
CMSC424: Database
Design

Instructor: Amol Deshpande
 amol@cs.umd.edu

Overview
User

select *
from R, S
where …

R, B+Tree on R.a
S, Hash Index on S.a

…

Results

Query Parser

Resolve the references,
Syntax errors etc.
Converts the query to an
internal format
 relational algebra like

Query Optimizer Find the best way to evaluate
the query
 Which index to use ?
 What join method to use ?
 …

Query Processor

Read the data from the files
Do the query processing
 joins, selections, aggregates
 …

Overview

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

“Cost”

l  Complicated to compute
l  Too many factors
l  Total resource consumptions vs response time

l  We will focus on disk:
l  Number of I/Os not sufficient by itself

l  Number of seeks matters a lot… why ?

l  tT – time to transfer one block

l  tS – time for one seek
l  Cost for b block transfers plus S seeks

 b * tT + S * tS

l  Measured in seconds

Query Processing

l  Overview
l  Selection operation
l  Join operators
l  Sorting
l  Other operators
l  Putting it all together…

Selection Operation

l  select * from person where SSN = “123”
l  Option 1: Sequential Scan

l  Read the relation start to end and look for “123”
l  Can always be used (not true for the other options)

l  Cost ?
l  Let br = Number of relation blocks
l  Then:

§  1 seek and br block transfers

l  So:
§  tS + br * tT sec

l  Improvements:
§  If SSN is a key, then can stop when found

§  So on average, br/2 blocks accessed

Selection Operation

l  select * from person where SSN = “123”

l  Option 2 : Binary Search:
l  Pre-condition:

l  The relation is sorted on SSN

l  Selection condition is an equality
§  E.g. can’t apply to “Name like ‘%424%’”

l  Do binary search

l  Cost of finding the first tuple that matches
§  ⎡log2(br)⎤ * (tT + tS)

§  All I/Os are random, so need a seek for all

§  The last few are closeby, but we ignore such small effects

l  Not quite: What if 10000 tuples match the condition ?

l  Incurs additional cost

Selection Operation

l  select * from person where SSN = “123”

l  Option 3 : Use Index
l  Pre-condition:

l  An appropriate index must exist

l  Use the index

l  Find the first leaf page that contains the search key

l  Retrieve all the tuples that match by following the pointers
§  If primary index, the relation is sorted by the search key

§  Go to the relation and read blocks sequentially

§  If secondary index, must follow all pointers using the index

Selection w/ B+-Tree Indexes

n * (tT + tS)
n = number of records
that match
This can be bad

hi * (tT + tS) secondary index, not a
key, equality

1 * (tT + tS) hi * (tT + tS) secondary index,
candidate key, equality

1 * (tT + tS) + (b – 1) * tT

Note: primary == sorted
b = number of pages that
contain the matches

hi * (tT + tS) primary index, not a key,
equality

1 * (tT + tS) hi * (tT + tS) primary index, candidate
key, equality

cost of retrieving
the tuples

cost of finding the
first leaf

hi = height of the index

