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1 Introduction and motivation

Strategies are the basic objects of study in a game-theoretic model. The standard inter-

pretation is that a strategy represents a player’s general plan of action. That is, player i’s

strategy describes the action that player i will choose whenever she is required to make a

decision according to the rules of the game.

Traditionally, game theorists have focused on identifying profiles of strategies that con-

stitute an “equilibrium” (e.g., the Nash equilibrium and its refinements). A typical game-

theoretic analysis runs as follows: Given a game G, there is an associated solution space SG

describing all the possible outcomes of G. In a one-shot game (called a strategic game; see

Section 2.1 for details), this is the set of all tuples of strategies (a tuple of strategies, one for

each player, is called a strategy profile).1 Abstractly, a solution for a game G is a subset
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1The assumption is that once each player settles on a strategy, this identifies a unique outcome of the

game. This is a simplifying assumption that can be dropped if necessary. However, for this chapter, it is

simpler to follow standard practice and identify the set of “outcomes” of a game with the set of all tuples of
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of the solution space SG. The subset of SG identified by a solution concept is intended to

represent the “rational outcomes” of the game G.

Suppose that S ⊆ SG is a solution for the game G. The elements of S are privileged

outcomes of G, but what, exactly, distinguishes them from the other outcomes in SG? The

standard approach is to require that for each profile in S, players should not have an incentive

to deviate from their prescribed strategy, given that the other players follow their own

prescribed strategies. This is an internal constraint on the elements of a solution set since

it requires that the strategies in a profile are related to each other in a particular way. This

chapter takes a different perspective on the above question by imposing a different constraint

on the profiles in S: Each player’s prescribed strategy should be “optimal” given her beliefs

about what the other players are going to do. This constraint is external since it refers to

the players’ “beliefs”, which are typically not part of the mathematical representation of the

game.

It is not hard to think of situations in which the internal and external constraints on

solution concepts discussed above are not jointly satisfied. The point is that players may

have very good reasons to believe that the other players are choosing certain strategies, and

so, they choose an optimal strategy based on these beliefs. There is no reason to expect

that the resulting choices will satisfy the above internal constraint unless one makes strong

assumptions about how the players’ beliefs are related.2 The external constraint on solution

concepts can be made more precise by taking a “Bayesian” perspective on game theory [40]:

In a game-theoretic situation, as in any situation of choice, the rational choice for a player is

actions.
2For example, one can assume that each player knows which strategies the other players are going to

choose. Robert Aumann and Adam Brandenburger use this assumption to provide an epistemic characteri-

zation of the Nash equilibrium [10].
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the one that maximizes expected utility with respect to a (subjective) probability measure

over the other players’ strategy choices. A sophisticated literature has developed around

this simple idea: it focuses on characterizing solution concepts in terms of what the players

know and believe about the other players’ strategy choices and beliefs (see, for example,

[7, 17, 54, 21] and [57] for a textbook presentation).

In this chapter, I shift the focus from beliefs about the other players’ choices to the under-

lying processes that lead (rational) players to adopt certain strategies. An early formulation

of this idea can found in John C. Harsanyi’s seminal paper [36], in which he introduced the

tracing procedure to select an equilibrium in any finite game:

The n players will find the solution s of a giving game G through an intellectual

process of convergent expectations, to be called the solution process....During this

process, they will continually and systematically modify [their] expectations—

until, at the end of this process, their expectations will come to converge on one

particular equilibrium point s in the game G. (original italics) [36, pg. 71]

The goal of the tracing procedure is to identify a unique Nash equilibrium in any finite

strategic game. The idea is to define a continuum of games in such a way that each of the

games has a unique Nash equilibrium. The tracing procedure identifies a path through this

space of games ending at a unique Nash equilibrium in the original game. Harsanyi thought

of this procedure as “being a mathematical formalization of the process by which rational

players coordinate their choices of strategies.”

Harsanyi, in collaboration with Reinhard Selten [37], turned these basic ideas into a beau-

tiful theory of equilibrium selection. This theory is now part of the standard education for

any game theorist. Nonetheless, it is not at all clear that this theory of equilibrium selection

is best interpreted as a formalization of the players’ processes of “rational deliberation” in
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game situations (see [66, pgs. 154 - 158] for a discussion of this point). In this chapter,

I will critically discuss three recent frameworks in which the players’ process of “rational

deliberation” takes center stage:

1. Brian Skyrms’ model of “dynamic deliberation,” in which players deliberate by cal-

culating their expected utility and then use this new information to recalculate their

probabilities about the states of the world and their expected utilities [66].

2. Robin Cubitt and Robert Sugden’s recent contribution that develops a “reasoning-

based expected utility” procedure for solving games (building on David Lewis’ “com-

mon modes of reasoning”) [26, 27].

3. Johan van Benthem et col.’s analysis of solution concepts as fixed-points of iterated

“(virtual) rationality announcements” [3, 13, 71, 73, 74].

Although the details of these frameworks are quite different, they share a common line

of thought: In contrast to classical game theory, solution concepts are no longer the basic

object of study. Instead, the “rational solutions” of a game are arrived at through a process

of “rational deliberation”. My goal in this chapter is to provide a (biased) overview of

some key technical and conceptual issues that arise when developing mathematical models

of players deliberating about what to do in a game situation.

2 Background

I assume that the reader is familiar with the basics of game theory (see [46] and [2] for concise

discussions of the key concepts, definitions and theorems) and formal models of knowledge

and belief (see [51, 72] for details). In this section, I introduce some key definitions in order

to fix notation.

4



2.1 Strategic games

A strategic game is a tuple 〈N, {Si}i∈N , {ui}i∈N〉 where N is a (finite) set of players;

for each i ∈ N , Si is a finite set (elements of which are called actions or strategies); and

for each i ∈ N , ui : Πi∈NSi → R is a utility function assigning real numbers to each

outcome of the game (i.e., tuples consisting of the choices for each player). Strategic games

represent situations in which each player makes a single decision, and all the players make

their decisions simultaneously. If s ∈ Πi∈NSi is a strategy profile, then write si for the ith

component of s and s−i for the sequence consisting of all components of s except for si (let

S−i denote all such sequences of strategies).

Recall from the introduction that the solution space SG for a game G is the set of all

outcomes of G. Since we identify the outcomes of a game with the set of strategy profiles,

we have SG = Πi∈NSi. This means that a “solution” to a strategic game is a distinguished

set of strategy profiles. In the remainder of this section, I will define some standard game-

and decision-theoretic notions that will be used throughout this chapter.

2.1.1 Mixed strategies

Let ∆(X) denote the set of probability measures over the finite3 set X. A mixed strategy

for player i, is an element mi ∈ ∆(Si). If mi ∈ ∆(Si) assigns probability 1 to an element

si ∈ Si, then mi is called a pure strategy (in such a case, I write si for mi). Mixed

strategies are incorporated into a game-theoretic analysis as follows. Suppose that G =

〈N, {Si}i∈N , {ui}i∈N〉 is a finite strategic game. The mixed extension of G is the strategic

game in which the strategies for player i are the mixed strategies in G (i.e., ∆(Si)), and the

utility for player i (denoted Ui) of the joint mixed strategy m ∈ Πi∈N∆(Si) is calculated in

3Recall that I am restricting attention to finite strategic games.
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the obvious way (let m(s) = m1(s1) ·m2(s2) · · ·mn(sn) for s ∈ Πi∈NSi):

Ui(m) =
∑

s∈Πi∈NSi

m(s) · ui(s).

Thus, the solution space of a mixed extension of the game G is the set Πi∈N∆(Si).

Mixed strategies play an important role in many game-theoretic analyses. However,

the interpretation of mixed strategies is controversial, as Ariel Rubinstein notes: “We are

reluctant to believe that our decisions are made at random. We prefer to be able to point

to a reason for each action we take. Outside of Las Vegas we do not spin roulettes.” [63, pg.

913]. For the purposes of this chapter, I will assume that players choose only pure strategies.

Mixed strategies do play a role in Section 3, where they describe each players’ beliefs about

what they will do (at the end of deliberation).

2.1.2 Nash equilibrium

The most well-known and extensively studied solution concept is the Nash equilibrium.

Let G = 〈N, {Si}i∈N , {ui}i∈N〉 be a finite strategic game. A mixed strategy profile m =

(m1, . . . ,mn) ∈ Πi∈N∆(Si) is a Nash equilibrium provided for all i ∈ N ,

Ui(m1, . . . ,mi, . . . ,mn) ≥ Ui(m1, . . . ,m
′
i, . . . ,mn), for all m′i ∈ ∆(Si).

This definition is an example of the internal constraint on solutions discussed in the

introduction. Despite its prominence in the game theory literature, the Nash equilibrium

faces many foundational problems [62]. For example, there are theoretical concerns about

what the players need to know in order to play their component of a Nash equilibrium [10, 56];

questions about how players choose among multiple Nash equilibria; and many experiments

purporting to demonstrate game-theoretic situations in which the player’s choices do not

form a Nash equilibrium. Nash equilibrium does not play an important role in this chapter.
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I focus, instead, on the outcomes of a game that can be reached through a process of “rational

deliberation”.

2.1.3 Iteratively removing strategies

A strategy s ∈ Si strictly dominates strategy s′ ∈ Si provided that

∀s−i ∈ S−i ui(s, s−i) > ui(s
′, s−i).

A strategy s ∈ Si weakly dominates strategy s′ ∈ Si provided that

∀s−i ∈ S−i ui(s, s−i) ≥ ui(s
′, s−i) and ∃s−i ∈ S−i ui(s, s−i) > ui(s

′, s−i).

More generally, the strategy s strictly/weakly dominates s′ with respect to a set X ⊆

S−i if S−i is replaced withX in the above definitions. 4 Suppose thatG = 〈N, {Si}i∈N , {ui}i∈N〉

and G′ = 〈N, {S ′i}i∈N , {u′i}i∈N〉 are strategic games. The game G′ is a restriction of G pro-

vided that for each i ∈ N , S ′i ⊆ Si and u′i is the restriction of ui to Πi∈NS
′
i. To simplify

notation, write Gi for the set of strategies for player i in game G. Strict and weak domi-

nance can be used to reduce a strategic game. Write H −→SD H ′ whenever H 6= H ′, H ′ is

a restriction of H and

∀i ∈ N, ∀si ∈ Hi \H ′i ∃s′i ∈ Hi si is strictly dominated in H by s′i

So, if H −→SD H ′, then H ′ is the result of removing some of the strictly dominated strategies

from H. We can iterate this process of removing strictly dominated strategies. Formally,

4Furthermore, the definitions of strict and weak dominance can be extended so that strategies may be

strictly/weakly dominated by mixed strategies. This is important for the epistemic analysis of iterative

removal of strictly/weakly dominated strategies. However, for my purposes in this chapter, I can stick with

the simpler definition in terms of pure strategies.
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H is the result of iteratively removing strictly dominated strategies (IESDS) provided that

G −→∗SD H, where −→∗ is the reflexive transitive closure5 of a relation −→.

The above definition can be easily adapted to other choice rules, such as weak dominance.

Let −→WD denote the relation between games defined as above using weak dominance

instead of strict dominance. 6 Furthermore, the above definition of iterated removal of

strictly/weakly dominated strategies can be readily adapted to the mixed extensions of a

strategic game.

There are a number of ways to interpret the iterative process of removing strategies,

defined above. The first is that it is an algorithm that a game theorist can use to find an

equilibrium in a game. The second interpretation views the successive steps of the removal

process as corresponding to the players’ higher-order beliefs (i.e., player i believes that player

j believes that player i believes that...that player i will not play such-and-such strategy).

Finally, the third interpretation is that the iterative process of removing strategies tracks the

“back-and-forth reasoning” players engage in as they decide what to do in a game situation

(i.e., if player i does not play such-and-such a strategy, then player j will not play such-and-

such a strategy, and so on).

2.1.4 Bayesian rationality

In this chapter, I am interested not only in solutions to a game, but also what the players

believe about the outcomes of a game. Let G = 〈N, {Si}i∈N , {ui}i∈N〉 be a strategic game. A

5The reflexive transitive closure of a relation R is the smallest relation R∗ containing R that is reflexive

and transitive.
6Some interesting issues arise here: It is well-known that, unlike with strict dominance, different orders

in which weakly dominated strategies are removed can lead to different outcomes. Let us set aside these

issues in this chapter.
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probability measure π ∈ ∆(S−i) is called a conjecture for player i. The expected utility

of s ∈ Si for player i with respect to π ∈ ∆(S−i) is:

EUπ(s) =
∑

σ−i∈S−i

π(σ−i) · ui(s, σ−i).

We say that s ∈ Si maximizes expected utility with respect to π ∈ ∆(S−i), denoted

MEU(s, π), if for all s′ ∈ Si, EUπ(s) ≥ EUπ(s′).

∗ ∗ ∗ ∗ ∗ ∗ ∗

One conclusion to draw from the discussion in this section is that much can be said

about the issues raised in this chapter using standard game-theoretic notions. Indeed, it is

standard for a game theorist to distinguish between the ex ante and ex interim stages of

decision making. 7 In the former, the players have not yet decided what strategy they will

choose, while, in the latter, the players know their own choices but not their opponents’.

However, the process by which the players form their beliefs in the ex interim stage is typically

not discussed. The frameworks discussed in the remainder of this chapter are focused on

making this process explicit.

2.2 Game models

A game model describes a particular play of the game and what the players think about the

other players. That is, a game model represents an “informational context” of a given play

of the game. This includes the “knowledge” the players have about the game situation and

what they think about the other players’ choices and beliefs. Researchers interested in the

foundations of decision theory, epistemic and doxastic logic and formal epistemology have

7There is also an ex post analysis when all choices are “out in the open,” and the only remaining uncer-

tainties are about what the other players are thinking.
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developed many different formal models to describe the variety of informational attitudes

important for assessing decision maker’s choices in a decision- or game-theoretic situation.

See [72] for an overview and pointers to the relevant literature. In this section, I present the

details of a logical framework that can be used to reason about the informational context of

a game.

Syntactic issues do not play an important role in this chapter. Nonetheless, I will give the

definition of truth for a relevant formal language, as it makes for a smoother transition from

the game theory literature to the literature on dynamic epistemic logic and iterated belief

change discussed in Section 5.1. Consult [51, 52, 72] for a discussion of the standard logical

questions about axiomatics, definability, decidability of the satisfiability problem, and so on.

2.2.1 Epistemic-plausibility models

Variants of the models presented in this section have been studied extensively by logicians

[70, 72, 12], game theorists [18], philosophers [45, 68] and computer scientists [20, 42]. The

models are intended to describe what the players know and believe about an outcome of the

game.

The first component of an epistemic-plausibility model is a nonempty set W of states

(also called worlds). Each state in a game model will be associated with an outcome of a

game G via a function σ, called the outcome map. So, for a state w, σ(w) is the element of

SG realized at state w. Let σi(w) denote the ith component of σ(w) (so, σi(w) is the strategy

played by i at state w). The atomic propositions are intended to describe different aspects of

the the outcomes of a game. For example, they could describe the specific action chosen by a

player or the utility assigned to the outcome by a given player. There are a number of ways

to make this precise. Perhaps the simplest is to introduce, for each player i and strategy
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a ∈ Si, an atomic proposition playi(a) intended to mean “player i is playing strategy a.” For

a game G = 〈N, {Si}i∈N , {ui}i∈N〉, let At(G) = {playi(a) | i ∈ N and a ∈ Si} be the set of

atomic propositions for the game G.

There are two additional components to an epistemic-plausibility model. The first is a

set of equivalence relations ∼i, one for each player. The intended reading of w ∼i v is that

“everything that i knows at w is true at v”. Alternatively, I will say that “player i does not

have enough information to distinguish state w from state v.”

The second component is a plausibility ordering for each player: a pre-order (reflexive

and transitive) w �i v that says “agent i considers world w at least as plausible as v.” As a

convenient notation, for X ⊆ W , set Min�i
(X) = {v ∈ X | v �i w for all w ∈ X }, the set

of minimal elements of X according to �i. This is the subset of X that agent i considers

the “most plausible”. Thus, while the ∼i partitions the set of possible worlds according to

i’s “hard information”, the plausibility ordering �i represents which of the possible worlds

agent i considers more likely (i.e., it represents i’s “soft information”).

Putting everything together, the definition of an epistemic-plausibility model is as follows:

Definition 2.1 Suppose that G = 〈N, {Si}i∈N , {ui}i∈N〉 is a strategic game. An epistemic-

plausibility model for G is a tuple M = 〈W, {∼i}i∈N , {�i}i∈N , σ〉 where W 6= ∅; for each

i ∈ N , ∼i⊆ W×W is an equivalence relation (each ∼i is reflexive: for each w ∈ W , w ∼i w;

transitive: for each w, v, u ∈ W , if w ∼i v and v ∼i u then w ∼i u; and Euclidean: for

each w, v, u ∈ W , if w ∼i v and w ∼i u, then v ∼i u); for each i ∈ N , �i is a well-founded

(every non-empty set of states has a minimal element)8 reflexive and transitive relation on

8Well-foundedness is only needed to ensure that for any set X, Min�i
(X) is nonempty. This is important

only when W is infinite – and there are ways around this in current logics. Moreover, the condition of

connectedness can also be lifted, but I use it here for convenience.
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W ; and σ is an outcome map. In addition, the following two conditions are imposed for all

w, v ∈ W :

1. if w �i v then w ∼i v (plausibility implies possibility), and

2. if w ∼i v then either w �i v or v �i w (locally-connected). /

Models without plausibility relations are called epistemic models.

Remark 2.2 Note that if w 6∼i v, then, since ∼i is symmetric, I also have v 6∼i w, and

so by property 1, w 6�i v and v 6�i w. Thus, I have the following equivalence: w ∼i v iff

w �i v or v �i w. In what follows, unless otherwise stated, I will assume that ∼i is defined

as follows: w ∼i v iff w �i v or v �i w.

For each strategic game G, let LKB(G) be the set of sentences generated by the following

grammar:9

ϕ := playi(a) | ¬ϕ | ϕ ∧ ψ | Bϕ
i ψ | Kiϕ

where i ∈ N and playi(a) ∈ At(G). The additional propositional connectives (→,↔,∨) are

defined as usual and the dual of Ki, denoted Li, is defined as follows: Liϕ := ¬Ki¬ϕ. The

intended interpretation of Kiϕ is “agent i knows that ϕ”. 10 The intended interpretation of

Bϕ
i ψ is “agent i believes ψ under the supposition that ϕ is true”.

Truth for formulas in LKB(G) is defined as usual. Let [w]i be the equivalence class of w

under ∼i. Then, local connectedness implies that �i totally orders [w]i, and well-foundedness

9There are other natural modal operators that can . See [51] for an overview and pointers to the relevant

literature.
10This is the standard interpretation of Kiϕ in the game theory literature. Whether this captures any

of the many different definitions of knowledge found in the epistemology literature is debatable. A better

reading of Kiϕ is “given all of the available evidence and everything i has observed, agent i is informed that

ϕ is true”.
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implies that Min�i
([w]i ∩X) is nonempty if [w]i ∩X 6= ∅.

Definition 2.3 (Truth for LKB(G)) Given an epistemic-plausibility model M = 〈W, {∼i

}i∈N , {�i}i∈N , σ〉. Truth for formulas from LKB(G) is defined recursively:

• M, w |= playi(a) iff σi(w) = a

• M, w |= ¬ϕ iff M, w 6|= ϕ

• M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

• M, w |= Kiϕ iff for all v ∈ W , if w ∼i v then M, v |= ϕ

• M, w |= Bϕ
i ψ iff for all v ∈Min�i

([w]i ∩ [[ϕ]]M), M, v |= ϕ

Thus, i believes ψ conditional on ϕ, Bϕ
i ψ, if i’s most plausible ϕ-worlds (i.e., the states

satisfying ϕ that i has not ruled out and considers most plausible) all satisfy ψ. Full belief

is defined as follows: Biϕ := B>ϕ. Then, the definition of plain belief is:

M, w |= Biϕ iff for each v ∈Min�i
([w]i), M, v |= ϕ.

I illustrate the above definition with the following coordination game:

Ann

Bob

l r

u 3, 3 0, 0

d 0, 0 1, 1

The epistemic-plausibility model below describes a possible configuration of ex ante beliefs

of the players (i.e., before the players have settled on a strategy): I draw an i-labeled arrow
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from v to w if w �i v (to keep minimize the clutter, I do not include all arrows; the remaining

arrows can be inferred by reflexivity and transitivity).

d, r

w1

u, r

w3

d, l

w2

u, l

w4

b

a

b

b

a

aa

a, b

Following the convention discussed in Remark 2.2, we have [w1]a = [w1]b = {w1, w2, w3, w4},

and so, neither Ann nor Bob knows how the game will end. Furthermore, both Ann and

Bob believe that they will coordinate with Ann choosing u and Bob choosing l:

Ba(playa(u) ∧ playb(l)) ∧Bb(playa(u) ∧ playb(l))

is true at all states. However, Ann and Bob do have different conditional beliefs. On the

one hand, Ann believes that their choices are independent; thus, she believes that playb(l) is

true even under the supposition that playa(d) is true (i.e., she continues to believe that Bob

will play l even if she decides to play d). On the other hand, Bob believes that their choices

are somehow correlated; thus, under the supposition that playb(r) is true, Bob believes that

Ann will choose d. Conditional beliefs describe an agent’s disposition to change her beliefs

in the presence of (perhaps surprising) evidence (cf. [43]).

2.2.2 Common knowledge and belief.

States in an epistemic-plausibility model not only represent the players’ beliefs about what

their opponents will do, but also their higher-order beliefs about what their opponents are

thinking. Both game theorists and logicians have extensively discussed different notions of
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knowledge and belief for a group, such as common knowledge and belief. These notions have

played a fundamental role in the analysis of distributed algorithms [34] and social interactions

[23]. In this section, I briefly recount the standard definition of common knowledge. 11

Consider the statement “Everyone in group X knows that ϕ.” With finitely many agents,

this can be easily defined in the epistemic language LKB:

KXϕ :=
∧
i∈X

Kiϕ,

where X ⊆ N is a finite set. The first nontrivial informational attitude for a group that

I study is common knowledge. If ϕ is common knowledge for the group G, then not only

does everyone in the group know that ϕ is true, but this fact is completely transparent to

all members of the group. Following [6], the idea is to define common knowledge of ϕ as the

following iteration of everyone knows operators:

ϕ ∧KNϕ ∧KNKNϕ ∧KNKNKNϕ ∧ · · ·

The above formula is an infinite conjunction and, so, is not a formula in our epistemic lan-

guage LKB (by definition, there can be, at most, finitely many conjunctions in any formula).

In order to express this, a modal operator CGϕ with the intended meaning “ϕ is common

knowledge among the group G” must be added to our modal language. Formally:

Definition 2.4 (Interpretation of CG) LetM = 〈W, {∼i}i∈N , V 〉 be an epistemic model 12

and w ∈ W . The truth of formulas of the form CXϕ is:

M, w |= CXϕ iff for all v ∈ W , if wRC
Xv then M, v |= ϕ

where RC
X := (

⋃
i∈X ∼i)∗ is the reflexive transitive closure of

⋃
i∈X ∼i.

11I assume that the formal definition of common knowledge is well-known to the reader. For more infor-

mation and pointers to the relevant literature, see [76, 30, 51, 75].
12The same definition will, of course, hold for epistemic-plausibility and epistemic-probability models.
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It is well-known that for any relation R on W , if wR∗v then there is a finite R-path starting

at w ending in v. Thus, M, w |= CXϕ iff every finite path for X from w ends with a state

satisfying ϕ.

This approach to defining common knowledge can be viewed as a recipe for defining

common (robust) belief. For example, suppose that wRB
i v iff v ∈ Min�i

([w]i), and define

RB
G to be the transitive closure13 of ∪i∈GRB

i . Then, common belief of ϕ, denoted CB
Gϕ, is

defined in the usual way:

M, w |= CB
Gϕ iff for each v ∈ W , if wRB

Gv then M, v |= ϕ.

A probabilistic variant of common belief was introduced in [49].

3 Reasoning to an equilibrium

Brian Skyrms presents a model of the players’ process of deliberation in a game in his

important book The Dynamics of Rational Deliberation [66]. In this section, I introduce and

discuss this model of deliberation, though the reader is referred to [66] for a full discussion

(see, also, [1, 39] for analyses of this model).

To simplify the exposition, I restrict attention to a two-person finite strategic game.

Everything discussed below can be extended to situations with more than two players14 and

to extensive games15. Suppose that G = 〈{a, b}, {Sa, Sb}, {ua, ub}〉 is a strategic game in

which Sa = {s1, . . . , sn} and Sb = {t1, . . . , tm} are the players’ strategies, and ua and ub

are utility functions. In the simplest case, deliberation is trivial: Each player calculates the

expected utility given her belief about what her opponent is going to do and then chooses

13Since beliefs need not be factive, I do not force RB
G to be reflexive.

14However, see [1] for interesting new issues that arise with more than two players.
15See [66], pgs. 44 - 52 and Chapter 5.
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the action that maximizes these expected utilities. One of Skyrms’ key insights is that this

calculation may be informative to the players, and if a player believes that there is any

possibility that the process of deliberation may ultimately lead her to a different decision,

then she will not act until her deliberation process has reached a stable state.16

Deliberation is understood as an iterative process that modifies the players’ opinions

about the strategies that they will choose (at the end of the deliberation). For each player,

a state of indecision is a probability measure on that player’s set of strategies—i.e., an

element of ∆(Si) for i = a, b. Note that each state of indecision is a mixed strategy. However,

the interpretation of the mixed strategies differs from the one discussed in Section 2.1. In this

model, the interpretation is that the state of indecision for a player i at any given stage of the

deliberation process is the mixed strategy that player i would choose if the player stopped

deliberating. It is the players’ states of indecision that evolve during the deliberation process.

Let pa ∈ ∆(Sa) and pb ∈ ∆(Sb) be states of indecision for a and b, respectively, and assume

that the states of indecision are common knowledge. One consequence of this assumption is

that the players can calculate the expected utilities of their strategies (using their opponent’s

state of indecision). For example, for sj ∈ Sa, we have

EUa(sj) =
∑
tk∈Sb

pb(tk)ui(sj, tk),

and similarly for b. The status quo is the expected utility of the current state of indecision:

SQa =
∑
sj∈Sa

pa(sj) · EUa(sj) SQb =
∑
tk∈Sb

pb(tk) · EUb(tk).

Once the expected utilities are calculated, the players modify their states of indecision so that

they believe more strongly that they will choose strategies with higher expected utility than

the status quo. Players can use various rules to update their states of indecision accordingly.

16See [66], Chapter 4.
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In general, any dynamical rule can be used so long as the rule seeks the good in the following

sense:

1. The rule raises the probability of a strategy only if that strategy has expected utility

greater than the status quo.

2. The rule raises the sum of the probabilities of all strategies with expected utility greater

than the status quo (if any).

Deliberation reaches a fixed-point when the dynamical rule no longer changes the state

of indecision. It is not hard to see that all dynamical rules that seek the good have, as

fixed-points, states of indecision in which the expected utility of the status quo is maximal.

To illustrate Skyrms’ model of deliberation with an example, I give the details of one of the

rules discussed in [66]:

Nash dynamics The covetability of a strategy s for player i is calculated as follows:

covi(s) = max(EUi(s)−SQi, 0). Then, Nash dynamics transform a probability p ∈ ∆(Si)

into a new probability p′ ∈ ∆(Si) as follows. For each s ∈ Si:

p′(s) =
k · p(s) + covi(s)

k +
∑

s∈Si
cov(s)

,

where k > 0 is the “index of caution” (the higher the k, the more slowly the decision maker

raises the probability of strategies that have higher expected utility than the status quo).

In addition to assuming that the initial states of indecision are common knowledge, it is

assumed that each player can emulate the other’s calculations, and that each player is, in

fact, using the same dynamical rule to modify her state of indecision. Given that all of this

is common knowledge, the states of indecision resulting from one round of the deliberation
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process will, again, be common knowledge and the process can continue until a fixed-point

is reached.

A simple example will make this more concrete. Consider the following game between

two players, Ann (a) and Bob (b).17

Ann

Bob

l r

u 2, 1 0, 0

d 0, 0 1, 2

There are two pure Nash equilibria ((u, l) and (d, r)) and one mixed-strategy Nash equilib-

rium where Ann plays u with probability 2/3 and Bob plays l with probability 1/3. Suppose

that the initial state of indecision is:

pa(u) = 0.2, pa(d) = 0.8 and pb(l) = 0.9, pb(r) = 0.1.

Since both players have access to each other’s state of indecision, they can calculate the

expected utilities of each of their strategies:

EUa(u) = 2 · 0.9 + 0 · 0.1 = 1.8

EUa(d) = 0 · 0.9 + 1 · 0.1 = 0.1

EUb(l) = 1 · 0.2 + 0 · 0.8 = 0.2

EUb(r) = 0 · 0.2 + 2 · 0.8 = 1.6

17This game is called the “Battle of the Sexes”. The underlying story is that Ann and Bob are married and

are deciding where to go for dinner. Ann would rather eat Indian food than French food, whereas Bob prefers

French food to Indian food. They both prefer to eat together rather than separately. The outcome (u, l)

is that they go to an Indian restaurant together; (d, r) is the outcome that they go to a French restaurant

together; and (u, r) and (d, l) are outcomes where they go to different restaurants.

19



If the players simply choose the strategy that maximizes their expected utilities, then the

outcome of the interaction will be the off-equilibrium profile (u, r). However, the process of

deliberation will pull the players towards an equilibrium. The status quo for each player is:

SQa = 0.2 · EUa(u) + 0.8 · EUa(d) = 0.2 · 1.8 + 0.8 · 0.1 = 0.44

SQb = 0.4 · EUb(l) + 0.6 · EUb(r) = 0.9 · 0.2 + 0.1 · 1.6 = 0.34

The covetabilities for each of the strategies are:

cova(u) = max(1.8− 0.44, 0) = 1.36

cova(d) = max(0.34− 0.44, 0) = 0

covb(l) = max(0.2− 0.34, 0) = 0

covb(r) = max(1.6− 0.34, 0) = 1.26

Now, the new states of indecision p′a and p′b are calculated using Nash dynamics (for simplic-

ity, I assume that the index of caution is k = 1):

p′a(u) = pA(u)+cova(u)
1+(cova(u)+cova(d))

= 0.2+1.36
1+1.36

= 0.221183800623

p′a(d) = pa(d)+cova(d)
1+(cova(u)+cova(d))

= 0.8+0
1+1.36

= 0.778816199377

p′b(l) = pb(l)+covb(l)
1+(covb(l)+covb(r))

= 0.9+0
1+1.26

= 0.87787748732

p′b(r) = pb(r)+covb(r)
1+(covb(l)+covb(r))

= 0.1+1.26
1+1.26

= 0.12212251268

The new states of indecision are now p′a and p′b, and we can continue this process. On can

visualize this process by the following graph, in which the x-axis is the probability that Bob

will choose r and the y-axis is the probability that Ann will choose u. 18

18This graph was produced by a python program with an index of caution k = 25 and a satisficing value of

0.01. A satisficing value of 0.01 means that the process stops when the covetabilities fall below 0.01. Contact

the author for the code for this simulation.
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The deliberation reaches a fixed-point with Ann and Bob deciding to play their part of the

Nash equilibrium (u, l). In fact, Skyrms shows that under the strong assumptions of common

knowledge noted above and assuming that all players use dynamical rules that seek the good,

when the process of deliberation reaches a fixed-point, the states of indecision will form a

Nash equilibrium.19

4 Strategic reasoning as a solution concept

A key aspect of the iterative removal of dominated strategies is that at each stage of the

process, strategies are identified as either “good” or “bad”. The “good” strategies are those

that are not strictly/weakly dominated, while the “bad” ones are weakly/strictly dominated.

If the intended interpretation of the iterative procedure that removes weakly/strictly domi-

nated strategies is to represent the players “deliberation” about what they are going to do,

then this is a significant assumption. The point is that while a player is deliberating about

what to do in a game situation, there may be strategies that cannot yet be classified as

“good” or “bad”. These are the strategies that the player needs to think about more before

deciding how to classify them. Building on this intuition, the reasoning-based expected util-

19The outcome may end in a mixed-strategy Nash equilibrium.
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ity procedure of [28] is intended to model the reasoning procedure that a Bayesian rational

player would follow as she decides what to do in a game.

At each stage of the procedure, strategies are categorized. A categorization is a ternary

partition of the players’ strategies Si, rather than the usual binary partition in terms of

which strategies are strictly/weakly dominated and which are not. The key idea is that

during the reasoning process, strategies are accumulated, deleted or neither. Formally, for

each player i, let S+
i ⊆ Si denote the set of strategies that have been accumulated and

S−i ⊆ Si the set of strategies that have been deleted. The innovative aspect of this procedure

is that S+
i ∪ S−i need not equal Si. So, strategies in Si but not in S+

i ∪ S−i are classified as

“neither accumulated nor deleted”. The reasoning-based expected utility procedure proceeds

as follows: The procedure is defined by induction. Initially, let Di,0 = ∆(S−i), the set of all

probability measures over the strategies of i’s opponents, and let S+
i,0 = S−i,0 = ∅. Then, for

n ≥ 0, we have:

• Accumulate all strategies for player i that maximize expected utility for every proba-

bility in Di. Formally,

S+
i,n+1 = {si ∈ Si,n | MEU(si, π) for all π ∈ Di,n}.

• Delete all strategies for player i that do not maximize probability against any probability

distribution

S−i,n+1{si ∈ Si,n | there is no π ∈ Di,n such that MEU(si, π)}.

• Keep all probability measures that assign positive probability to opponents playing

accumulated strategies and zero probability to deleted strategies. Formally, let Di,n+1

be all the probability measures fromDi,n that assign positive probability to any strategy

profile from Πj 6=iS
+
i,n+1 and 0 probability to any strategy profile from Πj 6=iS

−
i,n+1.
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The following example from [28] illustrates this procedure:

Ann

Bob

l r

u 1, 1 1, 1

m1 0, 0 1, 0

m2 2, 0 0, 0

d 0, 2 0, 0

For Bob, strategy l is accumulated since it maximizes expected utility with respect to every

probability on Ann’s strategies (note that l weakly dominates r). For Ann, d is deleted, as it

does not maximize probability with respect to any probability measure on Bob’s strategies

(note that d is strictly dominated by u). Thus, we have

S+
a,1 = ∅

S−a,1 = {d}

S+
b,1 = {l}

S−b,1 = ∅

In the next round, Ann must consider only probability measures that assign positive

probability to Bob playing l, and Bob must consider only probability measures assigning

probability 0 to Ann playing d. This means that r is accumulated for Bob20 and m1 is

deleted21 for Ann:

20If Bob assigns probability 0 to Ann playing d, then the strategies l and r give exactly the same payoffs.
21The only probability measures such that m1 maximizes expected utility are the ones that assign proba-

bility 1 to Bob playing r.
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S+
a,2 = ∅

S−a,2 = {b,m1}

S+
b,2 = {l, r}

S−b,2 = ∅

At this point, the procedure reaches a fixed-point with Bob accumulating l and r and Ann

deleting d and m1. The interpretation is that Bob has good reason to play either l or r and,

thus, must pick one of them. All that Ann was able to conclude is that d and m1 are not

good choices.

The general message is that players may not be able to identify a unique rational strategy

by strategic reasoning alone (as represented by the iterative procedure given above). There

are two reasons why this may happen. First, a player may accumulate more than one strategy,

and so the player must “pick” 22 one of them. This is what happened with Bob. Given the

observation that Ann will not choose b, both of the choices l and r give the same payoff,

and so Bob must pick one of them. 23 Second, players may not have enough information to

identify the “rational” choices. Without any information about which of l or r Bob will pick,

Ann cannot come to a conclusion about which of u or m2 she should choose. Thus, neither

of these strategies can be accumulated. Ann and Bob face very different decision problems.

No matter which choice Bob ends up picking, his choice will be rational (given his belief that

Ann will not choose irrationally). However, since Ann lacks a probability over how Bob will

pick, she cannot identify a rational choice.

22See [50] for an interesting discussion of “picking” and “choosing” in decision theory.
23Of course, Bob may think it is possible that Ann is irrational, and so she could choose the strictly

dominated strategy d. Then, depending on how likely Bob thinks it is that Ann will choose irrationally, l

may be the only rational choice for him. In this chapter, we set aside such considerations.
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5 Reasoning to a game model

The game models introduced in Section 2.2 can be used to describe the informational context

of a game. A natural question from the perspective of this chapter is: How do the players

arrive at a particular informational context? In this section, I introduce different operations

that transform epistemic-plausibility models. These operations are intended to represent

different ways a rational agent’s knowledge and beliefs can change over time. Then, I show

how to use these operations to describe how the players’ knowledge and beliefs change as

they each deliberate about what they are going to do in a game situation.

5.1 Modeling information changes

The simplest type of informational change treats the source of the information as infallible.

The effect of finding out from an infallible source that ϕ is true should be clear: Remove all

states that do not satisfy ϕ. In the epistemic logic literature, this operation is called a public

announcement [59, 31]. However, calling this an “announcement” is misleading since, in this

chapter, I am not modeling any form of “pre-play” communication. The “announcements”

are formulas that the players incorporate into the current epistemic state.

Definition 5.1 (Public Announcement) Suppose that M = 〈W, {∼i}i∈N , V 〉 is an epis-

temic model and ϕ is a formula (in the language LK). After all the agents find out that ϕ

is true (i.e., ϕ is publicly announced), the resulting model is M!ϕ = 〈W !ϕ, {∼!ϕ
i }, V !ϕ〉,

where W !ϕ = {w ∈ W | M, w |= ϕ}; ∼!ϕ
i =∼i ∩ W !ϕ ×W !ϕ for all i ∈ N ; and σ!ϕ is the

restriction of σ to W !ϕ.

The models M and Mϕ describe two different moments in time, with M describing the

current or initial information state of the agents and M!ϕ the information state after all
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the agents find out that ϕ is true. This temporal dimension can also be represented in the

logical language with modalities of the form [!ϕ]ψ. The intended interpretation of [!ϕ]ψ is

“ψ is true after all the agents find out that ϕ is true”, and truth is defined as

• M, w |= [!ϕ]ψ iff [if M, w |= ϕ then M!ϕ, w |= ψ].

A public announcement is only one type of informative action. For the other transfor-

mations discussed in this chapter, while the agents do trust the source of ϕ, they do not

treat it as infallible. Perhaps the most ubiquitous policy is conservative upgrade (↑ϕ), which

lets the agent only tentatively accept the incoming information ϕ by making the best ϕ-

worlds the new minimal set and keeping the old plausibility ordering the same on all other

worlds. A second operation is radical upgrade (⇑ϕ), which moves all the ϕ worlds before

all the ¬ϕ worlds and otherwise keeps the plausibility ordering the same. Before giving

the formal definition, we need some notation: Given an epistemic-plausibility model M, let

[[ϕ]]wi = {x | M, x |= ϕ}∩ [w]i denote the set of all ϕ-worlds that i considers possible at state

w and besti(ϕ,w) = Min�i
([[ϕ]]wi ) be the best ϕ-worlds at state w, according to agent i.

Definition 5.2 (Conservative and Radical Upgrade) Given an epistemic-plausibility model

M = 〈W, {∼i}i∈N , {�i}i∈N , σ〉 and a formula ϕ ∈ LKB, the conservative/radical upgrade of

M with ϕ is the model M∗ϕ = 〈W ∗ϕ, {∼∗ϕi }i∈N , {�
∗ϕ
i }i∈N , V ∗ϕ〉 with W ∗ϕ = W , for each

i, ∼∗ϕi =∼i, V ∗ϕ = V where ∗ =↑,⇑. The relations �↑ϕi and �⇑ϕi are the smallest relations

satisfying:

Conservative Upgrade

1. If v ∈ besti(ϕ,w) then v ≺↑ϕi x for all x ∈ [w]i; and

2. for all x, y ∈ [w]i − besti(ϕ,w), x �↑ϕi y iff x �i y.

Radical Upgrade
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1. for all x ∈ [[ϕ]]wi and y ∈ [[¬ϕ]]wi , set x ≺⇑ϕi y;

2. for all x, y ∈ [[ϕ]]wi , set x �⇑ϕi y iff x �i y; and

3. for all x, y ∈ [[¬ϕ]]wi , set x �⇑ϕi y iff x �i y. /

As the reader is invited to check, a conservative upgrade is a special case of a radical

upgrade: the conservative upgrade of ϕ at w is the radical upgrade of besti(ϕ,w). A logical

analysis of these operations includes formulas of the form [↑ϕ]ψ intended to mean “after

everyone conservatively upgrades with ϕ, ψ is true” and [⇑ϕ]ψ intended to mean “after

everyone radically upgrades with ϕ, ψ is true”. The definition of truth for these formula is

as expected:

• M, w |= [↑ϕ]ψ iff M↑ϕ, w |= ψ

• M, w |= [⇑ϕ]ψ iff M⇑ϕ, w |= ψ

The main issue of interest in this chapter is the limit behavior of iterated sequences of

announcements. That is, what happens to the epistemic-plausibility models in the limit?

Do the players’ knowledge and beliefs stabilize or keep changing in response to the new

information?

An initial observation is that iterated public announcement of any formula ϕ in an

epistemic-plausibility model must stop at a limit model where either ϕ or its negation is

true at all states (see [15] for a discussion and proof). In addition to the limit dynamics

of knowledge under public announcements, there is the limit behavior of beliefs under soft

announcements (radical/conservative upgrades). See [15] and [74, Section 4] for general dis-

cussions. I conclude this brief introduction to dynamic logics of knowledge and beliefs with

an example of the type of dynamics that can arise.
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LetM1 be an initial epistemic-plausibility model (for a single agent) with three states w1,

w2 and w3 satisfying r, q and p, respectively. Suppose that the agent’s plausibility ordering

is w1 ≺ w2 ≺ w3. Then, the agent believes that r. Consider the formula

ϕ := (r ∨ (B¬rq ∧ p) ∨ (B¬rp ∧ q)).

This is true at w1 in the initial model. Since [[ϕ]]M1 = {w3, w1}, we have M⇑ϕ
1 = M2.

Furthermore, [[ϕ]]M2 = {w2, w1}, so M⇑ϕ
2 = M3. Since M3 is the same model as M1, we

have a cycle:

rw1

qw2

pw3

M1

⇑ϕ
=⇒

rw1

pw3

qw2

M2

⇑ϕ
=⇒

rw1

qw2

pw3

M3

⇑ϕ
=⇒ · · ·

In the above example, the player’s conditional beliefs keep changing during the update

process. However, the player’s non-conditional beliefs remain fixed throughout the process.

In fact, Baltag and Smets have shown that every iterated sequence of truthful radical up-

grades stabilizes all non-conditional beliefs in the limit [15]. See [32, 14, 52] for generalizations

and broader discussions about the issues raised in this section.

5.2 Rational belief change during deliberation

This section looks at the operations that transform the informational context of a game as

the players deliberate about what they should do in a game situation. The main idea is that in

each informational context (viewed as describing one stage of the deliberation process), the
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players determine which options are “optimal” and which options the players ought to avoid

(guided by some choice rule). This leads to a transformation of the informational context

as the players adopt the relevant beliefs about the outcome of their practical reasoning.

The different types of transformation mentioned above then represent how confident the

player(s) (or modeler) is (are) in their assessment of which outcomes are rational. In this

new informational context, the players again think about what they should do, leading to

another transformation. The main question is: Does this process stabilize?

The answer to this question will depend on a number of factors. The general picture is

M0
τ(D0)
=⇒ M1

τ(D1)
=⇒ M2

τ(D2)
=⇒ · · · τ(Dn)

=⇒ Mn+1=⇒· · ·

where each Di is some proposition describing the “rational” options and τ is a model trans-

former (e.g., public announcement, radical or conservative upgrade). Two questions are

important for the analysis of this process. First, what type of transformations are the play-

ers using? Second, where do the propositions Di come from?

Here is a baseline result from [71]. Consider a propositional formula Rati that is intended

to mean “i’s current action is not strictly dominated in the set of actions that the agent

currently considers possible”. This is a propositional formula whose valuation changes as

the model changes (i.e., as the agent removes possible outcomes that are strictly dominated).

An epistemic model is full for a game G provided the map σ from states to profiles is onto.

That is, all outcomes are initially possible.

Theorem 5.3 (van Benthem [71]) The following are equivalent for all states w in an

epistemic model that is full for a finite game G:

1. The outcome σ(w) survives iterated removal of strictly dominated strategies.

2. Repeated successive public announcements of
∧
i Rati for the players stabilize at a
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submodel whose domain contains w.

This theorem gives a precise sense of how the process of iteratively removing strictly domi-

nated strategies can be viewed as a process of deliberation (cf. the discussion in Section 2.1).

See [4] for a generalization of this theorem focusing on arbitrary “optimality” propositions

satisfying a monotonicity property and arbitrary games. A related analysis can be found in

[53], which provides an in-depth study of the upgrade mechanisms that match game-theoretic

analyses.

5.3 Rational belief change during game play

The importance of explicitly modeling belief change over time becomes even more evident

when considering extensive games. An extensive game makes explicit the sequential structure

of the choices in a game. Formally, an extensive game is a tuple 〈N, T, τ, {ui}i∈N〉, where

• N is a finite set of players;

• T is a tree describing the temporal structure of the game situation: Formally, T consists

of a set of nodes and an immediate successor relation�. Let O denote the set of leaves

(nodes without any successors) and V the remaining nodes. The edges at a decision

node v ∈ V are each labeled with an action. Let A(v) denote the set of actions available

at v. Let  be the transitive closure of �.

• τ is a turn function assigning a player to each node v ∈ V (let Vi = {v ∈ V | τ(v) = i}.

• ui : O → R is the utility function for player i assigning real numbers to outcome nodes.

The following is an example of an extensive game:
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v1

2
v2

1
v3

1, 1

o1

0, 3

o2

5, 2

o3

4, 4

o4

I1 I2 I3

O
1

O
2

O
3

This is an extensive game with V = {v1, v2, v3}, O = {o1, o2, o3, o4}, τ(v1) = τ(v3) = 1 and

τ(v2) = 2, and, for example, u1(o2) = 0 and u2(o2) = 3. Furthermore, we have, for example,

v1 � o1, v1  o4, and A(v1) = {I1, O1}.

A strategy for player i in an extensive game is a function σ from Vi to nodes such that

v 7→ σ(v). Thus, a strategy prescribes a move for player i at every possible node where

i moves. For example, the function σ with σ(v1) = O1 and σ(v3) = I3 is a strategy for

player i, even though, by following the strategy, i knows that v3 will not be reached. The

main solution concept for extensive games is the subgame perfect equilibrium [65], which is

calculated using the “backward induction (BI) algorithm”:

BI Algorithm: At terminal nodes, players already have the nodes marked with their utili-

ties. At a non-terminal node n, once all daughters are marked, the node is marked as follows:

determine whose turn it is to move at n and find the daughter d that has the highest utility

for that player. Copy the utilities from d onto n.

In the extensive game given above, the BI algorithm leads to the following markings:
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1, 1

v1

2

0, 3

v2

1

5, 2

v3

1, 1

o1

0, 3

o2

5, 2

o3

4, 4

o4

I1 I2 I3

O
1

O
2

O
3

The BI strategy for player 1 is σ(v1) = O1, σ(v3) = O3 and for player 2 it is σ(v2) = O2. If

both players follow their BI strategy, then the resulting outcome is o1 (v1 7→ o1 is called the

BI path).

Much has been written about backward induction and whether it follows from the as-

sumption that there is common knowledge (or common belief) that all players are rational.24

In the remainder of this section, I explain how epistemic-plausibility models and the model

transformations defined above can make this more precise. The first step is to describe what

the players believe about the strategies followed in an extensive game and how these beliefs

may change during the play of the game. I sidestep a number of delicate issues in the discus-

sion below (see [19] for a clear exposition). My focus is on the players’ beliefs about which

outcome of the game (i.e., the terminal nodes) will be realized.

Suppose that a, a′ ∈ A(v) for some v ∈ Vi. We say move a strictly dominates

move a′ in beliefs (given some epistemic-plausibility model), provided that all of the

most plausible outcomes reachable by playing a at v are preferred to all the most plausible

outcomes reachable by playing a′. Consider an initial epistemic-plausibility model in which

the states are the four outcomes {o1, o2, o3, o4}, and both players consider all outcomes

equally plausible (I write w ≈ v if w and v are equally plausible—i.e., w � v and v � w).

Then, at v2, O2 is not strictly dominated over I2 in beliefs since the nodes reachable by

24The key papers include [8, 69, 9, 33, 16]. See [55] for a complete survey of the literature.
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I2 are {o3, o4}, both are equally plausible, and player 2 prefers o4 over o2, but o2 over o3.

However, since player 1 prefers o3 to o4, O3 strictly dominates I3 in beliefs. Suppose that R

is interpreted as “no player chooses an action that is strictly dominated in beliefs”. Thus,

in the initial model, in which all four outcomes are equally plausible, the interpretation of

R is {o1, o2, o3}. We can now ask what happens to the initial model if this formula R is

iteratively updated (for example, using radical upgrade).

o1 ≈ o2 ≈ o3 ≈ o4 o1 ≈ o2 ≈ o3 ≺ o4 o1 ≈ o2 ≺ o3 ≺ o4

o1 ≺ o2 ≺ o3 ≺ o4

⇑R
=⇒ ⇑R

=⇒
⇑R
⇐=

This sequence of radical upgrades is intended to represent the “pre-play” deliberation leading

to a model in which there is common belief that the outcome of the game will be o1. But, what

justifies both players deliberating in this way to a common epistemic-plausibility model?

The correctness of the deliberation sequence is derived from the assumption that there

is common knowledge that the players are “rational” (in the sense, that players will not

knowingly choose an option that will give them lower payoffs). But there is a potential

problem: Under common knowledge that the players are rational (i.e., make the optimal

choice when given the chance), player 1 must choose O1 at node v1. The backward induction

argument for this is based on what the players would do if player 1 chose I1. But, if player

1 did, in fact, choose I1, then common knowledge of rationality is violated (player 1’s choice

would be “irrational”). Thus, it seems that common knowledge of rationality, alone, cannot

be used to show that the players will make choices consistent with the backward induction

path. An additional assumption about how the players’ beliefs may change during the

course of the game is needed. The underlying assumption is that the players are assumed

to be unwaveringly optimistic: No matter what is observed, players maintain the belief that

everyone is rational at future nodes.
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There are many ways to formalize the above intuition that players are “unwaveringly

optimistic”. I briefly discuss the approach from [13] since it touches on a number of issues

raised in this chapter. The key idea is to encode the players’ strategies as conditional beliefs

in an epistemic-plausibility model. For example, consider the following epistemic-plausibility

model on the four outcomes of the above extensive game:

o4

w1

o2

w3

o3

w2

o1

w4

2

1

2

2

1

11

12

It is assumed that there are atomic propositions for each possible outcome. Formally,

suppose that there is an atomic proposition oi for each outcome oi (assume that oi is true

only at state oi). The non-terminal nodes v ∈ V are then identified with the set of outcomes

reachable from that node:

v :=
∨
v o

o.

In the above model, both players 1 and 2 believe that o1 is the outcome that will be realized,

and the players initially rule out none of the possible outcomes. That is, the model satisfies

the “open future” assumption of [13] (none of the players have “hard” information that an

outcome is ruled out). The fact that player 1 is committed to the BI strategy is encoded in

the conditional beliefs of the player: both Bv1
1 o1 and Bv3

1 o3 are true in the above model. For

player 2, Bv2
2 (o3∨ o4) is true in the above model, which implies that player 2 plans to choose

action I2 at node v2.
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The dynamics of actual play is then modeled as a sequence of public announcements (cf.

Definition 5.1). The players’ beliefs change as they learn (irrevocably) which of the nodes

in the game are reached. This process produces a sequence of epistemic-plausibility models.

For example, a possible sequence of the above game starting with the initial modelM given

above is:

M =M!v1 ;M!v2 ;M!v3 ;M!o4

The assumption that the players are “incurably optimistic” is represented as follows: No

matter what true formula is publicly announced (i.e., no matter how the game proceeds),

there is common belief that the players will make a rational choice (when it is their turn to

move). Formally, this requires introducing an arbitrary public announcement operator [11]:

M, w |= [ ! ]ϕ provided that, for all formulas25 ψ, if M, w |= ψ then M, w |= [!ψ]ϕ. Then,

there is common stable belief in ϕ provided that [ ! ]CBϕ is true, where CBϕ is intended to

mean that there is common belief in ϕ (cf. Section 2.2.2). The key result is:

Theorem 5.4 (Baltag, Smets and Zvesper [13]) Common knowledge of the game struc-

ture, and of open future and common stable belief in dynamic rationality, together, imply

common belief in the backward induction outcome.

6 Concluding remarks

This chapter has not focused on strategies per se, but, rather, on the process of “rational

deliberation” that leads players to adopt a particular “plan of action”. Developing formal

models of this process is an important and rich area of research for anyone interested in the

foundations of game theory.

25Strictly speaking, it is all epistemic formulas. The important point is to not include formulas with the [

! ] operator in them.
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The economist’s predilection for equilibria frequently arises from the belief that

some underlying dynamic process (often suppressed in formal models) moves a

system to a point from which it moves no further. [17, pg. 1008]

I should point out here that the title of this chapter is somewhat misleading. In fact,

the casual reader may have been expecting a formal account of players’ practical reasoning

in game-theoretic situations. Instead, this chapter presented three different frameworks

in which the “underlying dynamic process” mentioned in the above quote is made explicit.

None of the frameworks discussed in this chapter are intended to model the players’ practical

reasoning. Rather, they describe deliberation in terms of a sequence of belief changes about

what the players are doing or what their opponents may be thinking. This raises an important

question: In what sense do the frameworks introduced in this chapter describe the players’

strategic reasoning? I will not attempt a complete answer to this question here. Instead, I

conclude with brief discussions of two related questions.

6.1 What are the differences and similarities between the different models of

strategic reasoning?

The three frameworks presented in this paper offer different perspectives on the standard

game-theoretic analysis of strategic situations. To compare and contrast these different

formal frameworks, I will illustrate the different perspectives on the following game from [64,

Example 8, pg. 305]):
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Ann

Bob

l r

u 1, 1 1, 0

d 1, 0 0, 1

In the above game, d is weakly dominated by u for Ann. If Bob knows that Ann is

rational (in the sense that she will not choose a weakly dominated strategy), then he can

rule out option d. In the smaller game, action r is now strictly dominated by l for Bob. If

Ann knows that Bob is rational and that Bob knows that she is rational (and so, rules out

option d), then she can rule out option r. Assuming that the above reasoning is transparent

to both Ann and Bob, it is common knowledge that Ann will play u and Bob will play l.

But now, what is the reason for Bob to rule out the possibility that Ann will play d? He

knows that Ann knows that he is going to play l, and both u and d maximize Ann’s expected

utility with respect to the belief that Bob will play l.

Many authors have pointed out puzzles surrounding an epistemic analysis of iterated

removal of weakly dominated strategies [5, 64, 22]. The central issue is that the assumption

of common knowledge of rationality seems to conflict with the logic of iteratively removing

weakly dominated strategies. The models introduced in this paper each provide a unique

perspective on this issue. Note that the idea is not to provide a new “epistemic foundation”

for iterated removal of weakly dominated strategies. Both [22] and [35] have convincing

results here. Rather, the goal is to offer a different perspective on the existing epistemic

analyses.

I start with Skyrms’ model of rational deliberation from Section 3. There are two Nash

equilibria: the pure strategy Nash equilibrium (u, l) and the mixed Nash equilibrium, where
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Ann plays u and d each with probability 0.5 and Bob plays strategy l. Rational deliberation

with any dynamical rule that “seeks the good” (such as the Nash dynamics) is guaranteed

to lead the players to one of the two equilibria. However, there is an important difference

between the two Nash equilibria from the point of view of rational deliberators. Through

deliberation, the players will almost always end up at the pure-strategy equilibrium. That

is, unless the players start deliberating at the mixed-strategy Nash equilibrium, deliberation

will lead the players to the pure-strategy equilibrium. This makes sense since playing u will

always give a greater expected utility for Ann than any mixed strategy, as long as there is

a chance (no matter how small) that Bob will play r. I can illustrate this point by showing

the deliberational path that is generated if the players start from the following states of

indecision: (1) Ann is playing d with probability 1 and Bob is playing l with probability 1;

(2) Ann is playing u and l with probability 0.5 and Bob is playing l with probability 0.95;

and (3) Ann is playing u with probability 0.5 and Bob is playing r with probability 0.5. 26

26These graphs were generated by a python program using a satisficing value of 0.001 and an index of

caution of 50. The reason that the simulations stopped before reaching the pure Nash equilibrium is because

the simulation is designed so that deliberation ends when the covetabilities fall below the satisficing value.
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The second perspective comes from the reasoning-based expected utility procedure dis-

cussed in Section 4. For Ann, u is accumulated in the first round since it maximizes expected

utility with respect to all probability measures on Bob’s strategies. No other strategies are

deleted or accumulated. Thus, the procedure stabilizes in the second round without catego-

rizing any of Bob’s strategies or Ann’s strategy d. So, u is identified as a “good” strategy,

but d is not classified as a “bad” strategy. Furthermore, neither of Bob’s strategies can be

classified as “good” or “bad”.

Finally, I turn to the approach outlined in Section 5. An analysis of this game is discussed

in [53]. In that paper, it is shown that certain deliberational sequences for the above game

do not stabilize. Of course, whether a deliberational sequence stabilizes depends crucially

on which model transformations are used. Indeed, a new model transformation, “suspend

judgement”, is used in [53] to construct a deliberational sequence that does not stabilize.

The general conclusion is that the players may not be able to deliberate their way to an

informational context in which there is common knowledge of rationality (where rationality

includes the assumption that players do not play weakly dominated strategies).

Each of the different frameworks offers a different perspective on strategic reasoning in

games. The perspectives are not competing; rather, they highlight different aspects of what

it means to reason strategically. However, more work is needed to precisely characterize the

similarities and differences between these different models of rational deliberation in games.

Such a comprehensive comparison will be left for another paper.
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6.2 What role do higher-order beliefs play in a general theory of rational deci-

sion making in game situations?

Each model of deliberation discussed in this chapter either implicitly or explicitly made

assumptions about the players’ higher-order beliefs (see Section 2.2.2). In the end, I am

interested only in what (rational) players are going to do. This, in turn, depends only on

what the players believe the other players are going to do. A player’s belief about what

her opponents are thinking is relevant only because they shape the players first-order beliefs

about what her opponents are going to do. Kadane and Larkey explain the issue nicely:

“It is true that a subjective Bayesian will have an opinion not only on his op-

ponent’s behavior, but also on his opponent’s belief about his own behavior, his

opponent’s belief about his belief about his opponent’s behavior, etc. (He also

has opinions about the phase of the moon, tomorrow’s weather and the winner

of the next Superbowl). However, in a single-play game, all aspects of his opin-

ion except his opinion about his opponent’s behavior are irrelevant, and can be

ignored in the analysis by integrating them out of the joint opinion.”

as [40, pg. 239, my emphasis]

A theory of rational decision making in game situations need not require that a player

considers all of her higher-order beliefs in her decision-making process. The assumption is

only that the players recognize that their opponents are “actively reasoning” agents. Pre-

cisely “how much” higher-order information should be taken into account in such a situation

is a very interesting, open question (cf. [41, 58]).

There is quite a lot of experimental work about whether or not humans take into account

even second-order beliefs (e.g., a belief about their opponents’ beliefs) in game situations (see,

for example, [38, 67, 25]). It is beyond the scope of this chapter to survey this literature here
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(see [24] for an excellent overview). Of course, this is a descriptive question, and it is very

much open how such observations should be incorporated into a general theory of rational

deliberation in games (cf. [77, 48, 47]).

∗ ∗ ∗ ∗ ∗ ∗ ∗

A general theory of rational deliberation for game and decision theory is a broad topic.

It is beyond the scope of this chapter to discuss the many different aspects and competing

perspectives on such a theory.27 A completely developed theory will have both a normative

component (What are the normative principles that guide the players’ thinking about what

they should do?) and a descriptive component (Which psychological phenomena best explain

discrepancies between predicted and observed behavior in game situations?). The main

challenge is to find the right balance between descriptive accuracy and normative relevance.

While this is true for all theories of individual decision making and reasoning, focusing on

game situations raises a number of compelling issues. Robert Aumann and Jacques Dreze

[2, pg. 81] adeptly summarize one of the most pressing issues when they write: “[T]he

fundamental insight of game theory [is] that a rational player must take into account that

the players reason about each other in deciding how to play”. Exactly how the players

(should) incorporate the fact that they are interacting with other (actively reasoning) agents

into their own decision-making process is the subject of much debate.

27Interested readers are referred to [66] (especially Chapter 7), and [29, 61, 44] for broader discussions.
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