_i is the number of satisfying tuples in *r*, then selectivity $(\theta_i) = s_i / n_r$.
- Conjunction: σ_{θ1∧ θ2∧...∧ θn} (r). Assuming independence, estimate of tuples in the result is:

$$n_r * \frac{S_1 * S_2 * \dots * S_n}{n_r^n}$$

• **Disjunction**: $\sigma_{\theta_{1} \vee \theta_{2} \vee \ldots \vee \theta_{n}}(r)$. Estimated number of tuples:

$$n_r * \left(1 - \left(1 - \frac{S_1}{n_r}\right) * \left(1 - \frac{S_2}{n_r}\right) * \dots * \left(1 - \frac{S_n}{n_r}\right) \right)$$

• **Negation:** $\sigma_{\neg\theta}(r)$. Estimated number of tuples: $n_r - size(\sigma_{\theta}(r))$

Joins

- R JOIN S: R.a = S.a
 - |R| = 10,000; |S| = 5000
- CASE 1: *a* is key for S
 - Each tuple of R joins with exactly one tuple of S
 - So: |R JOIN S| = |R| = 10,000
 - Assumption: Referential integrity holds
 - What if there is a selection on R or S
 - Adjust accordingly
 - Say: S.b = 100, with selectivity 0.1
 - THEN: |R JOIN S| = |R| * 0.1 = 100
- CASE 2: *a* is key for R
 - Similar

Joins

- R JOIN S: R.a = S.a
 - |R| = 10,000; |S| = 5000
- CASE 3: *a* is not a key for either
 - Reason with the distributions on a
 - Say: the domain of *a*: *V*(*A*, *R*) = 1000 (the number of distinct values *a* can take)
 - THEN, assuming uniformity
 - For each value of a
 - We have 10,000/100 = 100 tuples of R with that value of a
 - We have 5000/100 = 50 tuples of S with that value of a
 - All of these will join with each other, and produce 100 *50 = 5000
 - So total number of results in the join:
 - **5000 * 100 = 500000**
 - We can improve the accuracy if we know the distributions on *a* better
 - Say using a histogram

Other Operations

- Projection: $\prod_{A}(R)$
 - If no duplicate elimination, THEN $|\prod_A(R)| = |R|$
 - If *distinct* used (duplicate elimination performed): $|\prod_A(R)| = V(A, R)$
- Set operations:
 - Union ALL: |R ∪ S| = |R| + |S|
 - Intersect ALL: $|R \cap S| = \min\{|R|, |S|\}$
 - Except ALL: |R S| = |R| (a good upper bound)
 - Union, Intersection, Except (with duplicate elimination)
 - Somewhat more complex reasoning based on the frequency distributions etc...
- And so on ...

- Introduction
- Transformation of Relational Expressions
- Statistics Estimation
- Optimization Algorithms

Equivalence of Expressions

- Two relational expressions equivalent iff:
 - Their result is identical on all legal databases
- Equivalence rules:
 - Allow replacing one expression with another
- Examples:

1.
$$\sigma_{\theta_1 \land \theta_2}(E) = \sigma_{\theta_1}(\sigma_{\theta_2}(E))$$

2. Selections are commutative

$$\sigma_{\theta_1}(\sigma_{\theta_2}(E)) = \sigma_{\theta_2}(\sigma_{\theta_1}(E))$$

Equivalence Rules

• Examples:

3. $\Pi_{L_1}(\Pi_{L_2}(...(\Pi_{L_n}(E))...)) = \Pi_{L_1}(E)$

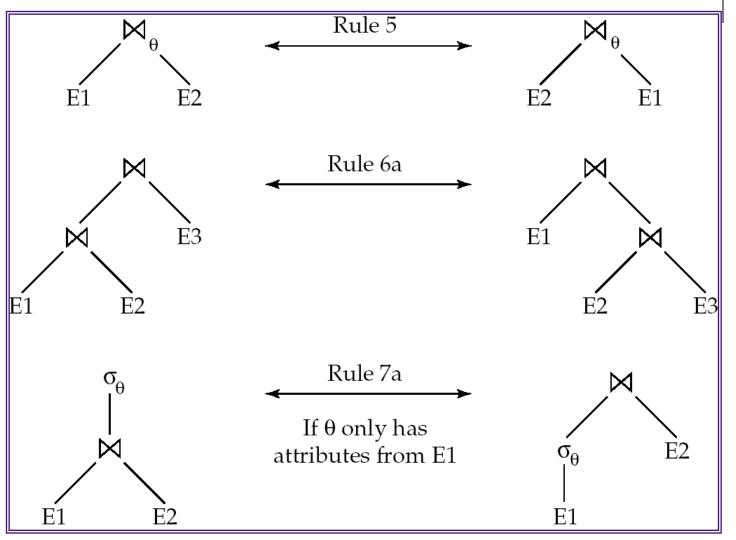
5.
$$E_1 \bowtie_{\theta} E_2 = E_2 \bowtie_{\theta} E_1$$

7(a). If θ_0 only involves attributes from E_1 $\sigma_{\theta 0}(E_1 \bowtie_{\theta} E_2) = (\sigma_{\theta 0}(E_1))^{\bowtie} {}_{\theta} E_2$

• And so on...

Many rules of this type

Pictorial Depiction



Example

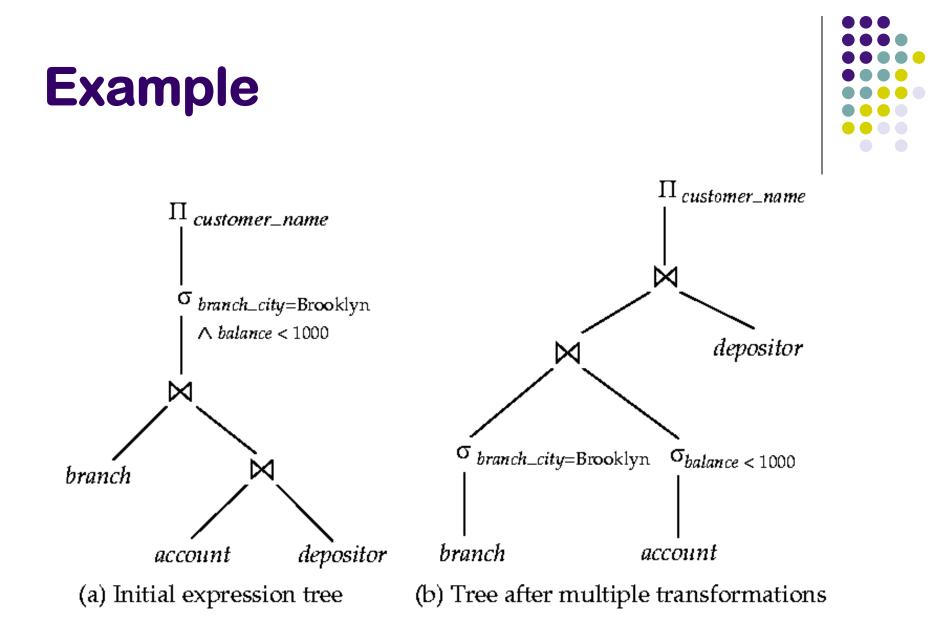
 Find the names of all customers with an account at a Brooklyn branch whose account balance is over \$1000.

 $\Pi_{customer_name}(\sigma_{branch_city} = "Brooklyn" \land balance > 1000$ $(branch \bowtie (account \bowtie depositor)))$

• Apply the rules one by one

 $\Pi_{customer_name}((\sigma_{branch_city} = "Brooklyn" \land balance > 1000)$ $(branch \bowtie account)) \bowtie depositor)$

 $\Pi_{customer_name}(((\sigma_{branch_city = "Brooklyn"} (branch)) \bowtie (\sigma_{balance > 1000} (account))) \bowtie depositor)$



Equivalence of Expressions

- The rules give us a way to enumerate all equivalent expressions
 - Note that the expressions don't contain physical access methods, join methods etc...
- Simple Algorithm:
 - Start with the original expression
 - Apply all possible applicable rules to get a new set of expressions
 - Repeat with this new set of expressions
 - Till no new expressions are generated

Equivalence of Expressions

- Works, but is not feasible
- Consider a simple case:
 - R1 ⊠ (R2 ⊠ (R3 ⊠ (... ⊠ Rn)))....)
- Just join commutativity and associativity will give us:
 - At least:
 - n^2 * 2^n
 - At worst:
 - n! * 2^n
- Typically the process of enumeration is combined with the search process

Evaluation Plans

- We still need to choose the join methods etc..
 - Option 1: Choose for each operation separately
 - Usually okay, but sometimes the operators interact
 - Consider joining three relations on the same attribute:
 - $R1 \bowtie_a (R2 \bowtie_a R3)$
 - Best option for R2 join R3 might be hash-join
 - But if *R1* is sorted on *a*, then *sort-merge join* is preferable
 - Because it produces the result in sorted order by *a*
- Also, we need to decide whether to use pipelining or materialization
- Such issues are typically taken into account when doing the optimization

- Introduction
- Example of a Simple Type of Query
- Transformation of Relational Expressions
- Optimization Algorithms
- Statistics Estimation

Optimization Algorithms

- Two types:
 - Exhaustive: That attempt to find the best plan
 - Heuristical: That are simpler, but are not guaranteed to find the optimal plan
- Consider a simple case
 - Join of the relations *R1, ..., Rn*
 - No selections, no projections
- Still very large plan space

Searching for the best plan

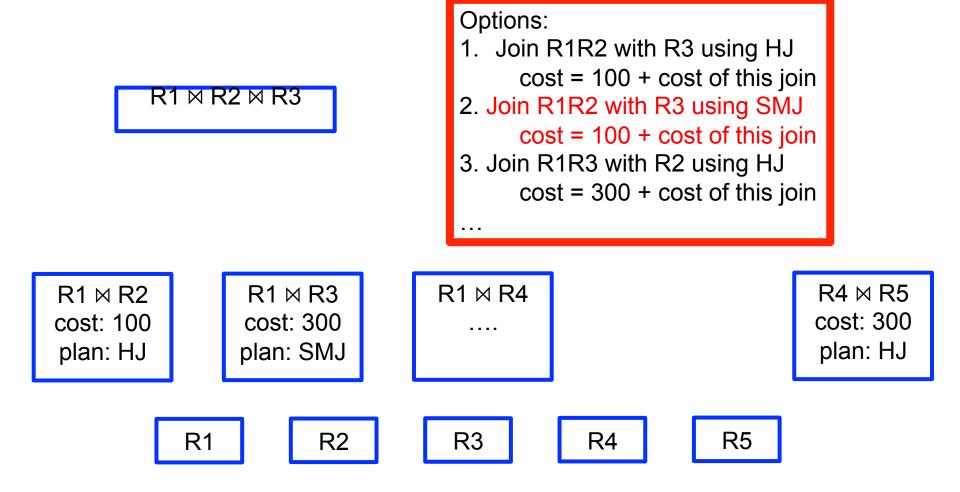
- Option 1:
 - Enumerate all equivalent expressions for the original query expression
 - Using the rules outlined earlier
 - Estimate cost for each and choose the lowest
- Too expensive !
 - Consider finding the best join-order for $r_1 \bowtie r_2 \bowtie \ldots r_n$.
 - There are (2(n 1))!/(n 1)! different join orders for above expression. With n = 7, the number is 665280, with n = 10, the number is greater than 176 billion!

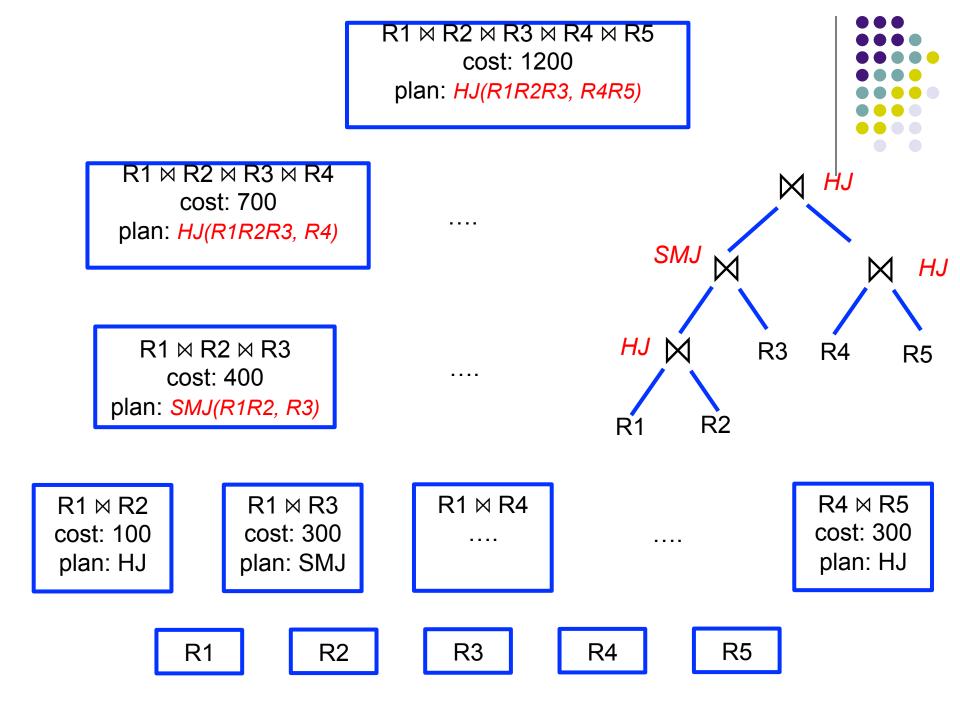
Searching for the best plan

Option 2:

- Dynamic programming
 - There is too much commonality between the plans
 - Also, costs are additive
 - Caveat: Sort orders (also called "interesting orders")
- Reduces the cost down to O(n3ⁿ) or O(n2ⁿ) in most cases
 - Interesting orders increase this a little bit
- Considered acceptable
 - Typically n < 10.
- Switch to heuristic if not acceptable

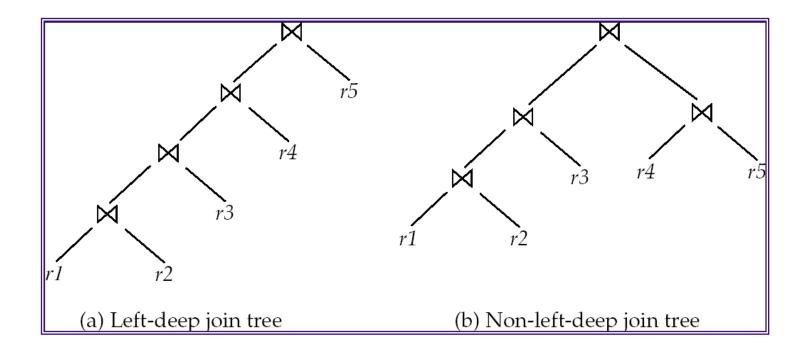
Dynamic Programming Algo. Join R1, R2, R3, R4, R5





Left Deep Join Trees

- In left-deep join trees, the right-hand-side input for each join is a relation, not the result of an intermediate join
- Early systems only considered these types of plans
 - Easier to pipeline



Heuristic Optimization

- Dynamic programming is expensive
- Use *heuristics* to reduce the number of choices
- Typically rule-based:
 - Perform selection early (reduces the number of tuples)
 - Perform projection early (reduces the number of attributes)
 - Perform most restrictive selection and join operations before other similar operations.
- Some systems use only heuristics, others combine heuristics with partial cost-based optimization.

Steps in Typical Heuristic Optimization

- 1. Deconstruct conjunctive selections into a sequence of single selection operations (Equiv. rule 1.).
- 2. Move selection operations down the query tree for the earliest possible execution (Equiv. rules 2, 7a, 7b, 11).
- 3. Execute first those selection and join operations that will produce the smallest relations (Equiv. rule 6).
- 4. Replace Cartesian product operations that are followed by a selection condition by join operations (Equiv. rule 4a).
- 5. Deconstruct and move as far down the tree as possible lists of projection attributes, creating new projections where needed (Equiv. rules 3, 8a, 8b, 12).
- 6. Identify those subtrees whose operations can be pipelined, and execute them using pipelining).

- Introduction
- Example of a Simple Type of Query
- Transformation of Relational Expressions
- Optimization Algorithms
- Statistics Estimation
- Summary

- Integral component of query processing
 - Why ?
- One of the most complex pieces of code in a database system
- Active area of research
 - E.g. XML Query Optimization ?
 - What if you don't know anything about the statistics
 - Better statistics
 - Etc ...