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l  Data	  Models	  
l  Conceptual	  representa1on	  of	  the	  data	  

l  Data	  Retrieval	  
l  How	  to	  ask	  ques1ons	  of	  the	  database	  
l  How	  to	  answer	  those	  ques1ons	  

l  Data	  Storage	  
l  How/where	  to	  store	  data,	  how	  to	  access	  it	  

l  Data	  Integrity	  
l  Manage	  crashes,	  concurrency	  
l  Manage	  seman1c	  inconsistencies	  

Databases 



Query Optimization 

l  Overview 
l  Statistics Estimation 
l  Transformation of Relational Expressions 
l  Optimization Algorithms 



Query Optimization 

l  Why ?  
l  Many different ways of executing a given query 

l  Huge differences in cost 

l  Example: 
l  select * from person where ssn = “123” 

l  Size of person = 1GB 
l  Sequential Scan: 

l  Takes 1GB / (20MB/s) = 50s 

l  Use an index on SSN (assuming one exists): 
l  Approx 4 Random I/Os = 40ms  



Query Optimization 

l  Many choices 
l  Using indexes or not, which join method (hash, vs merge, vs NL) 

l  What join order ? 

l  Given a join query on R, S, T, should I join R with S first, or S 
with T first ? 

l  This is an optimization problem 

l  Similar to say traveling salesman problem 
l  Number of different choices is very very large 

l  Step 1: Figuring out the solution space 
l  Step 2: Finding algorithms/heuristics to search through the 

solution space 



Query Optimization 

l  Equivalent relational expressions 
l  Drawn as a tree 
l  List the operations and the order 



Query Optimization 

l  Execution plans 
l  Evaluation expressions annotated with the methods used 



Query Optimization 

l  Steps: 
l  Generate all possible execution plans for the query 

l  Figure out the cost for each of them 

l  Choose the best 

l  Not done exactly as listed above 
l  Too many different execution plans for that 

l  Typically interleave all of these into a single efficient search 
algorithm 



Query Optimization 

l  Steps: 
l  Generate all possible execution plans for the query 

l  First generate all equivalent expressions 
l  Then consider all annotations for the operations 

l  Figure out the cost for each of them 
l  Compute cost for each operation  

§  Using the formulas discussed before 

§  One problem: How do we know the number of result tuples for, 
say,  

l  Add them ! 

l  Choose the best 
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Query Optimization 

l  Introduction 
l  Example of a Simple Type of Query 
l  Transformation of Relational Expressions 
l  Optimization Algorithms 
l  Statistics Estimation 



Cost estimation 

l  Computing operator costs requires information like: 
l  Primary key ?  
l  Sorted or not, which attribute 

l  So we can decide whether need to sort again 
l  How many tuples in the relation, how many blocks ? 
l  RAID ?? Which one ?   

l  Read/write costs are quite different 
l  How many tuples match a predicate like “age > 40” ? 

l  E.g. Need to know how many index pages need to be read 
l  Intermediate result sizes 

l  E.g. (R JOIN S) is input to another join operation – need to know if it 
fits in memory 

l  And so on… 



Cost estimation 

l  Some information is static and is maintained in the 
metadata 
l  Primary key ?  
l  Sorted or not, which attribute 

l  So we can decide whether need to sort again 
l  How many tuples in the relation, how many blocks ? 
l  RAID ?? Which one ?   

l  Read/write costs are quite different 

l  Typically kept in some tables in the database 
l  “all_tab_columns” in Oracle 

l  Most systems have commands for updating them 



Cost estimation 
l  However, others need to be estimated somehow 

l  How many tuples match a predicate like “age > 40” ? 
l  E.g. Need to know how many index pages need to be read 

l  Intermediate result sizes 
l  The problem variously called: 

l  “intermediate result size estimation” 
l  “selectivity estimation” 

l  Very important to estimate reasonably well 
l  e.g. consider “select * from R where zipcode = 20742” 
l  We estimate that there are 10 matches, and choose to use a secondary 

index (remember: random I/Os) 
l  Turns out there are 10000 matches 
l  Using a secondary index very bad idea 
l  Optimizer also often choose Nested-loop joins if one relation very 

small… underestimation can result in very bad 



Selectivity Estimation 

l  Basic idea: 
l  Maintain some information about the tables 

l  More information à more accurate estimation 
l  More information à higher storage cost, higher update cost 

l  Make uniformity and randomness assumptions to fill in the gaps 

l  Example: 
l  For a relation “people”, we keep: 

l  Total number of tuples = 100,000 
l  Distinct “zipcode” values that appear in it = 100 

l  Given a query: “zipcode = 20742” 
l  We estimated the number of matching tuples as: 100,000/100 = 1000 

l  What if I wanted more accurate information ? 
l  Keep histograms… 



Histograms 
l  A condensed, approximate version of the “frequency distribution” 

l  Divide the range of the attribute value in “buckets” 
l  For each bucket, keep the total count 
l  Assume uniformity within a bucket 

20000-      20200-     20400-      20600-     20800- 
 20199        20399     20599         20799     20999 

50,000 

40,000 

30,000 

20,000 

10,000 



Histograms 
l  Given a query: zipcode = “ 20742” 

l  Find the bucket (Number 3) 
l  Say the associated cound = 45000 
l  Assume uniform distribution within the bucket: 45,000/200 = 225 
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Histograms 
l  What if the ranges are typically not full ? 

l  ie., only a few of the zipcodes are actually in use ? 
l  With each bucket, also keep the number of zipcodes that are valid 
l  Now the estimate would be: 45,000/80 = 562.50 
l  More Information à Better estimation  
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Histograms 

l  Very widely used in practice 
l  One-dimensional histograms kept on almost all columns of interest 

l  ie., the columns that are commonly referenced in queries 

l  Sometimes: multi-dimensional histograms also make sense 
l  Less commonly used as of now 

l  Two common types of histograms: 
l  Equi-depth 

l  The attribute value range partitioned such that each bucket contains about the 
same number of tuples 

l  Equi-width 
l  The attribute value range partitioned in equal-sized buckets 

l  VOptimal histograms 
l  No such restrictions 
l  More accurate, but harder to use or update 



Next… 

l  Estimating sizes of the results of various operations 
l  Guiding principle: 

l  Use all the information available 
l  Make uniformity and randomness assumptions 

otherwise 
l  Many formulas, but not very complicated… 

l  In most cases, the first thing you think of 



Basic statistics 

l  Basic information stored for all relations 
l  nr:  number of tuples in a relation r. 
l  br: number of blocks containing tuples of r. 
l  lr: size of a tuple of r. 
l  fr: blocking factor of r — i.e., the number of tuples of r that fit into 

one block. 
l  V(A, r): number of distinct values that appear in r for attribute A; 

same as the size of ∏A(r). 
l  MAX(A, r): th maximum value of A that appears in r 
l  MIN(A, r) 
l  If tuples of r are stored together physically in a file, then:  
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Selection Size Estimation 

l  σA=v(r) 
l  nr / V(A,r) : number of records that will satisfy the selection 
l  Equality condition on a key attribute: size estimate = 1 

l  σA≤V(r) (case of σA ≥ V(r) is symmetric) 
l  Let c denote  the estimated number of tuples satisfying the condition.  
l  If min(A,r) and max(A,r) are available in catalog 

l  c = 0 if v < min(A,r) 
 

l  c = 
 

l   If histograms available, can refine above estimate 
l  In absence of statistical information c is assumed to be nr / 2. 
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Size Estimation of Complex Selections 

l  selectivity(θi )  = the probability that a tuple in r satisfies θi .  
l   If si  is the number of satisfying tuples in r, then selectivity (θi) = si /nr. 

l  Conjunction:  σθ1∧ θ2∧. . . ∧ θn (r).  Assuming independence, estimate of 
tuples in the result is: 
 

l  Disjunction:σθ1∨ θ2 ∨. . . ∨ θn (r).   Estimated number of tuples: 
 
 
 

l  Negation:  σ¬θ(r).  Estimated number of tuples:  nr – size(σθ(r)) 
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Joins 
l  R JOIN S: R.a = S.a 

l  |R| = 10,000; |S| = 5000 

l  CASE 1: a is key for S 
l  Each tuple of R joins with exactly one tuple of S 
l  So: |R JOIN S| = |R| = 10,000 
l  Assumption: Referential integrity holds 

l  What if there is a selection on R or S 
l  Adjust accordingly 
l  Say: S.b = 100, with selectivity 0.1 
l  THEN: |R JOIN S| = |R| * 0.1 = 100 

l  CASE 2: a is key for R 
l  Similar 

 



Joins 
l  R JOIN S: R.a = S.a 

l  |R| = 10,000; |S| = 5000 

l  CASE 3: a is not a key for either 
l  Reason with the distributions on a 
l  Say: the domain of a: V(A, R) = 1000 (the number of distinct values a can take) 
l  THEN, assuming uniformity 

l  For each value of a 
§  We have 10,000/100 = 100 tuples of R with that value of a 
§  We have 5000/100 = 50 tuples of S with that value of a 
§  All of these will join with each other, and produce 100 *50 = 5000 

l  So total number of results in the join: 
§  5000 * 100 = 500000 

l  We can improve the accuracy if we know the distributions on a better 
l  Say using a histogram 

 



Other Operations 
l  Projection: ∏A(R) 

l  If no duplicate elimination, THEN |∏A(R)| = |R| 
l  If distinct used (duplicate elimination performed): |∏A(R)| = V(A, R) 

l  Set operations: 
l  Union ALL: |R ∪ S| = |R| + |S| 
l  Intersect ALL: |R ∩ S| = min{|R|, |S|} 
l  Except ALL: |R – S| = |R|    (a good upper bound) 
l  Union, Intersection, Except (with duplicate elimination) 

l  Somewhat more complex reasoning based on the frequency 
distributions etc… 

l  And so on …    
 



Query Optimization 

l  Introduction 
l  Transformation of Relational Expressions 
l  Statistics Estimation 
l  Optimization Algorithms 



Equivalence of Expressions 

l  Two relational expressions equivalent iff: 
l  Their result is identical on all legal databases 

l  Equivalence rules: 
l  Allow replacing one expression with another 

l  Examples: 
    1.  

    2. Selections are commutative 
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Equivalence Rules 

l  Examples: 
    3. 

    5.    E1      θ  E2 = E2     θ  E1 

    7(a). If θ0 only involves attributes from E1 

               σθ0(E1     θ E2) = (σθ0(E1))    θ E2  
 

l  And so on… 
l  Many rules of this type 
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Pictorial Depiction 



Example 

l  Find the names of all customers with an account at a Brooklyn branch 
whose account balance is over $1000. 
 Πcustomer_name(σbranch_city = “Brooklyn” ∧  balance > 1000   

                      (branch     (account      depositor))) 
l  Apply the rules one by one 

      Πcustomer_name((σbranch_city = “Brooklyn” ∧  balance > 1000   

                      (branch     account))      depositor)  
     
      Πcustomer_name(((σbranch_city = “Brooklyn” (branch))    (σ balance > 1000   

                      (account)))      depositor) 



Example 



Equivalence of Expressions 

l  The rules give us a way to enumerate all equivalent 
expressions 
l  Note that the expressions don’t contain physical access methods, 

join methods etc… 

l  Simple Algorithm: 
l  Start with the original expression 
l  Apply all possible applicable rules to get a new set of 

expressions 
l  Repeat with this new set of expressions 
l  Till no new expressions are generated 



Equivalence of Expressions 

l  Works, but is not feasible 
l  Consider a simple case: 

l  R1        (R2         (R3        (…      Rn)))….) 

l  Just join commutativity and associativity will give us: 
l  At least: 

l  n^2  * 2^n 
l  At worst: 

l  n! * 2^n 

l  Typically the process of enumeration is combined with the 
search process 



Evaluation Plans 

l  We still need to choose the join methods etc.. 
l  Option 1: Choose for each operation separately 

l  Usually okay, but sometimes the operators interact 
l  Consider joining three relations on the same attribute: 

§  R1      a  (R2      a  R3) 
l  Best option for R2 join R3 might be hash-join 

§  But if R1 is sorted on a, then sort-merge join is preferable 
§  Because it produces the result in sorted order by a 

l  Also, we need to decide whether to use pipelining or 
materialization 

l  Such issues are typically taken into account when doing 
the optimization  



Query Optimization 

l  Introduction 
l  Example of a Simple Type of Query 
l  Transformation of Relational Expressions 
l  Optimization Algorithms 
l  Statistics Estimation 



Optimization Algorithms 

l  Two types: 
l  Exhaustive: That attempt to find the best plan 
l  Heuristical: That are simpler, but are not guaranteed to find 

the optimal plan 

l  Consider a simple case  
l  Join of the relations R1, …, Rn 
l  No selections, no projections 

l  Still very large plan space 



Searching for the best plan 

l  Option 1: 
l  Enumerate all equivalent expressions for the original query 

expression 
l  Using the rules outlined earlier 

l  Estimate cost for each and choose the lowest 

l  Too expensive ! 
l  Consider finding the best join-order for r1    r2      . . . rn. 
l  There are (2(n – 1))!/(n – 1)! different join orders for above 

expression.  With n = 7, the number is 665280, with n = 10, 
the number is greater than 176 billion! 



Searching for the best plan 

l  Option 2: 
l  Dynamic programming 

l  There is too much commonality between the plans 
l  Also, costs are additive 

§  Caveat: Sort orders (also called “interesting orders”) 

l  Reduces the cost down to O(n3^n) or O(n2^n) in most 
cases 
l  Interesting orders increase this a little bit 

l  Considered acceptable 
l  Typically n < 10. 

l  Switch to heuristic if not acceptable 



Dynamic Programming Algo. 
l  Join R1, R2, R3, R4, R5 

R1 R2 R3 R4 R5 

R1 ⨝ R2 
cost: 100 
plan: HJ 

R1 ⨝ R3 
cost: 300 
plan: SMJ 

 

R1 ⨝ R4 
…. 

R1 ⨝ R2 ⨝ R3 
 

Options: 
1.  Join R1R2 with R3 using HJ 
         cost = 100 + cost of this join 
2. Join R1R2 with R3 using SMJ 
         cost = 100 + cost of this join 
3. Join R1R3 with R2 using HJ 
         cost = 300 + cost of this join 
…  

R4 ⨝ R5 
cost: 300 
plan: HJ 



R1 ⨝ R2 
cost: 100 
plan: HJ 

R1 ⨝ R3 
cost: 300 
plan: SMJ 

 

R1 ⨝ R4 
…. 

R4 ⨝ R5 
cost: 300 
plan: HJ 

R1 ⨝ R2 ⨝ R3 
cost: 400 

plan: SMJ(R1R2, R3) 

…. 

…. 

R1 ⨝ R2 ⨝ R3 ⨝ R4 ⨝ R5 
cost: 1200 

plan: HJ(R1R2R3, R4R5) 
 

R1 ⨝ R2 ⨝ R3 ⨝ R4 
cost: 700 

plan: HJ(R1R2R3, R4) 
 

…. 

R1 R2 R3 R4 R5 

⨝  

⨝  

⨝  

⨝  

R5 R4 R3 

R2 R1 

HJ 

HJ 

HJ 

SMJ 



Left Deep Join Trees 

l  In left-deep join trees, the right-hand-side input for each join 
is a relation, not the result of an intermediate join 

l  Early systems only considered these types of plans 
l  Easier to pipeline 



Heuristic Optimization 

l  Dynamic programming is expensive 
l  Use heuristics to reduce the number of choices  

l  Typically rule-based: 
l  Perform selection early (reduces the number of tuples) 

l  Perform projection early (reduces the number of attributes) 
l  Perform most restrictive selection and join operations before other 

similar operations. 

l  Some systems use only heuristics, others combine heuristics 
with partial cost-based optimization. 



Steps in Typical Heuristic 
Optimization 

1.  Deconstruct conjunctive selections into a sequence of single 
selection operations (Equiv. rule 1.). 

2.  Move selection operations down the query tree for the 
earliest possible execution (Equiv. rules 2, 7a, 7b, 11). 

3.  Execute first those selection and join operations that will 
produce the smallest relations (Equiv. rule 6). 

4.  Replace Cartesian product operations that are followed by a 
selection condition by join operations (Equiv. rule 4a). 

5.  Deconstruct and move as far down the tree as possible lists 
of projection attributes, creating new projections where 
needed (Equiv. rules 3, 8a, 8b, 12). 

6.  Identify those subtrees whose operations can be pipelined, 
and execute them using pipelining). 



Query Optimization 

l  Introduction 
l  Example of a Simple Type of Query 
l  Transformation of Relational Expressions 
l  Optimization Algorithms 
l  Statistics Estimation 
l  Summary 



Query Optimization 

l  Integral component of query processing 
l  Why ? 

l  One of the most complex pieces of code in a 
database system 

l  Active area of research 
l  E.g. XML Query Optimization ? 
l  What if you don’t know anything about the statistics 
l  Better statistics 
l  Etc … 


