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Databases

■  Data	  Models	  
ê Conceptual	  representa1on	  of	  the	  data	  

■  Data	  Retrieval	  
ê How	  to	  ask	  ques1ons	  of	  the	  database	  
ê How	  to	  answer	  those	  ques1ons	  

■  Data	  Storage	  
ê How/where	  to	  store	  data,	  how	  to	  access	  it	  

■  Data	  Integrity	  
ê Manage	  crashes,	  concurrency	  

ê Manage	  seman1c	  inconsistencies	  



Transaction Concept
■  A transaction is a unit of program execution that accesses 

and  possibly updates various data items.
■  E.g. transaction to transfer $50 from account A to account B:

1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

■  Two main issues to deal with:
ê Failures of various kinds, such as hardware failures and system 

crashes
ê Concurrent execution of multiple transactions



Overview

■  Transaction: A sequence of database actions enclosed within 
special tags

■  Properties:
ê Atomicity: Entire transaction or nothing
ê Consistency: Transaction, executed completely, takes database 

from one consistent state to another
ê  Isolation: Concurrent transactions appear to run in isolation
ê Durability: Effects of committed transactions are not lost

■  Consistency: Transaction programmer needs to guarantee that
Ø  DBMS can do a few things, e.g., enforce constraints on the data

■  Rest: DBMS guarantees



How does..

■  .. this relate to queries that we discussed ?
ê Queries don’t update data, so durability and consistency not 

relevant
ê Would want concurrency 

Ø Consider a query computing total balance at the end of 
the day

ê Would want isolation
Ø What if somebody makes a transfer while we are 

computing the balance
Ø Typically not guaranteed for such long-running queries

■  TPC-C vs TPC-H



Assumptions and Goals
■  Assumptions:

ê The system can crash at any time
ê Similarly, the power can go out at any point

Ø  Contents of the main memory won’t survive a crash, or power outage
ê BUT… disks are durable. They might stop, but data is not lost.

Ø  For now.
ê Disks only guarantee atomic sector writes, nothing more
ê Transactions are by themselves consistent

■  Goals:
ê Guaranteed durability, atomicity
ê As much concurrency as possible, while not compromising isolation and/

or consistency
Ø  Two transactions updating the same account balance… NO
Ø  Two transactions updating different account balances… YES



Next…

■  States of a transaction



Transaction State

■  Active – the initial state; the transaction stays in this state 
while it is executing

■  Partially committed – after the final statement has been 
executed.

■  Failed -- after the discovery that normal execution can no 
longer proceed.

■  Aborted – after the transaction has been rolled back and the 
database restored to its state prior to the start of the 
transaction.  Two options after it has been aborted:
ê  restart the transaction

Ø   can be done only if no internal logical error
ê  kill the transaction

■  Committed – after successful completion.



Transaction states



Next…

■  Concurrency: Why?
ê  Increased processor and disk utilization
ê Reduced average response times

■  Concurrency control schemes
ê A CC scheme is used to guarantee that concurrency does not lead 

to problems
ê For now, we will assume durability is not a problem

Ø  So no crashes
Ø  Though transactions may still abort

■  Schedules
■  When is concurrency okay ?

ê Serial schedules
ê Serializability



A Schedule

T1
read(A)
A = A -50
write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)
B = B+ tmp
write(B)

Transactions:
             T1:   transfers $50 from A to B
             T2:   transfers 10% of A to B
Database constraint: A + B is constant (checking+saving accts)

Effect:      Before       After
           A      100          45
           B       50           
105

Each transaction obeys 
the constraint.

This schedule does too.



Schedules

■  A schedule is simply a (possibly interleaved) 
execution sequence of transaction instructions

■  Serial Schedule: A schedule in which transaction 
appear one after the other
ê ie., No interleaving

■  Serial schedules satisfy isolation and consistency
ê Since each transaction by itself does not introduce 

inconsistency



Example Schedule

■  Another “serial” schedule:

T1

read(A)
A = A -50
write(A)
read(B)
B=B+50
write(B)

T2
read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)
B = B+ tmp
write(B)

Consistent ?
     Constraint is satisfied.

Since each Xion is consistent, any 
serial schedule must be consistent

Effect:      Before       After
           A      100          40
           B       50           110



Another schedule

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Is this schedule okay ?

Lets look at the final effect…

Effect:      Before       After
           A      100          45
           B       50           105

Consistent. 
So this schedule is okay too.



Another schedule

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Is this schedule okay ?

Lets look at the final effect…

Effect:      Before       After
           A      100          45
           B       50           105

Further, the effect same as the
serial schedule 1.

Called serializable



Example Schedules (Cont.)
                 A “bad” schedule

Not consistent

T1
read(A)
A = A -50

write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)

B = B+ tmp
write(B)

Effect:      Before       After
           A      100          50
           B       50           60



Serializability

■  A schedule is called serializable if its final effect is the same as 
that of a serial schedule

■  Serializability à schedule is fine and does not result in 
inconsistent database
ê Since serial schedules are fine

■  Non-serializable schedules are unlikely to result in consistent 
databases

■  We will ensure serializability
ê Typically relaxed in real high-throughput environments



Serializability

■  Not possible to look at all n! serial schedules to check if the effect 
is the same
ê  Instead we ensure serializability by allowing or not allowing certain 

schedules

■  Conflict serializability

■  View serializability
ê View serializability allows more schedules



Conflict Serializability

■  Two read/write instructions “conflict” if 
ê They are by different transactions
ê They operate on the same data item
ê At least one is a “write” instruction

■  Why do we care ?
ê  If two read/write instructions don’t conflict, they can be “swapped” 

without any change in the final effect
ê However, if they conflict they CAN’T be swapped without changing 

the final effect



Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)

B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp

write(A)

read(B)
B = B+ tmp
write(B)

Effect:      Before       After
           A      100          45
           B       50           105

Effect:      Before       After
           A      100          45
           B       50           105

==



Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50

write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)

B = B+ tmp
write(B)

Effect:      Before       After
           A      100          45
           B       50           105

Effect:      Before       After
           A      100          45
           B       50           55

! ==



Conflict Serializability

■  Conflict-equivalent schedules:
ê  If S can be transformed into S’ through a series of swaps, S and S’ 

are called conflict-equivalent
ê  conflict-equivalent guarantees same final effect on the database

■  A schedule S is conflict-serializable if it is conflict-equivalent to a 
serial schedule



Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50

write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp

write(A)

read(B)
B = B+ tmp
write(B)

Effect:      Before       After
           A      100          45
           B       50           105

Effect:      Before       After
           A      100          45
           B       50           105

==



Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Effect:      Before       After
           A      100          45
           B       50           105

Effect:      Before       After
           A      100          45
           B       50           105

==



Example Schedules (Cont.)
                 A “bad” schedule

T1
read(A)
A = A -50

write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)

B = B+ tmp
write(B)

X

Y Can’t move Y below X
    read(B) and write(B) conflict

Other options don’t work either

So: Not Conflict Serializable



Serializability

■  In essence, following set of instructions is not conflict-serializable:



View-Serializability
■  Similarly, following not conflict-serializable

■  BUT, it is serializable
ê  Intuitively, this is because the conflicting write instructions don’t matter
ê The final write is the only one that matters

■  View-serializability allows these
ê Read up



Other notions of serializability

■  Not conflict-serializable or view-serializable, but serializable
■  Mainly because of the +/- only operations

ê Requires analysis of the actual operations, not just read/write 
operations

■  Most high-performance transaction systems will allow these



Testing for conflict-serializability

■  Given a schedule, determine if it is conflict-serializable

■  Draw a precedence-graph over the transactions
ê A directed edge from T1 and T2, if they have conflicting instructions, 

and T1’s conflicting instruction comes first

■  If there is a cycle in the graph, not conflict-serializable
ê Can be checked in at most O(n+e) time, where n is the number of 

vertices, and e is the number of edges 

■  If there is none, conflict-serializable

■  Testing for view-serializability is NP-hard.



Example Schedule (Schedule A) + Precedence Graph

T1  T2  T3  T4  T5  
read(X) 

read(Y) 
read(Z) 

read(V) 
read(W) 
read(W) 

read(Y) 
write(Y) 

write(Z) 
read(U) 

read(Y) 
write(Y) 
read(Z) 
write(Z)

read(U) 
write(U)

T3
T4

T1 T2



Recap so far…

■  We discussed:
ê Serial schedules, serializability
ê Conflict-serializability, view-serializability
ê How to check for conflict-serializability

■  We haven’t discussed:
ê How to guarantee serializability ?

Ø  Allowing transactions to run, and then aborting them if the 
schedules wasn’t serializable is clearly not the way to go

ê We instead use schemes to guarantee that the schedule will be 
conflict-serializable

ê Also, recoverability ?



Recoverability

■  Serializability is good for 
consistency

■  But what if transactions fail ?
ê T2 has already committed

Ø  A user might have been notified
ê Now T1 abort creates a problem

Ø  T2 has seen its effect, so just 
aborting T1 is not enough. T2 
must be aborted as well (and 
possibly restarted)

Ø  But T2 is committed

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)
ABORT

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
COMMIT



Recoverability

■  Recoverable schedule: If T1 has read something T2 has written, 
T2 must commit before T1
ê Otherwise, if T1 commits, and T2 aborts, we have a problem

■  Cascading rollbacks: If T10 aborts, T11 must abort, and hence 
T12 must abort and so on.



Recoverability

■  Dirty read: Reading a value written by a transaction that hasn’t 
committed yet

■  Cascadeless schedules:
ê A transaction only reads committed values.
ê So if T1 has written A, but not committed it, T2 can’t read it.

Ø  No dirty reads

■  Cascadeless à No cascading rollbacks
ê That’s good
ê We will try to guarantee that as well



Recap so far…

■  We discussed:
ê Serial schedules, serializability
ê Conflict-serializability, view-serializability
ê How to check for conflict-serializability
ê Recoverability, cascade-less schedules

■  We haven’t discussed:
ê How to guarantee serializability ?

Ø  Allowing transactions to run, and then aborting them if the 
schedules wasn’t serializable is clearly not the way to go

ê We instead use schemes to guarantee that the schedule will be 
conflict-serializable



Concurrency Control

Amol Deshpande  
CMSC424



Approach, Assumptions etc..

■  Approach
ê Guarantee conflict-serializability by allowing certain types of 

concurrency
Ø  Lock-based

■  Assumptions:
ê Durability is not a problem

Ø  So no crashes
Ø  Though transactions may still abort

■  Goal:
ê Serializability
ê Minimize the bad effect of aborts (cascade-less schedules only) 



Lock-based Protocols

■  A transaction must get a lock before operating on the data

■  Two types of locks:
ê Shared (S) locks (also called read locks)

Ø  Obtained if we want to only read an item
ê Exclusive (X) locks (also called write locks)

Ø  Obtained for updating a data item



Lock instructions

■  New instructions
- lock-S: shared lock request
- lock-X: exclusive lock request
- unlock: release previously held lock

Example schedule:
read(B)
B ßB-50
write(B)
read(A)
A ßA + 50
write(A)

read(A)
read(B)
display(A+B)

T1 T2



Lock instructions

■  New instructions
- lock-S: shared lock request
- lock-X: exclusive lock request
- unlock: release previously held lock

Example schedule:
lock-X(B)
read(B)
B ßB-50
write(B)
unlock(B)
lock-X(A)
read(A)
A ßA + 50
write(A)
unlock(A)

lock-S(A)
read(A)
unlock(A)
lock-S(B)
read(B)
unlock(B)
display(A+B)

T1 T2



Lock-based Protocols

■  Lock requests are made to the concurrency control manager

ê  It decides whether to grant a lock request

■  T1 asks for a lock on data item A, and T2 currently has a lock on it ?
ê Depends 

■  If compatible, grant the lock, otherwise T1 waits in a queue.

T2 lock type T1 lock type Should allow ?

Shared Shared  YES

Shared Exclusive NO

Exclusive - NO



Lock-based Protocols

■  How do we actually use this to guarantee serializability/recoverability ?
ê Not enough just to take locks when you need to read/write something

lock-X(B)
read(B)
B ßB-50
write(B)
unlock(B)

lock-X(A)
read(A)
A ßA + 50
write(A)
unlock(A)

T1

lock-X(A), lock-X(B)
A = A-50
B = B+50
unlock(A), unlock(B)



2-Phase Locking Protocol (2PL)

■  Phase 1: Growing phase
ê Transaction may obtain locks
ê But may not release them

■  Phase 2: Shrinking phase
ê Transaction may only release locks

■  Can be shown that this achieves 
conflict-serializability
ê  lock-point: the time at which a 

transaction acquired last lock
ê  if lock-point(T1) < lock-point(T2), 

there can’t be an edge from T2 to 
T1 in the precedence graph

lock-X(B)
read(B)
B ßB-50
write(B)
unlock(B)

lock-X(A)
read(A)
A ßA + 50
write(A)
unlock(A)

T1



2 Phase Locking
■  Example: T1 in 2PL

T1

lock-X(B)
read(B)
B ß B - 50
write(B)
lock-X(A)
read(A)
A ß A - 50
write(A)

unlock(B)
unlock(A)

{Growing phase

{Shrinking phase



2 Phase Locking
■  Guarantees conflict-serializability, but not cascade-less 

recoverability

T1 T2 T3

lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)

<xction fails>

lock-X(A)
read(A)
write(A)
unlock(A)
Commit lock-S(A)

read(A)
Commit 



2 Phase Locking
■  Guarantees conflict-serializability, but not cascade-less 

recoverability

■  Guaranteeing just recoverability:
ê  If T2 reads a dirty data of T1 (ie, T1 has not committed), then T2 

can’t commit unless T1 either commits or aborts
ê  If T1 commits, T2 can proceed with committing
ê  If T1 aborts, T2 must abort

Ø  So cascades still happen



Strict 2PL
■  Release exclusive locks only at the very end, just before commit 

or abort

Strict 2PL
will not 
allow that

T1 T2 T3

lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)

<xction fails>

lock-X(A)
read(A)
write(A)
unlock(A)
Commit lock-S(A)

read(A)
Commit 

Works. Guarantees cascade-less and recoverable schedules.



Strict 2PL
■  Release exclusive locks only at the very end, just before commit 

or abort
ê Read locks are not important

■  Rigorous 2PL: Release both exclusive and read locks only at the 
very end
ê The serializability order === the commit order
ê More intuitive behavior for the users

Ø  No difference for the system



Strict 2PL
■  Lock conversion:

ê Transaction might not be sure what it needs a write lock on

ê Start with a S lock 

ê Upgrade to an X lock later if needed

ê Doesn’t change any of the other properties of the protocol



Implementation of Locking

■  A separate process, or a separate module

■  Uses a lock table to keep track of currently assigned locks and 
the requests for locks
ê Read up in the book



Lock Table
■  Black rectangles indicate granted locks, 

white ones indicate waiting requests
■  Lock table also records the type of lock 

granted or requested
■  New request is added to the end of the 

queue of requests for the data item, and 
granted if it is compatible with all earlier 
locks

■  Unlock requests result in the request 
being deleted, and later requests are 
checked to see if they can now be 
granted

■  If transaction aborts, all waiting or 
granted requests of the transaction are 
deleted 
ê  lock manager may keep a list of 

locks held by each transaction, to 
implement this efficiently

granted

waiting

T8

144

T1 T23

14

T23

17 123

T23 T1 T8 T2

1912



Recap so far…
■  Concurrency Control Scheme

ê A way to guarantee serializability, recoverability etc

■  Lock-based protocols
ê Use locks to prevent multiple transactions accessing the same data 

items

■  2 Phase Locking
ê  Locks acquired during growing phase, released during shrinking 

phase

■  Strict 2PL, Rigorous 2PL



More Locking Issues: Deadlocks

■  No xction proceeds:
Deadlock

- T1 waits for T2 to unlock A
- T2 waits for T1 to unlock B

T1 T2

lock-X(B)
read(B)
B ß B-50
write(B) 

lock-X(A)

lock-S(A)
read(A)
lock-S(B)

Rollback transactions
Can be costly...



2PL and Deadlocks

■  2PL does not prevent deadlock
ê Strict doesn’t either

■  > 2 xctions involved?
- Rollbacks expensive

T1 T2

lock-X(B)
read(B)
B ß B-50
write(B) 

lock-X(A)

lock-S(A)
read(A)
lock-S(B)



Preventing deadlocks

■  Solution 1: A transaction must acquire all locks before it begins
ê Not acceptable in most cases

■  Solution 2: A transaction must acquire locks in a particular order 
over the data items
ê Also called graph-based protocols

■  Solution 3: Use time-stamps; say T1 is older than T2
ê wait-die scheme: T1 will wait for T2. T2 will not wait for T1; instead it will 

abort and restart
ê wound-wait scheme: T1 will wound T2 (force it to abort) if it needs a lock 

that T2 currently has; T2 will wait for T1.
■  Solution 4: Timeout based

ê Transaction waits a certain time for a lock; aborts if it doesn’t get it by 
then



Deadlock detection and recovery

■  Instead of trying to prevent deadlocks, let them happen and deal 
with them if they happen

■  How do you detect a deadlock?
ê Wait-for graph
ê Directed edge from Ti to Tj

Ø  Ti waiting for Tj

T1 T2 T3 T4

S(V)

X(V)

S(W)

X(Z)

S(V)

X(W)

T1

T2
T4

T3

Suppose T4 requests lock-S(Z)....



Dealing with Deadlocks

■  Deadlock detected, now what ?
ê Will need to abort some transaction
ê Prefer to abort the one with the minimum work done so far
ê Possibility of starvation

Ø  If a transaction is aborted too many times, it may be given 
priority in continueing



Locking granularity

■  Locking granularity
ê What are we taking locks on ? Tables, tuples, attributes ?

■  Coarse granularity
ê  e.g. take locks on tables
ê  less overhead (the number of tables is not that high)
ê  very low concurrency

■  Fine granularity
ê  e.g. take locks on tuples
ê much higher overhead
ê much higher concurrency
ê What if I want to lock 90% of the tuples of a table ?

Ø  Prefer to lock the whole table in that case



Granularity Hierarchy

   The highest level in the example hierarchy is the entire database.
   The levels below are of type area, file or relation and record in that 

order.
   Can lock at any level in the hierarchy



Granularity Hierarchy

■  New lock mode, called intentional locks
ê Declare an intention to lock parts of the subtree below a node
ê  IS: intention shared

Ø  The lower levels below may be locked in the shared mode
ê  IX: intention exclusive
ê SIX: shared and intention-exclusive

Ø  The entire subtree is locked in the shared mode, but I might also 
want to get exclusive locks on the nodes below

■  Protocol:
ê  If you want to acquire a lock on a data item, all the ancestors must 

be locked as well, at least in the intentional mode 
ê So you always start at the top root node



Granularity Hierarchy

(1) Want to lock F_a in shared mode, DB and A1 must be locked in at 
least IS mode (but IX, SIX, S, X are okay too)

(2) Want to lock rc1 in exclusive mode, DB, A2,Fc must be locked in at 
least IX mode (SIX, X are okay too)



Granularity Hierarchy

Parent Child can be
locked in locked in

IS
IX
S
SIX
X

P 

C 

IS, S 
IS, S, IX, X, SIX 
[S, IS] not necessary 
X, IX, [SIX] 
none 



Compatibility Matrix with 
 Intention Lock Modes

■  The compatibility matrix (which locks can be present 
simultaneously on the same data item) for all lock modes is: 

IS IX S S IX X 

IS

IX

S

S IX

X 

ü

ü

ü

ü

×

ü ü ü

ü

ü×

×

× × × ×

×× ×

× ×

×

×

××holder

requestor



Example

R1 

t1 
t2 t3 t4 

T1(IS) 

T1(S) 

, T2(IX) 

T2(X) 



Examples
R

t1 t3 t4t2

f2.1 f2.2 f4.2 f4.2

T1(IX)

T1(IX)

T1(X)

R

t1 t3 t4t2

f2.1 f2.2 f4.2 f4.2

T1(IS)

T1(S)

R

t1 t3 t4t2

f2.1 f2.2 f4.2 f4.2

T1(SIX)

T1(IX)

T1(X)

Can T2 access object f2.2 in X mode?  
What locks will T2 get? 



Examples

■  T1 scans R, and updates a few tuples:
ê T1 gets an SIX lock on R, then repeatedly gets an S lock on tuples of R, 

and occasionally upgrades to X on the tuples.
■  T2 uses an index to read only part of R:

ê T2 gets an IS lock on R, and repeatedly  gets an S lock on tuples of R.
■  T3 reads all of R:

ê T3 gets an S lock on R. 
ê OR, T3 could behave like T2; can   
use lock escalation to decide which.

-- IS IX 

-- 

IS 

IX 

√

√

√

√ √

√

S X 

√

√

S 

X 

√ √

√

√

√

√ √

√



Recap, Next….

■  Deadlocks
ê Detection, prevention, recovery

■  Locking granularity
ê Arranged in a hierarchy
ê  Intentional locks

■  Next…
ê Brief discussion of some other concurrency schemes



Other CC Schemes

■  Time-stamp based
ê Transactions are issued time-stamps when they enter the system
ê The time-stamps determine the serializability order
ê So if T1 entered before T2, then T1 should be before T2 in the 

serializability order
ê Say timestamp(T1) < timestamp(T2)
ê  If T1 wants to read data item A

Ø  If any transaction with larger time-stamp wrote that data item, 
then this operation is not permitted, and T1 is aborted

ê  If T1 wants to write data item A
Ø  If a transaction with larger time-stamp already read that data item 

or written it, then the write is rejected and T1 is aborted
ê Aborted transaction are restarted with a new timestamp

Ø  Possibility of starvation



Other CC Schemes

■  Time-stamp based
ê Example

T1 T2 T3 T4 T5

read(Y) read(X) 
read(Y)

write(Y) 
write(Z) 

read(Z) 
read(X) 
abort  read(X) 

write(Z) 
abort  

write(Y) 
write(Z)  



Other CC Schemes

■  Time-stamp based
ê As discussed here, has too many problems

Ø  Starvation
Ø  Non-recoverable
Ø  Cascading rollbacks required

ê Most can be solved fairly easily
Ø  Read up

ê Remember: We can always put more and more restrictions on what 
the transactions can do to ensure these things
Ø  The goal is to find the minimal set of restrictions to as to not 

hinder concurrency



Other Schemes:  
Optimistic Concurrency Control

■  Optimistic concurrency control
ê Also called validation-based 

ê  Intuition 
Ø  Let the transactions execute as they wish
Ø  At the very end when they are about to commit, check if there might 

be any problems/conflicts etc
–  If no, let it commit
–  If yes, abort and restart

ê Optimistic: The hope is that there won’t be too many problems/aborts



■  Each transaction Ti has 3 timestamps
ê Start(Ti) : the time when Ti started its execution
ê Validation(Ti): the time when Ti entered its validation phase
ê Finish(Ti) : the time when Ti finished its write phase

■  Serializability order is determined by timestamp given at 
validation time,  to increase concurrency. 
ê Thus TS(Ti) is given the value of Validation(Ti).

■  This protocol is useful and gives greater degree of concurrency 
if probability of conflicts is low. 
ê  because the serializability order is not pre-decided, and
ê  relatively few transactions will have to be rolled back.

Other Schemes:  
Optimistic Concurrency Control



Other Schemes:  
Optimistic Concurrency Control

■  If for all Ti with TS (Ti) < TS (Tj) either one of the following 
condition holds:
ê  finish(Ti) < start(Tj) 
ê  start(Tj) < finish(Ti) < validation(Tj) and the set of data items 

written by Ti does not intersect with the set of data items read by 
Tj.  

     then validation succeeds and Tj can be committed.  Otherwise, 
validation fails and Tj is aborted.

■  Justification:  Either the first condition is satisfied, and there is 
no overlapped execution, or the second condition is satisfied 
and
■  the writes of Tj do not affect reads of Ti since they occur after Ti 

has finished its reads.
■  the writes of Ti do not affect reads of Tj since Tj does not read  

any item written by Ti.



Other Schemes:  
Optimistic Concurrency Control

■  Example of schedule produced using validation



Other CC Schemes: Snapshot Isolation

■  Very popular scheme, used as the primary scheme by many 
systems including Oracle, PostgreSQL etc…
ê Several others support this in addition to locking-based protocol

■  A type of “optimistic concurrency control”

■  Key idea: 
ê For each object, maintain past “versions” of the data along with 

timestamps
Ø  Every update to an object causes a new version to be generated



Other CC Schemes: Snapshot Isolation

■  Read queries:
ê  Let “t” be the “time-stamp” of the query, i.e., the time at which it entered 

the system
ê When the query asks for a data item, provide a version of the data item 

that was latest as of “t”
Ø  Even if the data changed in between, provide an old version

ê No locks needed, no waiting for any other transactions or queries
ê The query executes on a consistent snapshot of the database

■  Update queries (transactions):
ê Reads processed as above on a snapshot
ê Writes are done in private storage
ê At commit time, for each object that was written, check if some other 

transaction updated the data item since this transaction started
Ø  If yes, then abort and restart
Ø  If no, make all the writes public simultaneously (by making new 

versions)



Snapshot Isolation

■  A transaction T1 executing with Snapshot 
Isolation
ê  takes snapshot of committed data at 

start
ê  always reads/modifies data in its own 

snapshot
ê  updates of concurrent transactions are 

not visible to T1 
ê  writes of T1 complete when it commits
ê  First-committer-wins rule:

Ø  Commits only if no other concurrent 
transaction has already written data 
that T1 intends to write.

T1 T2 T3

W(Y := 1)
Commit

Start
R(X) à 0
R(Y)à 1

W(X:=2)
W(Z:=3)
Commit

R(Z) à 0
R(Y) à 1
W(X:=3)
Commit-Req
Abort

Concurrent updates not visible
Own updates are visible
Not first-committer of X

Serialization error, T2 is rolled back



Other CC Schemes: Snapshot Isolation

■  Advantages:
ê Read query don’t block at all, and run very fast
ê As long as conflicts are rare, update transactions don’t abort either
ê Overall better performance than locking-based protocols

■  Major disadvantage:
ê Not serializable
ê  Inconsistencies may be introduced
ê See the wikipedia article for more details and an example

Ø  http://en.wikipedia.org/wiki/Snapshot_isolation



Snapshot Isolation

■  Example of problem with SI
ê T1: x:=y
ê T2: y:= x
ê  Initially x = 3 and y = 17

Ø  Serial execution:  x = ??, y = ??
Ø  if both transactions start at the same time, with snapshot 

isolation:  x = ?? , y = ??

■  Called skew write
■  Skew also occurs with inserts

ê E.g:
Ø  Find max order number among all orders
Ø  Create a new order with order number = previous max + 1



SI In Oracle and PostgreSQL
■  Warning: SI used when isolation level is set to serializable, by 

Oracle, and PostgreSQL versions prior to 9.1
ê  PostgreSQL’s implementation of SI (versions prior to 9.1) described in 

Section 26.4.1.3
ê  Oracle implements “first updater wins” rule (variant of “first committer 

wins”)
Ø  concurrent writer check is done at time of write, not at commit time
Ø  Allows transactions to be rolled back earlier
Ø  Oracle and PostgreSQL < 9.1 do not support true serializable 

execution
ê  PostgreSQL 9.1 introduced new protocol called “Serializable Snapshot 

Isolation” (SSI)
Ø  Which guarantees true serializabilty including handling predicate 

reads (coming up)



The “Phantom” problem

■  An interesting problem that comes up for dynamic databases
■  Schema: accounts(acct_no, balance, zipcode, …)
■  Transaction 1: Find the number of accounts in zipcode = 20742, 

and divide $1,000,000 between them
■  Transaction 2: Insert <acctX, …, 20742, …>
■  Execution sequence:

ê T1 locks all tuples corresponding to “zipcode = 20742”, finds the 
total number of accounts (= num_accounts)

ê T2 does the insert
ê T1 computes 1,000,000/num_accounts
ê When T1 accesses the relation again to update the balances, it finds 

one new (“phantom”) tuples (the new tuple that T2 inserted)

■  Not serializable
■  See this for another example



Weak Levels of Consistency in SQL
■  SQL allows non-serializable executions

ê Serializable: is the default
ê Repeatable read: allows only committed records to be read, and 

repeating a read should return the same value (so read locks should 
be retained)
Ø  However, the phantom phenomenon need not be prevented

–  T1 may see some records inserted by T2, but may not see 
others inserted by T2

ê Read committed:  same as degree two consistency, but most 
systems implement it as cursor-stability

ê Read uncommitted: allows even uncommitted data to be read
■  In many database systems, read committed is the default 

consistency level
ê  has to be explicitly changed to serializable when required

Ø  set isolation level serializable



Recovery

Amol Deshpande  
CMSC424



Context

■  ACID properties:
ê We have talked about Isolation and Consistency
ê How do we guarantee Atomicity and Durability ?

Ø  Atomicity: Two problems
–  Part of the transaction is done, but we want to cancel it

»  ABORT/ROLLBACK
–  System crashes during the transaction. Some changes made 

it to the disk, some didn’t.
Ø  Durability:

–  Transaction finished. User notified. But changes not sent to 
disk yet (for performance reasons). System crashed.

■  Essentially similar solutions



Reasons for crashes

■  Transaction failures
ê Logical errors: transaction cannot complete due to some internal 

error condition
ê System errors: the database system must terminate an active 

transaction due to an error condition (e.g., deadlock)

■  System crash
ê Power failures, operating system bugs etc
ê Fail-stop assumption: non-volatile storage contents are assumed 

to not be corrupted by system crash
Ø  Database systems have numerous integrity checks to prevent 

corruption of disk data 
■  Disk failure

ê Head crashes; for now we will assume 
Ø  STABLE STORAGE: Data never lost. Can approximate by 

using RAID and maintaining geographically distant copies 
of the data



Approach, Assumptions etc..
■  Approach:

ê Guarantee A and D:
Ø  by controlling how the disk and memory interact, 
Ø  by storing enough information during normal processing to recover from 

failures
Ø  by developing algorithms to recover the database state

■  Assumptions:
ê System may crash, but the disk is durable
ê The only atomicity guarantee is that a disk block write is atomic

■  Once again, obvious naïve solutions exist that work, but that are too 
expensive.
ê E.g. The shadow copy solution we saw earlier

Ø  Make a copy of the database; do the changes on the copy; do an atomic 
switch of the dbpointer at commit time

ê Goal is to do this as efficiently as possible



Data Access
■  Physical blocks are those blocks residing on the disk. 
■  Buffer blocks are the blocks residing temporarily in main 

memory.
■  Block movements between  disk and main memory are initiated 

through the following two operations:
ê  input(B) transfers the physical block B  to main memory.
ê output(B) transfers the buffer block B to the disk, and replaces the 

appropriate physical block there.
■  We assume, for simplicity, that each data item fits in, and is 

stored inside, a single block.



Example of Data Access

X      

Y     
A
B

x1

y1 

buffer
Buffer Block A 

Buffer Block B

input(A)

output(B) 
read(X)

write(Y)

disk

work area
of T1

work area
of T2 

memory

x2



Data Access (Cont.)
■  Each transaction Ti has its private work-area in which local 

copies of all data items accessed and updated by it are kept.
ê   Ti's local copy of a data item X is called xi.

■  Transferring data items between system buffer blocks and its 
private work-area done by:
ê  read(X) assigns the value of data item X to the local variable xi.
ê write(X) assigns the value of local variable xi to data item {X} in 

the buffer block.
ê Note: output(BX) need not immediately follow write(X). System 

can perform the output operation when it deems fit.

■  Transactions 
ê Must perform read(X) before accessing X for the first time 

(subsequent reads can be from local copy) 
ê write(X) can be executed at any time before the transaction 

commits



STEAL vs NO STEAL, FORCE vs NO FORCE

■  STEAL:
ê The buffer manager can steal a (memory) page from the database

Ø  ie., it can write an arbitrary page to the disk and use that page for 
something else from the disk

Ø  In other words, the database system doesn’t control the buffer 
replacement policy

ê Why a problem ?
Ø  The page might contain dirty writes, ie., writes/updates by a 

transaction that hasn’t committed
ê But, we must allow steal for performance reasons.

■  NO STEAL:
ê Not allowed. More control, but less flexibility for the buffer manager.



STEAL vs NO STEAL, FORCE vs NO FORCE

■  FORCE:
ê The database system forces all the updates of a transaction to disk 

before committing
ê Why ?

Ø  To make its updates permanent before committing
ê Why a problem ?

Ø  Most probably random I/Os, so poor response time and throughput
Ø  Interferes with the disk controlling policies

■  NO FORCE:
ê Don’t do the above. Desired.
ê Problem: 

Ø  Guaranteeing durability becomes hard
ê We might still have to force some pages to disk, but minimal.



STEAL vs NO STEAL, FORCE vs NO FORCE: 
Recovery implications

Force 

No Force 

No Steal Steal 

Desired

Trivial



STEAL vs NO STEAL, FORCE vs NO FORCE: 
Recovery implications

■  How to implement A and D when No Steal and Force ?
ê Only updates from committed transaction are written to disk (since 

no steal)
ê Updates from a transaction are forced to disk before commit (since 

force)
Ø  A minor problem: how do you guarantee that all updates from a 

transaction make it to the disk atomically ?
–  Remember we are only guaranteed an atomic block write
–  What if some updates make it to disk, and other don’t ?

Ø  Can use something like shadow copying/shadow paging

ê No atomicity/durability problem arise.



Terminology

■  Deferred Database Modification:
ê Similar to NO STEAL, NO FORCE

Ø  Not identical
ê Only need redos, no undos
ê We won’t cover this today

■  Immediate Database Modification:
ê Similar to STEAL, NO FORCE
ê Need both redos, and undos



Log-based Recovery

■  Most commonly used recovery method
■  Intuitively, a log is a record of everything the database system 

does
■  For every operation done by the database, a log record is 

generated and stored typically on a different (log) disk
■  <T1, START> 
■  <T2, COMMIT>
■  <T2, ABORT>
■  <T1, A, 100, 200>

ê T1 modified A; old value = 100, new value = 200



Log
■  Example transactions  T0 and T1 (T0 executes before T1):

T0:    read (A) T1 : read (C)
A: - A - 50        C:- C- 100
write (A)                      write (C)
read (B)
B:-  B + 50
write (B)

■  Log:



Log-based Recovery

■  Assumptions:
1.  Log records are immediately pushed to the disk as soon as they are 

generated
2.  Log records are written to disk in the order generated
3.  A log record is generated before the actual data value is updated
4.  Strict two-phase locking
ê  The first assumption can be relaxed
ê  As a special case, a transaction is considered committed only after the 

<T1, COMMIT> has been pushed to the disk

■  But, this seems like exactly what we are trying to avoid ??
ê  Log writes are sequential
ê  They are also typically on a different disk

■  Aside: LFS == log-structured file system



Log-based Recovery

■  Assumptions:
1.  Log records are immediately pushed to the disk as soon as they are 

generated
2.  Log records are written to disk in the order generated
3.  A log record is generated before the actual data value is updated
4.  Strict two-phase locking
ê  The first assumption can be relaxed
ê  As a special case, a transaction is considered committed only after the 

<T1, COMMIT> has been pushed to the disk

■  NOTE: As a result of assumptions 1 and 2, if data item A is updated, 
the log record corresponding to the update is always forced to the 
disk before data item A is written to the disk
ê  This is actually the only property we need; assumption 1 can be relaxed 

to just guarantee this (called write-ahead logging)



Using the log to abort/rollback

■  STEAL is allowed, so changes of a transaction may have made it 
to the disk

■  UNDO(T1):
ê Procedure executed to rollback/undo the effects of a transaction
ê E.g. 

Ø  <T1, START>
Ø  <T1, A, 200, 300>
Ø  <T1, B, 400, 300>
Ø  <T1, A, 300, 200>           [[ note: second update of A ]]
Ø  T1 decides to abort

ê Any of the changes might have made it to the disk



Using the log to abort/rollback

■  UNDO(T1):
ê Go backwards in the log looking for log records belonging to T1
ê Restore the values to the old values
ê NOTE: Going backwards is important.

Ø  A was updated twice
ê  In the example, we simply:

Ø  Restore A to 300
Ø  Restore B to 400
Ø  Restore A to 200

ê Write a log record <Ti , Xj,  V1> 
Ø  such log records are called compensation log records
Ø  <T1, A, 300>, <T1, B, 400>, <T1, A, 200>

ê Note: No other transaction better have changed A or B in the 
meantime
Ø  Strict two-phase locking 



Using the log to recover

■  We don’t require FORCE, so a change made by the committed 
transaction may not have made it to the disk before the system crashed
ê BUT, the log record did (recall our assumptions)

■  REDO(T1):
ê Procedure executed to recover a committed transaction
ê E.g.

Ø  <T1, START>
Ø  <T1, A, 200, 300>
Ø  <T1, B, 400, 300>
Ø  <T1, A, 300, 200>           [[ note: second update of A ]]
Ø  <T1, COMMIT>

ê By our assumptions, all the log records made it to the disk (since the 
transaction committed)

ê But any or none of the changes to A or B might have made it to disk



Using the log to recover

■  REDO(T1):
ê Go forwards in the log looking for log records belonging to T1
ê Set the values to the new values
ê NOTE: Going forwards is important.
ê  In the example, we simply:

Ø  Set A to 300
Ø  Set B to 300
Ø  Set A to 200



Idempotency

■  Both redo and undo are required to idempotent
ê F is idempotent, if F(x) = F(F(x)) = F(F(F(F(…F(x)))))

■  Multiple applications shouldn’t change the effect
ê This is important because we don’t know exactly what made it to the 

disk, and we can’t keep track of that
ê E.g. consider a log record of the type 

Ø  <T1, A, incremented by 100>
Ø  Old value was 200, and so new value was 300

ê But the on disk value might be 200 or 300 (since we have no control 
over the buffer manager)

ê So we have no idea whether to apply this log record or not
ê Hence, value based logging is used (also called physical), not 

operation based (also called logical)



Log-based recovery

■  Log is maintained

■  If during the normal processing, a transaction needs to abort
ê UNDO() is used for that purpose

■  If the system crashes, then we need to do recovery using both 
UNDO() and REDO()
ê Some transactions that were going on at the time of crash may not 

have completed, and must be aborted/undone
ê Some transaction may have committed, but their changes didn’t 

make it to disk, so they must be redone
ê Called restart recovery



■  Recovery from failure: Two phases
ê  Redo phase:  replay updates of all transactions, whether they 

committed, aborted, or are incomplete
ê  Undo phase: undo all incomplete transactions

■  Redo phase:
1.  Find last <checkpoint L> record, and set undo-list to L.

- If no checkpoint record, start at the beginning
2.  Scan forward from above <checkpoint L> record

1.  Whenever a  record <Ti, Xj,  V1,  V2> is found, redo it by writing 
V2  to Xj 

2.  Whenever a log record <Ti  start> is found, add Ti  to undo-list
3.  Whenever a log record <Ti  commit> or <Ti abort> is found, 

remove Ti  from undo-list

Recovery Algorithm (Cont.)



Recovery Algorithm (Cont.)
■  Undo phase: 

1.  Scan log backwards from end 
1.  Whenever a log record <Ti, Xj,  V1,  V2> is found where Ti is in 

undo-list perform same actions as for transaction rollback:
1.   perform undo by writing V1 to Xj.
2.  write a log record <Ti , Xj,  V1>

2.  Whenever a log record <Ti start> is found where Ti is in undo-
list, 
1.  Write a log record <Ti  abort> 
2.  Remove Ti  from undo-list

3.  Stop when undo-list is empty
●  i.e. <Ti start> has been found for every transaction in undo-

list
●  After undo phase completes, normal transaction processing can 

commence



Example of Recovery



Checkpointing

■  How far should we go back in the log while constructing redo and 
undo lists ??
ê  It is possible that a transaction made an update at the very 

beginning of the system, and that update never made it to disk
Ø  very very unlikely, but possible (because we don’t do force)

ê For correctness, we have to go back all the way to the beginning of 
the log

ê Bad idea !!

■  Checkpointing is a mechanism to reduce this



Checkpointing

■  Periodically, the database system writes out everything in the 
memory to disk
ê Goal is to get the database in a state that we know (not necessarily 

consistent state)
■  Steps:

ê Stop all other activity in the database system
ê Write out the entire contents of the memory to the disk 

Ø  Only need to write updated pages, so not so bad
Ø  Entire === all updates, whether committed or not

ê Write out all the log records to the disk
ê Write out a special log record to disk 

Ø  <CHECKPOINT LIST_OF_ACTIVE_TRANSACTIONS>
Ø  The second component is the list of all active transactions in the 

system right now
ê Continue with the transactions again



Restart Recovery w/ checkpoints

■  Key difference: Only need to go back till the last checkpoint
■  Steps:

ê  undo_list:
Ø  Go back till the checkpoint as before. 
Ø  Add all the transactions that were active at that time, and that 

didn’t commit
–  e.g. possible that a transactions started before the 

checkpoint, but didn’t finish till the crash
ê  redo_list: 

Ø  Similarly, go back till the checkpoint constructing the redo_list
Ø  Add all the transactions that were active at that time, and that did 

commit
ê Do UNDOs and REDOs as before 



Recap so far …

■  Log-based recovery
ê Uses a log to aid during recovery

■  UNDO()
ê Used for normal transaction abort/rollback, as well as during restart 

recovery

■  REDO()
ê Used during restart recovery 

■  Checkpoints
ê Used to reduce the restart recovery time



Write-ahead logging

■  We assumed that log records are written to disk as soon as 
generated
ê Too restrictive

■  Write-ahead logging:
ê Before an update on a data item (say A) makes it to disk, the log 

records referring to the update must be forced to disk
ê How ?

Ø  Each log record has a log sequence number (LSN)
–  Monotonically increasing

Ø  For each page in the memory, we maintain the LSN of the last log 
record that updated a record on this page
–  pageLSN

Ø  If a page P is to be written to disk, all the log records till 
pageLSN(P) are forced to disk



Write-ahead logging

■  Write-ahead logging (WAL) is sufficient for all our purposes
ê All the algorithms discussed before work

■  Note the special case: 
ê A transaction is not considered committed, unless the <T, commit> 

record is on disk



Other issues

■  The system halts during checkpointing
ê Not acceptable
ê Advanced recovery techniques allow the system to continue 

processing while checkpointing is going on

■  System may crash during recovery
ê Our simple protocol is actually fine
ê  In general, this can be painful to handle

■  B+-Tree and other indexing techniques
ê Strict 2PL is typically not followed (we didn’t cover this)
ê So physical logging is not sufficient; must have logical logging



Other issues
■  ARIES: Considered the canonical description of log-based 

recovery
ê Used in most systems
ê Has many other types of log records that simplify recovery 

significantly

■  Loss of disk:
ê Can use a scheme similar to checkpoining to periodically dump the 

database onto tapes or optical storage
ê Techniques exist for doing this while the transactions are executing 

(called fuzzy dumps)

■  Shadow paging:
ê Read up



Recap

■  STEAL vs NO STEAL, FORCE vs NO FORCE
ê We studied how to do STEAL and NO FORCE through log-based 

recovery scheme

Force 

No Force 

No Steal Steal 

Desired

Trivial Force 

No Force 

No Steal Steal 

REDO
UNDO

NO REDO
NO UNDO

NO REDO
UNDO

REDO
NO UNDO



Recap

■  ACID Properties
ê Atomicity and Durability :

Ø  Logs, undo(), redo(), WAL etc

ê Consistency and Isolation:
Ø  Concurrency schemes

ê Strong interactions:
Ø  We had to assume Strict 2PL for proving correctness of recovery


