
What you need to know about the “stored program”
model

CMSC 122

CMSC 122 What you need to know about the “stored program” model 1 / 8

Outline

1 Introduction
Overview of the Stored Program Model
Using JavaScript to manipulate locations

CMSC 122 What you need to know about the “stored program” model 2 / 8

Introduction Overview of the Stored Program Model

What is the “stored program model?”

Informally, a mathematical model offered by John von Neumann as a
description of a machine capable of storing and performing
algorithms–or computer programs.

Refresh your understanding: what is a an algorithm/program?

A finite sequence of “instructions;”
Well-defined criteria for success;
Expressible (explainable) to the computer—meaning that the problem
can be represented in some formal language.
Solution must be obtainable in an “acceptable” amount of time and
space.

Computer programs are machine-executable interpretations of
algorithms.

CMSC 122 What you need to know about the “stored program” model 3 / 8

Introduction Overview of the Stored Program Model

How do we express programs and related elements?

Some language that must be translatable into a language that the
“machine” understands.

But, what does “work” or “the solution” look like?

Informally, the “program” transforms the “data” into something that
looks like a solution.

But where does this transformation take place? Where does “data”
live?

CMSC 122 What you need to know about the “stored program” model 4 / 8

Introduction Overview of the Stored Program Model

Data & Program share “memory”

Data and Program reside in memory

This sounds like a simple statement, but it changed everything

For one thing, this meant that data and program were composed of
the same elements, i.e., bits.

So we needed a way to tell these apart: location! Interpret the data
starting at this location to mean this . . . , and

Thus, the “meaning” of any element (object) in storage is its
“location,” i.e., its address!

But, because programs can “write” (transform) data and programs
are data, programs can write programs. (More on this later!)

CMSC 122 What you need to know about the “stored program” model 5 / 8

Introduction Using JavaScript to manipulate locations

How does this look in JavaScript?

Below are some typical JavaScript variable (and constant) declarations.

/* reserve a space for aVariableName */

var aVariableName;

/* reserve a space for aVariableName and

* store value in that space.

*/

var aVariableName = value; // assigns value to aVariableName

/* reserve space for a constant named aConstantName

* and set it to a value (that remains unchangable).

*/

const aConstantName = value; // assigns value to aConstantName

CMSC 122 What you need to know about the “stored program” model 6 / 8

Introduction Using JavaScript to manipulate locations

Some fine points here . . .

The biggest conceptual problem novices have with many programming
language is their use of the equals sign, =.

Variables (and constants) name “locations,” which are places in the
memory where values can be stored and retrieved.

But, the equals sign, =, commonly names a binary relation between
two objects that has certain properties (name these).

In JavaScript it is called an “assignment” and it means the result of
“storing” a value into a location. In “pseudo-code,” I write

aVariableName← value

to mean

aVariableName = value;

CMSC 122 What you need to know about the “stored program” model 7 / 8

Introduction Using JavaScript to manipulate locations

Pseudo-Code

I will often use “pseudo-code” to describe an algorithm, but I will
then follow-up with the JavaScript equivalent.

This is especially helpful when discussing/demonstrating location
operations, such as assignment.

Create an in-class example of storing values obtained from a user,
performing some transformations, storing those results, and displaying
this in a Browser window.

CMSC 122 What you need to know about the “stored program” model 8 / 8

	Introduction
	Overview of the Stored Program Model
	Using JavaScript to manipulate locations

