
Parallel Databases; Map-
Reduce

Amol Deshpande  
CMSC424

©Silberschatz, Korth and Sudarshan17.2Database System Concepts - 6th EditionDatabase System Concepts - 6th Edition

Client-Server Systems

■  Database functionality can be divided into:
●  Back-end: manages access structures, query evaluation and

optimization, concurrency control and recovery.
●  Front-end: consists of tools such as forms, report-writers, and

graphical user interface facilities.
■  The interface between the front-end and the back-end is through SQL or

through an application program interface.

SQL user
interface

forms
interface

report
generation

tools

data mining
and analysis

tools

SQL engine

front end

interface
(SQL API)

back end

client client client client

server

network

Parallel Databases

■  Why ?
ê More transactions per second, or less time per query
ê Throughput vs. Response Time
ê Speedup vs. Scaleup

■  Database operations are embarrassingly parallel
ê E.g. Consider a join between R and S on R.b = S.b

■  But, perfect speedup doesn’t happen
ê Start-up costs
ê  Interference
ê Skew

©Silberschatz, Korth and Sudarshan17.4Database System Concepts - 6th EditionDatabase System Concepts - 6th Edition

Parallel Systems

■  Parallel database systems consist of multiple processors and multiple
disks connected by a fast interconnection network.

■  A coarse-grain parallel machine consists of a small number of
powerful processors

■  A massively parallel or fine grain parallel machine utilizes
thousands of smaller processors.

■  Two main performance measures:
●  throughput --- the number of tasks that can be completed in a

given time interval
●  response time --- the amount of time it takes to complete a single

task from the time it is submitted

©Silberschatz, Korth and Sudarshan17.5Database System Concepts - 6th EditionDatabase System Concepts - 6th Edition

Speed-Up and Scale-Up
■  Speedup: a fixed-sized problem executing on a small system is given

to a system which is N-times larger.
●  Measured by:
 speedup = small system elapsed time
 large system elapsed time
●  Speedup is linear if equation equals N.

■  Scaleup: increase the size of both the problem and the system
●  N-times larger system used to perform N-times larger job
●  Measured by:
 scaleup = small system small problem elapsed time
 big system big problem elapsed time
●  Scale up is linear if equation equals 1.

©Silberschatz, Korth and Sudarshan17.6Database System Concepts - 6th EditionDatabase System Concepts - 6th Edition

Speedup

linear speedup

sublinear speedup

resources

sp
ee

d

©Silberschatz, Korth and Sudarshan17.7Database System Concepts - 6th EditionDatabase System Concepts - 6th Edition

Scaleup

linear scaleup

sublinear scaleup

problem size

TS
TL

©Silberschatz, Korth and Sudarshan17.8Database System Concepts - 6th EditionDatabase System Concepts - 6th Edition

Factors Limiting Speedup and Scaleup

Speedup and scaleup are often sublinear due to:
■  Startup costs: Cost of starting up multiple processes may dominate

computation time, if the degree of parallelism is high.
■  Interference: Processes accessing shared resources (e.g., system

bus, disks, or locks) compete with each other, thus spending time
waiting on other processes, rather than performing useful work.

■  Skew: Increasing the degree of parallelism increases the variance in
service times of parallely executing tasks. Overall execution time
determined by slowest of parallely executing tasks.

Parallel Databases

■  Shared-nothing vs. shared-memory vs. shared-disk

Parallel Databases

Distributed
transactions are
complicated
(deadlock
detection etc);

Transactions
complicated;
natural fault-
tolerance.

Cache-coherency
an issue

Notes

Main use

Scalability ?

Communication
between
processors

EverywhereNot used very
often

Low degrees of
parallelism

Very very
scalable

Not very scalable
(disk interconnect
is the bottleneck)

Not beyond 32 or
64 or so (memory
bus is the
bottleneck)

Over a LAN, so
slowest

Disk interconnect
is very fast

Extremely fast

Shared NothingShared DiskShared Memory

Distributed Systems
■  Over a wide area network
■  Typically not done for performance reasons

ê  For that, use a parallel system

■  Done because of necessity
ê  Imagine a large corporation with offices all over the world
ê  Also, for redundancy and for disaster recovery reasons

■  Lot of headaches
ê  Especially if trying to execute transactions that involve data from multiple sites

Ø  Keeping the databases in sync
–  2-phase commit for transactions uniformly hated

Ø  Autonomy issues
–  Even within an organization, people tend to be protective of their unit/

department
Ø  Locks/Deadlock management

ê  Works better for query processing
Ø  Since we are only reading the data

MapReduce Framework
■  Provides a fairly restricted, but still powerful abstraction for programming

■  Programmers write a pipeline of functions, called map or reduce
ê map programs

Ø  inputs: a list of “records” (record defined arbitrarily – could be images,
genomes etc…)

Ø  output: for each record, produce a set of “(key, value)” pairs

ê  reduce programs
Ø  input: a list of “(key, {values})” grouped together from the mapper
Ø  output: whatever

ê Both can do arbitrary computations on the input data as long as the basic
structure is followed

MapReduce Framework
input files mappers intermediate

files
reducers output

files

Word Count Example

for a rewrite of our production indexing system. Sec-
tion 7 discusses related and future work.

2 Programming Model

The computation takes a set of input key/value pairs, and
produces a set of output key/value pairs. The user of
the MapReduce library expresses the computation as two
functions: Map and Reduce.
Map, written by the user, takes an input pair and pro-
duces a set of intermediate key/value pairs. The MapRe-
duce library groups together all intermediate values asso-
ciated with the same intermediate key I and passes them
to the Reduce function.
The Reduce function, also written by the user, accepts
an intermediate key I and a set of values for that key. It
merges together these values to form a possibly smaller
set of values. Typically just zero or one output value is
produced per Reduce invocation. The intermediate val-
ues are supplied to the user’s reduce function via an iter-
ator. This allows us to handle lists of values that are too
large to fit in memory.

2.1 Example
Consider the problem of counting the number of oc-
currences of each word in a large collection of docu-
ments. The user would write code similar to the follow-
ing pseudo-code:

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));

The map function emits each word plus an associated
count of occurrences (just ‘1’ in this simple example).
The reduce function sums together all counts emitted
for a particular word.
In addition, the user writes code to fill in a mapreduce
specification object with the names of the input and out-
put files, and optional tuning parameters. The user then
invokes the MapReduce function, passing it the specifi-
cation object. The user’s code is linked together with the
MapReduce library (implemented in C++). Appendix A
contains the full program text for this example.

2.2 Types

Even though the previous pseudo-code is written in terms
of string inputs and outputs, conceptually the map and
reduce functions supplied by the user have associated
types:
map (k1,v1) → list(k2,v2)
reduce (k2,list(v2)) → list(v2)

I.e., the input keys and values are drawn from a different
domain than the output keys and values. Furthermore,
the intermediate keys and values are from the same do-
main as the output keys and values.
Our C++ implementation passes strings to and from
the user-defined functions and leaves it to the user code
to convert between strings and appropriate types.

2.3 More Examples

Here are a few simple examples of interesting programs
that can be easily expressed as MapReduce computa-
tions.

Distributed Grep: The map function emits a line if it
matches a supplied pattern. The reduce function is an
identity function that just copies the supplied intermedi-
ate data to the output.

Count of URL Access Frequency: The map func-
tion processes logs of web page requests and outputs
⟨URL,1⟩. The reduce function adds together all values
for the same URL and emits a ⟨URL,total count⟩
pair.

Reverse Web-Link Graph: The map function outputs
⟨target,source⟩ pairs for each link to a target
URL found in a page named source. The reduce
function concatenates the list of all source URLs as-
sociated with a given target URL and emits the pair:
⟨target, list(source)⟩

Term-Vector per Host: A term vector summarizes the
most important words that occur in a document or a set
of documents as a list of ⟨word, frequency⟩ pairs. The
map function emits a ⟨hostname,term vector⟩
pair for each input document (where the hostname is
extracted from the URL of the document). The re-
duce function is passed all per-document term vectors
for a given host. It adds these term vectors together,
throwing away infrequent terms, and then emits a final
⟨hostname,term vector⟩ pair.

To appear in OSDI 2004 2

MapReduce Framework: Word Count
input files mappers intermediate

files
reducers

(a, 8)
(c, 5)

output
files

a b a c d b

b c d a a a

a b a b a b

c c c c c

(a, 1)
(a, 1)
(c, 1)
(a, 1)
(a, 1)
(a, 1)

…

(a, 1)
(b, 1)
(a, 1)
(c, 1)
(d, 1)
(b, 1)

(b, 1)
(d, 1)
(b, 1)
(b, 1)
(d, 1)
(b, 1)

…

(b, 6)
(d, 2)

More Efficient Word Count
input files mappers intermediate

files
reducers

(a, 8)
(c, 5)

output
files

a b a c d b

b c d a a a

a b a b a b

c c c c c

(a, 2)
(a, 3)
(c, 1)
(c, 5)

(a, 2)
(b, 2)
(c, 1)
(d, 1)

…

(b, 6)
(d, 2)

Called “mapper-side” combiner

©Silberschatz, Korth and Sudarshan18.17Database System Concepts - 6th Edition

Chapter 18: Parallel Databases

■  Introduction
■  I/O Parallelism
■  Interquery Parallelism
■  Intraquery Parallelism
■  Intraoperation Parallelism
■  Interoperation Parallelism
■  Design of Parallel Systems

©Silberschatz, Korth and Sudarshan18.18Database System Concepts - 6th Edition

Introduction

■  Parallel machines are becoming quite common and affordable
●  Prices of microprocessors, memory and disks have dropped

sharply
●  Recent desktop computers feature multiple processors and this

trend is projected to accelerate
■  Databases are growing increasingly large

●  large volumes of transaction data are collected and stored for later
analysis.

●  multimedia objects like images are increasingly stored in
databases

■  Large-scale parallel database systems increasingly used for:
●  storing large volumes of data
●  processing time-consuming decision-support queries
●  providing high throughput for transaction processing

©Silberschatz, Korth and Sudarshan18.19Database System Concepts - 6th Edition

Parallelism in Databases

■  Data can be partitioned across multiple disks for parallel I/O.
■  Individual relational operations (e.g., sort, join, aggregation) can be

executed in parallel
●  data can be partitioned and each processor can work

independently on its own partition.
■  Queries are expressed in high level language (SQL, translated to

relational algebra)
●  makes parallelization easier.

■  Different queries can be run in parallel with each other.
Concurrency control takes care of conflicts.

■  Thus, databases naturally lend themselves to parallelism.

©Silberschatz, Korth and Sudarshan18.20Database System Concepts - 6th Edition

I/O Parallelism

■  Reduce the time required to retrieve relations from disk by partitioning
■  The relations on multiple disks.
■  Horizontal partitioning – tuples of a relation are divided among many

disks such that each tuple resides on one disk.
■  Partitioning techniques (number of disks = n):

Round-robin:
Send the I th tuple inserted in the relation to disk i mod n.

Hash partitioning:
●  Choose one or more attributes as the partitioning attributes.
●  Choose hash function h with range 0…n - 1
●  Let i denote result of hash function h applied tothe partitioning

attribute value of a tuple. Send tuple to disk i.

©Silberschatz, Korth and Sudarshan18.21Database System Concepts - 6th Edition

I/O Parallelism (Cont.)

■  Partitioning techniques (cont.):
■  Range partitioning:

●  Choose an attribute as the partitioning attribute.
●  A partitioning vector [vo, v1, ..., vn-2] is chosen.
●  Let v be the partitioning attribute value of a tuple. Tuples such that

vi ≤ vi+1 go to disk I + 1. Tuples with v < v0 go to disk 0 and tuples
with v ≥ vn-2 go to disk n-1.

 E.g., with a partitioning vector [5,11], a tuple with partitioning
attribute value of 2 will go to disk 0, a tuple with value 8 will go to
disk 1, while a tuple with value 20 will go to disk2.

©Silberschatz, Korth and Sudarshan18.22Database System Concepts - 6th Edition

Comparison of Partitioning Techniques

■  Evaluate how well partitioning techniques support the following types
of data access:

 1. Scanning the entire relation.
 2. Locating a tuple associatively – point queries.

●  E.g., r.A = 25.
 3. Locating all tuples such that the value of a given attribute lies within

a specified range – range queries.
●  E.g., 10 ≤ r.A < 25.

©Silberschatz, Korth and Sudarshan18.23Database System Concepts - 6th Edition

Comparison of Partitioning Techniques (Cont.)

Round robin:
■  Advantages

●  Best suited for sequential scan of entire relation on each query.
●  All disks have almost an equal number of tuples; retrieval work is

thus well balanced between disks.
■  Range queries are difficult to process

●  No clustering -- tuples are scattered across all disks

©Silberschatz, Korth and Sudarshan18.24Database System Concepts - 6th Edition

Hash partitioning:
■  Good for sequential access

●  Assuming hash function is good, and partitioning attributes form a
key, tuples will be equally distributed between disks

●  Retrieval work is then well balanced between disks.
■  Good for point queries on partitioning attribute

●  Can lookup single disk, leaving others available for answering
other queries.

●  Index on partitioning attribute can be local to disk, making lookup
and update more efficient

■  No clustering, so difficult to answer range queries

Comparison of Partitioning Techniques (Cont.)

©Silberschatz, Korth and Sudarshan18.25Database System Concepts - 6th Edition

Comparison of Partitioning Techniques (Cont.)

■  Range partitioning:
■  Provides data clustering by partitioning attribute value.
■  Good for sequential access
■  Good for point queries on partitioning attribute: only one disk needs to

be accessed.
■  For range queries on partitioning attribute, one to a few disks may need

to be accessed
●  Remaining disks are available for other queries.
●  Good if result tuples are from one to a few blocks.
●  If many blocks are to be fetched, they are still fetched from one to a

few disks, and potential parallelism in disk access is wasted
! Example of execution skew.

©Silberschatz, Korth and Sudarshan18.26Database System Concepts - 6th Edition

Partitioning a Relation across Disks
■  If a relation contains only a few tuples which will fit into a single disk

block, then assign the relation to a single disk.
■  Large relations are preferably partitioned across all the available

disks.
■  If a relation consists of m disk blocks and there are n disks available in

the system, then the relation should be allocated min(m,n) disks.

©Silberschatz, Korth and Sudarshan18.27Database System Concepts - 6th Edition

Handling of Skew

■  The distribution of tuples to disks may be skewed — that is, some
disks have many tuples, while others may have fewer tuples.

■  Types of skew:
●  Attribute-value skew.

! Some values appear in the partitioning attributes of many
tuples; all the tuples with the same value for the partitioning
attribute end up in the same partition.

! Can occur with range-partitioning and hash-partitioning.
●  Partition skew.

! With range-partitioning, badly chosen partition vector may
assign too many tuples to some partitions and too few to
others.

! Less likely with hash-partitioning if a good hash-function is
chosen.

©Silberschatz, Korth and Sudarshan18.28Database System Concepts - 6th Edition

Handling Skew in Range-Partitioning

■  To create a balanced partitioning vector (assuming partitioning
attribute forms a key of the relation):
●  Sort the relation on the partitioning attribute.
●  Construct the partition vector by scanning the relation in sorted

order as follows.
! After every 1/nth of the relation has been read, the value of

the partitioning attribute of the next tuple is added to the
partition vector.

●  n denotes the number of partitions to be constructed.
●  Duplicate entries or imbalances can result if duplicates are

present in partitioning attributes.
■  Alternative technique based on histograms used in practice

©Silberschatz, Korth and Sudarshan18.29Database System Concepts - 6th Edition

Handling Skew using Histograms

■  Balanced partitioning vector can be constructed from histogram in a
relatively straightforward fashion
●  Assume uniform distribution within each range of the histogram

■  Histogram can be constructed by scanning relation, or sampling (blocks
containing) tuples of the relation

value

fr
eq

ue
nc

y

50

40

30

20

10

1–5 6–10 11–15 16–20 21–25

©Silberschatz, Korth and Sudarshan18.30Database System Concepts - 6th Edition

Handling Skew Using Virtual Processor
Partitioning

■  Skew in range partitioning can be handled elegantly using virtual
processor partitioning:
●  create a large number of partitions (say 10 to 20 times the number

of processors)
●  Assign virtual processors to partitions either in round-robin fashion

or based on estimated cost of processing each virtual partition
■  Basic idea:

●  If any normal partition would have been skewed, it is very likely
the skew is spread over a number of virtual partitions

●  Skewed virtual partitions get spread across a number of
processors, so work gets distributed evenly!

©Silberschatz, Korth and Sudarshan18.31Database System Concepts - 6th Edition

Interquery Parallelism

■  Queries/transactions execute in parallel with one another.
■  Increases transaction throughput; used primarily to scale up a

transaction processing system to support a larger number of
transactions per second.

■  Easiest form of parallelism to support, particularly in a shared-memory
parallel database, because even sequential database systems
support concurrent processing.

■  More complicated to implement on shared-disk or shared-nothing
architectures
●  Locking and logging must be coordinated by passing messages

between processors.
●  Data in a local buffer may have been updated at another

processor.
●  Cache-coherency has to be maintained — reads and writes of

data in buffer must find latest version of data.

©Silberschatz, Korth and Sudarshan18.32Database System Concepts - 6th Edition

Cache Coherency Protocol

■  Example of a cache coherency protocol for shared disk systems:
●  Before reading/writing to a page, the page must be locked in

shared/exclusive mode.
●  On locking a page, the page must be read from disk
●  Before unlocking a page, the page must be written to disk if it

was modified.
■  More complex protocols with fewer disk reads/writes exist.
■  Cache coherency protocols for shared-nothing systems are similar.

Each database page is assigned a home processor. Requests to
fetch the page or write it to disk are sent to the home processor.

©Silberschatz, Korth and Sudarshan18.33Database System Concepts - 6th Edition

Intraquery Parallelism

■  Execution of a single query in parallel on multiple processors/disks;
important for speeding up long-running queries.

■  Two complementary forms of intraquery parallelism:
●  Intraoperation Parallelism – parallelize the execution of each

individual operation in the query.
●  Interoperation Parallelism – execute the different operations in

a query expression in parallel.
 the first form scales better with increasing parallelism because  

the number of tuples processed by each operation is typically more
than the number of operations in a query.

©Silberschatz, Korth and Sudarshan18.34Database System Concepts - 6th Edition

Parallel Processing of Relational Operations

■  Our discussion of parallel algorithms assumes:
●  read-only queries
●  shared-nothing architecture
●  n processors, P0, ..., Pn-1, and n disks D0, ..., Dn-1, where disk Di is

associated with processor Pi.
■  If a processor has multiple disks they can simply simulate a single disk

Di.
■  Shared-nothing architectures can be efficiently simulated on shared-

memory and shared-disk systems.
●  Algorithms for shared-nothing systems can thus be run on shared-

memory and shared-disk systems.
●  However, some optimizations may be possible.

©Silberschatz, Korth and Sudarshan18.35Database System Concepts - 6th Edition

Parallel Sort

Range-Partitioning Sort
■  Choose processors P0, ..., Pm, where m ≤ n -1 to do sorting.
■  Create range-partition vector with m entries, on the sorting attributes
■  Redistribute the relation using range partitioning

●  all tuples that lie in the ith range are sent to processor Pi

●  Pi stores the tuples it received temporarily on disk Di.
●  This step requires I/O and communication overhead.

■  Each processor Pi sorts its partition of the relation locally.
■  Each processors executes same operation (sort) in parallel with other

processors, without any interaction with the others (data parallelism).
■  Final merge operation is trivial: range-partitioning ensures that, for 1 j

m, the key values in processor Pi are all less than the key values in Pj.

©Silberschatz, Korth and Sudarshan18.36Database System Concepts - 6th Edition

Parallel Sort (Cont.)

Parallel External Sort-Merge
■  Assume the relation has already been partitioned among disks D0, ...,

Dn-1 (in whatever manner).
■  Each processor Pi locally sorts the data on disk Di.
■  The sorted runs on each processor are then merged to get the final

sorted output.
■  Parallelize the merging of sorted runs as follows:

●  The sorted partitions at each processor Pi are range-partitioned
across the processors P0, ..., Pm-1.

●  Each processor Pi performs a merge on the streams as they are
received, to get a single sorted run.

●  The sorted runs on processors P0,..., Pm-1 are concatenated to get
the final result.

©Silberschatz, Korth and Sudarshan18.37Database System Concepts - 6th Edition

Parallel Join

■  The join operation requires pairs of tuples to be tested to see if they
satisfy the join condition, and if they do, the pair is added to the join
output.

■  Parallel join algorithms attempt to split the pairs to be tested over
several processors. Each processor then computes part of the join
locally.

■  In a final step, the results from each processor can be collected
together to produce the final result.

©Silberschatz, Korth and Sudarshan18.38Database System Concepts - 6th Edition

Partitioned Join

■  For equi-joins and natural joins, it is possible to partition the two input
relations across the processors, and compute the join locally at each
processor.

■  Let r and s be the input relations, and we want to compute r r.A=s.B s.
■  r and s each are partitioned into n partitions, denoted r0, r1, ..., rn-1 and

s0, s1, ..., sn-1.
■  Can use either range partitioning or hash partitioning.
■  r and s must be partitioned on their join attributes r.A and s.B), using

the same range-partitioning vector or hash function.
■  Partitions ri and si are sent to processor Pi,
■  Each processor Pi locally computes ri ri.A=si.B si. Any of the

standard join methods can be used.

©Silberschatz, Korth and Sudarshan18.39Database System Concepts - 6th Edition

Partitioned Join (Cont.)

P0r0

P1r1

s
r

P2r2

P3r3

s0

s1

s2

s3

...
...

...

.

.

.

.

.

.

.

.

©Silberschatz, Korth and Sudarshan18.40Database System Concepts - 6th Edition

Fragment-and-Replicate Join

■  Partitioning not possible for some join conditions
●  E.g., non-equijoin conditions, such as r.A > s.B.

■  For joins were partitioning is not applicable, parallelization can be
accomplished by fragment and replicate technique
●  Depicted on next slide

■  Special case – asymmetric fragment-and-replicate:
●  One of the relations, say r, is partitioned; any partitioning

technique can be used.
●  The other relation, s, is replicated across all the processors.
●  Processor Pi then locally computes the join of ri with all of s using

any join technique.

©Silberschatz, Korth and Sudarshan18.41Database System Concepts - 6th Edition

Depiction of Fragment-and-Replicate Joins

r0 P0,0

s0 s1 s2

s
s3 sm–1

r1

r r2

r3

rn–1
Pn–1,m–1

...

P0r0

P1r1
r s

P2r2

P3r3

...
...

P1,0

P2,0

P0,1

P1,1

P2,1

P0,2

P1,2

P0,3

. . .

.

.

.

.

.

.

(a) Asymmetric
fragment and replicate

(b) Fragment and replicate

©Silberschatz, Korth and Sudarshan18.42Database System Concepts - 6th Edition

Fragment-and-Replicate Join (Cont.)

■  General case: reduces the sizes of the relations at each processor.
●  r is partitioned into n partitions,r0, r1, ..., r n-1;s is partitioned into m

partitions, s0, s1, ..., sm-1.
●  Any partitioning technique may be used.
●  There must be at least m * n processors.
●  Label the processors as
●  P0,0, P0,1, ..., P0,m-1, P1,0, ..., Pn-1m-1.
●  Pi,j computes the join of ri with sj. In order to do so, ri is replicated

to Pi,0, Pi,1, ..., Pi,m-1, while si is replicated to P0,i, P1,i, ..., Pn-1,i

●  Any join technique can be used at each processor Pi,j.

©Silberschatz, Korth and Sudarshan18.43Database System Concepts - 6th Edition

Fragment-and-Replicate Join (Cont.)

■  Both versions of fragment-and-replicate work with any join condition,
since every tuple in r can be tested with every tuple in s.

■  Usually has a higher cost than partitioning, since one of the relations
(for asymmetric fragment-and-replicate) or both relations (for general
fragment-and-replicate) have to be replicated.

■  Sometimes asymmetric fragment-and-replicate is preferable even
though partitioning could be used.
●  E.g., say s is small and r is large, and already partitioned. It may

be cheaper to replicate s across all processors, rather than
repartition r and s on the join attributes.

©Silberschatz, Korth and Sudarshan18.44Database System Concepts - 6th Edition

Partitioned Parallel Hash-Join

Parallelizing partitioned hash join:
■  Assume s is smaller than r and therefore s is chosen as the build

relation.
■  A hash function h1 takes the join attribute value of each tuple in s and

maps this tuple to one of the n processors.
■  Each processor Pi reads the tuples of s that are on its disk Di, and

sends each tuple to the appropriate processor based on hash function
h1. Let si denote the tuples of relation s that are sent to processor Pi.

■  As tuples of relation s are received at the destination processors, they
are partitioned further using another hash function, h2, which is used
to compute the hash-join locally. (Cont.)

©Silberschatz, Korth and Sudarshan18.45Database System Concepts - 6th Edition

Partitioned Parallel Hash-Join (Cont.)

■  Once the tuples of s have been distributed, the larger relation r is
redistributed across the m processors using the hash function h1

●  Let ri denote the tuples of relation r that are sent to processor Pi.
■  As the r tuples are received at the destination processors, they are

repartitioned using the function h2
●  (just as the probe relation is partitioned in the sequential hash-join

algorithm).
■  Each processor Pi executes the build and probe phases of the hash-

join algorithm on the local partitions ri and s of r and s to produce a
partition of the final result of the hash-join.

■  Note: Hash-join optimizations can be applied to the parallel case
●  e.g., the hybrid hash-join algorithm can be used to cache some of

the incoming tuples in memory and avoid the cost of writing them
and reading them back in.

©Silberschatz, Korth and Sudarshan18.46Database System Concepts - 6th Edition

Parallel Nested-Loop Join

■  Assume that
●  relation s is much smaller than relation r and that r is stored by

partitioning.
●  there is an index on a join attribute of relation r at each of the

partitions of relation r.
■  Use asymmetric fragment-and-replicate, with relation s being

replicated, and using the existing partitioning of relation r.
■  Each processor Pj where a partition of relation s is stored reads the

tuples of relation s stored in Dj, and replicates the tuples to every other
processor Pi.
●  At the end of this phase, relation s is replicated at all sites that

store tuples of relation r.
■  Each processor Pi performs an indexed nested-loop join of relation s

with the ith partition of relation r.

©Silberschatz, Korth and Sudarshan18.47Database System Concepts - 6th Edition

Other Relational Operations

Selection σθ(r)
■  If θ is of the form ai = v, where ai is an attribute and v a value.

●  If r is partitioned on ai the selection is performed at a single
processor.

■  If θ is of the form l <= ai <= u (i.e., θ is a range selection) and the
relation has been range-partitioned on ai
●  Selection is performed at each processor whose partition overlaps

with the specified range of values.
■  In all other cases: the selection is performed in parallel at all the

processors. 

©Silberschatz, Korth and Sudarshan18.48Database System Concepts - 6th Edition

Other Relational Operations (Cont.)

■  Duplicate elimination
●  Perform by using either of the parallel sort techniques

!  eliminate duplicates as soon as they are found during sorting.
●  Can also partition the tuples (using either range- or hash-

partitioning) and perform duplicate elimination locally at each
processor. 

■  Projection
●  Projection without duplicate elimination can be performed as

tuples are read in from disk in parallel.
●  If duplicate elimination is required, any of the above duplicate

elimination techniques can be used. 

©Silberschatz, Korth and Sudarshan18.49Database System Concepts - 6th Edition

Grouping/Aggregation

■  Partition the relation on the grouping attributes and then compute the
aggregate values locally at each processor.

■  Can reduce cost of transferring tuples during partitioning by partly
computing aggregate values before partitioning.

■  Consider the sum aggregation operation:
●  Perform aggregation operation at each processor Pi on those

tuples stored on disk Di
!  results in tuples with partial sums at each processor.

●  Result of the local aggregation is partitioned on the grouping
attributes, and the aggregation performed again at each processor
Pi to get the final result.

■  Fewer tuples need to be sent to other processors during partitioning.

©Silberschatz, Korth and Sudarshan18.50Database System Concepts - 6th Edition

Cost of Parallel Evaluation of Operations
■  If there is no skew in the partitioning, and there is no overhead due to

the parallel evaluation, expected speed-up will be 1/n
■  If skew and overheads are also to be taken into account, the time

taken by a parallel operation can be estimated as
 Tpart + Tasm + max (T0, T1, …, Tn-1)
●  Tpart is the time for partitioning the relations
●  Tasm is the time for assembling the results
●  Ti is the time taken for the operation at processor Pi

!  this needs to be estimated taking into account the skew, and
the time wasted in contentions.

©Silberschatz, Korth and Sudarshan18.51Database System Concepts - 6th Edition

Interoperator Parallelism

■  Pipelined parallelism
●  Consider a join of four relations

!  r1 r2 r3 r4
●  Set up a pipeline that computes the three joins in parallel

! Let P1 be assigned the computation of  
temp1 = r1 r2

! And P2 be assigned the computation of temp2 = temp1 r3
! And P3 be assigned the computation of temp2 r4

●  Each of these operations can execute in parallel, sending result
tuples it computes to the next operation even as it is computing
further results
! Provided a pipelineable join evaluation algorithm (e.g., indexed

nested loops join) is used

©Silberschatz, Korth and Sudarshan18.52Database System Concepts - 6th Edition

Factors Limiting Utility of Pipeline
Parallelism

■  Pipeline parallelism is useful since it avoids writing intermediate
results to disk

■  Useful with small number of processors, but does not scale up well
with more processors. One reason is that pipeline chains do not
attain sufficient length.

■  Cannot pipeline operators which do not produce output until all
inputs have been accessed (e.g., aggregate and sort)

■  Little speedup is obtained for the frequent cases of skew in which
one operator's execution cost is much higher than the others.

©Silberschatz, Korth and Sudarshan18.53Database System Concepts - 6th Edition

Independent Parallelism

■  Independent parallelism
●  Consider a join of four relations

 r1 r2 r3 r4
! Let P1 be assigned the computation of  

temp1 = r1 r2
! And P2 be assigned the computation of temp2 = r3 r4
! And P3 be assigned the computation of temp1 temp2

! P1 and P2 can work independently in parallel
! P3 has to wait for input from P1 and P2

–  Can pipeline output of P1 and P2 to P3, combining
independent parallelism and pipelined parallelism

●  Does not provide a high degree of parallelism
! useful with a lower degree of parallelism.
!  less useful in a highly parallel system.

