
Instructor:	 Amol	 Deshpande	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 amol@cs.umd.edu	

}  Storage	 and	 Query	 Processing	
◦  Record	 storage;	 Indexes	

}  Other	 things	
◦  ELMS	 Dummy	 Assignment	
�  Upload	 a	 PDF	
◦  Project	 3:	 due	 this	 Friday	
�  Make	 sure	 to	 go	 through	 the	 Notebook	 on	 EXPLAIN	

◦  No	 laptop	 use	 in	 class	 (without	 permission)	 !!	

l  Data	 Models	
l  Conceptual	 representaPon	 of	 the	 data	

l  Data	 Retrieval	
l  How	 to	 ask	 quesPons	 of	 the	 database	
l  How	 to	 answer	 those	 quesPons	

l  Data	 Storage	
l  How/where	 to	 store	 data,	 how	 to	 access	 it	

l  Data	 Integrity	
l  Manage	 crashes,	 concurrency	
l  Manage	 semanPc	 inconsistencies	

Databases

Query Processing/Storage

Space Management on
Persistent Storage (e.g., Disks)

Buffer Management

Query Processing Engine

•  Storage hierarchy
•  How are relations mapped to files?
•  How are tuples mapped to disk blocks?

•  Bringing pages from disk to memory
•  Managing the limited memory

•  Given a input user query, decide
how to “execute” it

•  Specify sequence of pages to be
brought in memory

•  Operate upon the tuples to produce
results

user query

page
requests

block
requests

results

pointers
to pages

data

Outline

l  Storage hierarchy
l  Disks
l  RAID
l  File Organization
l  Etc….

RAID

l  Redundant array of independent disks
l  Goal:

l  Disks are very cheap
l  Failures are very costly
l  Use “extra” disks to ensure reliability

l  If one disk goes down, the data still survives
l  Also allows faster access to data

l  Many raid “levels”
l  Different reliability and performance properties

RAID Levels

(b) Make a copy of the disks.
 If one disk goes down, we have a copy.
 Reads: Can go to either disk, so higher data rate possible.
 Writes: Need to write to both disks.

(a) No redundancy.

RAID Levels

(c) Memory-style Error Correcting
 Keep extra bits around so we can reconstruct.

 Superceeded by below.

(d) One disk contains “parity” for the main data disks.

 Can handle a single disk failure.
 Little overhead (only 25% in the above case).

RAID Level 5

l  Distributed parity “blocks” instead of bits
l  Subsumes Level 4
l  Normal operation:

l  “Read” directly from the disk. Uses all 5 disks
l  “Write”: Need to read and update the parity block

l  To update 9 to 9’
§  read 9 and P2
§  compute P2’ = P2 xor 9 xor 9’
§  write 9’ and P2’

RAID Level 5

l  Failure operation (disk 3 has failed)
l  “Read block 0”: Read it directly from disk 2
l  “Read block 1” (which is on disk 3)

l  Read P0, 0, 2, 3 and compute 1 = P0 xor 0 xor 2 xor 3
l  “Write”:

l  To update 9 to 9’
§  read 9 and P2

§  Oh… P2 is on disk 3
§  So no need to update it

§  Write 9’

Choosing a RAID level

l  Main choice between RAID 1 and RAID 5
l  Level 1 better write performance than level 5

l  Level 5: 2 block reads and 2 block writes to write a single block
l  Level 1: only requires 2 block writes
l  Level 1 preferred for high update environments such as log disks

l  Level 5 lower storage cost
l  Level 1 60% more disks
l  Level 5 is preferred for applications with low update rate,

and large amounts of data

Outline

l  Storage hierarchy
l  Disks
l  RAID
l  Buffer Manager
l  File Organization
l  Indexes…

Query Processing/Storage

Space Management on
Persistent Storage (e.g., Disks)

Buffer Management

Query Processing Engine

•  Storage hierarchy
•  How are relations mapped to files?
•  How are tuples mapped to disk blocks?

•  Bringing pages from disk to memory
•  Managing the limited memory

•  Given a input user query, decide
how to “execute” it

•  Specify sequence of pages to be
brought in memory

•  Operate upon the tuples to produce
results

user query

page
requests

block
requests

results

pointers
to pages

data

Buffer Manager

l  When the QP wants a block, it asks the “buffer manager”
l  The block must be in memory to operate upon

l  Buffer manager:
l  If block already in memory: return a pointer to it
l  If not:

l  Evict a current page

§  Either write it to temporary storage,
§  or write it back to its original location,

§  or just throw it away (if it was read from disk, and not modified)

l  and make a request to the storage subsystem to fetch it

Buffer Manager

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

Buffer Manager

l  Similar to virtual memory manager

l  Buffer replacement policies
l  What page to evict ?

l  LRU: Least Recently Used
l  Throw out the page that was not used in a long time

l  MRU: Most Recently Used
l  The opposite

l  Why ?

l  Clock ?
l  An efficient implementation of LRU

Buffer Manager

l  Pinning a block
l  Not allowed to write back to the disk

l  Force-output (force-write)
l  Force the contents of a block to be written to disk

l  Order the writes
l  This block must be written to disk before this block

l  Critical for fault tolerant guarantees
l  Otherwise the database has no control over whats on disk

and whats not on disk

Outline

l  Storage hierarchy
l  Disks
l  RAID
l  Buffer Manager
l  File Organization
l  Etc….

File Organization

l  How are the relations mapped to the disk blocks ?
l  Use a standard file system ?

l  High-end systems have their own OS/file systems
l  OS interferes more than helps in many cases

l  Mapping of relations to file ?
l  One-to-one ?
l  Advantages in storing multiple relations clustered together

l  A file is essentially a collection of disk blocks
l  How are the tuples mapped to the disk blocks ?
l  How are they stored within each block

File Organization

l  Goals:
l  Allow insertion/deletions of tuples/records
l  Fetch a particular record (specified by record id)

l  Find all tuples that match a condition (say SSN = 123) ?

l  Simplest case
l  Each relation is mapped to a file
l  A file contains a sequence of records

l  Each record corresponds to a logical tuple

l  Next:
l  How are tuples/records stored within a block ?

Fixed Length Records

l  n = number of bytes per record
l  Store record i at position:

l  n * (i – 1)
l  Records may cross blocks

l  Not desirable
l  Stagger so that that doesn’t happen

l  Inserting a tuple ?
l  Depends on the policy used
l  One option: Simply append at the end

of the record

l  Deletions ?
l  Option 1: Rearrange
l  Option 2: Keep a free list and use for

next insert

Fixed Length Records

l  Deleting: using “free lists”

Variable-length Records

l  Indirection:
l  The records may move inside the page, but the outside world is oblivious to it
l  Why ?

l  The headers are used as a indirection mechanism
l  Record ID 1000 is the 5th entry in the page number X

Slotted page structure

File Organization

l  Which block of a file should a record go to ?
l  Anywhere ?

l  How to search for “SSN = 123” ?
l  Called “heap” organization

l  Sorted by SSN ?
l  Called “sequential” organization
l  Keeping it sorted would be painful
l  How would you search ?

l  Based on a “hash” key
l  Called “hashing” organization
l  Store the record with SSN = x in the block number x%1000
l  Why ?

Sequential File Organization

l  Keep sorted by some search key

l  Insertion
l  Find the block in which the tuple should be

l  If there is free space, insert it
l  Otherwise, must create overflow pages

l  Deletions
l  Delete and keep the free space

l  Databases tend to be insert heavy, so free space gets used
fast

l  Can become fragmented
l  Must reorganize once in a while

Sequential File Organization

l  What if I want to find a particular record by value ?

l  Account info for SSN = 123

l  Binary search

l  Takes log(n) number of disk accesses
l  Random accesses

l  Too much
l  n = 1,000,000,000 -- log(n) = 30

l  Recall each random access approx 10 ms

l  300 ms to find just one account information

l  < 4 requests satisfied per second

Outline

l  Storage hierarchy
l  Disks
l  RAID
l  Buffer Manager
l  File Organization
l  Indexes
l  Etc…

Index

l  A data structure for efficient search through large databaess
l  Two key ideas:

l  The records are mapped to the disk blocks in specific ways
l  Sorted, or hash-based

l  Auxiliary data structures are maintained that allow quick search
l  Think library index/catalogue
l  Search key:

l  Attribute or set of attributes used to look up records
l  E.g. SSN for a persons table

l  Two types of indexes
l  Ordered indexes
l  Hash-based indexes

Ordered Indexes

l  Primary index
l  The relation is sorted on the search key of the index

l  Secondary index
l  It is not

l  Can have only one primary index on a relation

Relation
Index

Primary Sparse Index

l  Every key doesn’t have to appear in the index
l  Allows for very small indexes

l  Better chance of fitting in memory
l  Tradeoff: Must access the relation file even if the record is not

present

