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Abstract

Robert Aumann’s agreeing to disagree theorem shows that if two agents have the

same prior probability and update their probability of an event E with private infor-

mation by conditioning, then if the posterior probabilities of E are common knowledge,

then the posteriors must be the same. Dov Monderer and Dov Samet prove a gener-

alization of Aumann’s result involving a probabilistic variant of common knowledge.

In this paper, I use various methods from probabilistic and dynamic-epistemic logics

to explore a dynamic characterization of the Monderer and Samet result. The main

goal is to develop a model that describes the evolution of the agents’ knowledge and

(probabilistic) beliefs as they interact with each other and the environment. I will show

how the logical frameworks are rich and flexible tools that can be used to study many

dynamic processes of interactive social belief change.
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1 Introduction

In 1976, Robert Aumann proved a fascinating result [3]. Suppose that two agents have the

same prior probability and update their probability of an event E with private information by

conditioning. Aumann showed that if the posterior probabilities of E are common knowledge,

then the agents must assign the same posterior to E. This is true even if the agents receive

different information. In other words, if agents have the same prior probability and update by

conditioning, then the agents cannot “agree to disagree” about their posterior probabilities.

This seminal result has been generalized in many ways [4, 8, 39, 40] and is still the subject

of much discussion in Economics [31, 29, 7], Logic [10, 11] and, to a lesser extent, Philosophy

[28, Section 3].

In this paper, I discuss a generalization of Aumann’s theorem proved by Dov Monderer

and Dov Samet [32]. Monderer and Samet define a probabilistic variant of common knowl-

edge, which can serve as a natural “approximation” to common knowledge. If there is not

common knowledge about the posteriors, then Aumann’s theorem does not say anything

about how the posteriors may be related. Monderer and Samet prove a generalization of

Aumann’s result: If there is common p-belief of the posteriors of an event for values of p

close to 1, then the posteriors must all be very close together (a more formal statement is

given in Section 2.2). This is one way in which common p-belief is a natural approximation

of common knowledge. In this paper, I explore a dynamics characterization of the Monderer

and Samet result, involving update actions, along the lines of Geanakoplos and Polemar-

chakis’s well-known dynamics characterization of Aumann’s Theorem [19]. Toward this end,

various methods will be discussed from probabilistic and dynamic-epistemic logics.
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2 Knowledge, Belief and Probability

2.1 Knowledge and Belief in Probabilistic Models

Suppose that A = {1, . . . , n} is a non-empty set of agents. Each agent i ∈ A is endowed with

a probability measure µi on a common probability space (W,F), where W is a non-empty

set and F is a σ-algebra. 1 To simplify the discussion, assume that W is finite (in this

case, we can let F = ℘(W )). 2 We say that there is a common prior among the agents A

provided that for all i, j ∈ A, µi = µj.

The agents’ private information is represented by a partition on W . For each i ∈ A, let

Πi be i’s partition on W . For each w ∈ W , let Πi(w) be the element of Πi containing w.

So, if w is the “actual” state, then Πi(w) is the information that i receives at w (i.e., it is

i’s information cell at w). It is assumed that for each w ∈ W , Πi(w) is assigned a positive

probability. For each i ∈ A, i’s posterior probability at state w, µi,w : F → [0, 1], is

defined by conditioning i’s prior probability on i’s information cell at state w. Thus, for each

set E ∈ F , we have that

µi,w(E) = µi(E | Πi(w)) =
µ(E ∩ Πi(w))

µi(Πi(w))
.

These models have been used to characterize solution concepts in games [1, 21, 2] and as

a semantics for a modal language with epistemic and probability operators [24, 20, 45] (this

theme will be discussed in more detail in Section 4). The probability measure µi,w is agent

i’s posterior probability given i’s current information (at state w). We are interested in the

agents’ posterior probabilities for some fixed event E. It is convenient to think of the agents’

1That is, F ⊆ ℘(W ) is a collections of subsets of W such that 1) W ∈ F ; 2) F is closed under finite

intersections; and 3) F is closed under countable unions.
2Much of what follows can be generalized to infinite state spaces. See [39] for a discussion of Aumann’s

theorem on infinite state spaces.
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posteriors of a fixed event as a random variable.3 This motivates the following notation: For

an event E ⊆ W and r ∈ [0, 1], let [Ei = r] = {w | µi,w(E) = r}.

The agents’ “knowledge” and “beliefs” are represented by operators on ℘(W ) (the set

of subsets of ℘(W )). (Here we largely follow the notational conventions of epistemic game

theory.) For each i ∈ A, let Ki : ℘(W )→ ℘(W ) be defined as follows: For all E ⊆ W ,

Ki(E) = {w | Πi(w) ⊆ E}.

Then, Ki(E) is an event consisting of all states w in which i’s information at w implies E (the

standard convention in the literature is to refer to the event Ki(E) as “agent i knows that

E”). It is well known that each Ki satisfies the so-called S5 axioms: For all events E and F ,

Ki(E ∩F ) = Ki(E)∩Ki(F ), Ki(E) ⊆ E, Ki(E) ⊆ Ki(Ki(E)), and Ki(E) ⊆ Ki(Ki(E)) (X

denotes the complement of X in W ). The agents’ beliefs are defined in an analogous way.

For each i ∈ A and p ∈ [0, 1], let Bp
i : ℘(W )→ ℘(W ) be defined as follows: For E ⊆ W ,

Bp
i (E) = {w | µi,w(E) = µi(E | Πi(w)) ≥ p},

where µi is i’s prior probability on W . Thus, i believes that E (to degree at least p) provided

that i’s posterior of E is above the given threshold.

The following Lemma gathers together a number of important facts about the Bp
i oper-

ators. The proofs will not be repeated here, since they can be found in [32].

Lemma 2.1 Suppose that (W,F) is a probability space; µi is a probability measure on

(W,F); Πi is a partition on W ; and Bp
i : ℘(W ) → ℘(W ) is the belief operator defined

above, where p ∈ [0, 1]. Then,

3Recall that, in probability theory, a random variable is a measurable function from the probability

space (W,F) to some other measurable space (typically the real numbers). The idea is that, for each event

E and agent i ∈ A, there is a function fi,E : W → R, where w 7→ µi,w(E).
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1. For all events E, Bp
i (E) is a union of elements from Πi.

2. For all events E, if E is a union of elements from Πi, then Bp
i (E) = E.

3. For all events E, Bp
i (B

p
i (E)) = Bp

i (E).

4. For all events E and F , if E ⊆ F , then Bp
i (E) ⊆ Bp

i (F ).

5. If (En) is a decreasing sequence of events then

Bp
i

(⋂
n

En

)
=
⋂
n

Bp
i (En).

This Lemma demonstrates that the belief operators Bp
i have much in common with the

knowledge operators Ki. Note that each Ki operator also satisfies items 1-5.

There are two crucial differences between knowledge and belief in this framework. The

first follows from the laws of probability. Since the probability of the intersection of two

events may be smaller than the probability of either event, it is easy to find events E and F

such that Bp
i (E) ∩Bp

i (F ) 6⊆ Bp
i (E ∩ F ). The second difference is that the agents’ beliefs do

not satisfy the truth axiom (while for the knowledge operator, we have that, for all events

E, Ki(E) ⊆ E). However, the Bp
i operators satisfy a natural generalization of the truth

axiom. While Bp
i (E) does not necessarily imply that E is true, it does ensure that E has a

probability of at least p. I will provide the proof of this fact here since it helps to illustrate

the above definitions of the basic epistemic attitudes.

Lemma 2.2 Suppose that 〈W,F〉 is a probability space with probability measure µi, Πi is a

partition on W , and Bp
i : ℘(W )→ ℘(W ) is a p-belief operator. For all E ⊆ W and p ∈ [0, 1],

we have µi(E | Bp
i (E)) ≥ p.

Proof. Suppose that E is an event and p ∈ [0, 1]. Let Pi = {P | P ∈ Πi and µi(E ∩ P ) ≥

pµi(P )}. Then, the Pi contains all the partition cells from Πi such that i’s posterior for E is
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at least p. Note that Bp
i (E) =

⋃
Pi (cf. Clause 1 in Lemma 2.1). Since the elements of Pi are

disjoint, we have µi(B
p
i (E)) =

∑
P∈Pi

µi(P ). Furthermore, since E∩Bp
i (E) =

⋃
P∈Pi

(E∩P ),

and each of the sets in Pi are disjoint, µi(E ∩Bp
i (E)) =

∑
P∈Pi

µi(E ∩P ). Finally, since, for

each P ∈ Pi, µi(E | P ) ≥ p (i.e., µi(E ∩ P ) ≥ pµi(P )), we have

µi(E ∩Bp
i (E)) =

∑
P∈Pi

µi(E ∩ P ) ≥
∑
P∈Pi

pµi(P ) = p
∑
P∈Pi

µi(P ) = pµi(B
p
i (E))

Thus, µi(E | Bp
i (E)) ≥ p, as desired. qed

2.2 Common Knowledge and Common p-Belief

The game theory and epistemic logic literature contains many notions of group knowledge.

It is beyond the scope of this article to discuss all these concepts (see, for instance, [44, 15]).

Instead, I will define common knowledge and the probabilistic variant of common knowledge

proposed by Monderer and Samet [32].

Given knowledge operators Ki for each agent i ∈ A, let K : ℘(W ) → ℘(W ) be K(E) =⋂
i∈AKi(E). 4 Thus, K(E) is the event that “everyone knows that E”. An event is common

knowledge if everyone knows that E and this fact is completely transparent to all the agents.

This can be made precise as follows. An event E is said to be self-evident for i provided

that E ⊆ Ki(E). An event is self-evident if it is self-evident for i for each i ∈ A. Thus, E

is self-evident iff E is closed with respect to the agents’ information partition: for all i ∈ A,

for all w, v ∈ W , if w ∈ E and v ∈ Πi(w), then v ∈ E. A common knowledge operator,

C : ℘(W )→ ℘(W ), is then defined as follows: For each E ⊆ W ,

C(E) = {w | there is a self-evident set F such that w ∈ F and F ⊆ E}.
4This definition can be relativized to any subset of agents. I.e., for G ⊆ A, let KG(E) =

⋂
i∈GKi(E). In

order to keep notation to a minimum, I will not pursue this more general approach in this paper.
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That is, E is commonly known provided that there is a true self-evident event that implies

E. It is well known that, in many settings, this definition is equivalent to the more standard

“infinite iterative” definition of common knowledge: 5 6 For all events E,

C(E) = E ∩K(E) ∩K(K(E)) ∩K(K(K(E))) ∩ · · ·

The definition of common p-belief is similar. Let Bp : ℘(W ) → ℘(W ) be the operator

associating with every event E, the event
⋂
i∈AB

p
i (E). Thus, Bp(E) is the event in which

every agent believes E to degree at least p. An event E ⊆ W is an evident p-belief for i

provided that E ⊆ Bp
i (E) and is an evident p-belief if is an evident p-belief for all agents

i ∈ A. The common p-belief operator, Cp : ℘(W )→ ℘(W ), is defined as follows:

For all sets E ⊆ W ,

Cp(E) = {w | there is an event F such that (i) w ∈ F ; (ii) F is an evident p-belief

for every i ∈ A; and (iii) F ⊆ Bp
i (E) for all i ∈ A} .

Thus, an event E is commonly p-believed if there is a true self-evident p-belief that implies

that everyone p-believes E. There is an equivalent definition in terms of iterations of the

p-belief operators, though some care is needed since the p-belief operators are not closed

under intersections. One can consult [32, 27, 34, 35, 20] for a discussion of the preceding

definition of common p-belief and its relations with alternative definitions. The following

example illustrates how the definition given here works.

5In a well-known paper, Jon Barwise [6] discusses three main different approaches to defining common

knowledge: (i) the iterated view, (ii) the fixed-point view, and (iii) the shared situation view.
6It is worth pointing out that David Lewis had a somewhat different approach to common knowledge [30].

For Lewis, the infinite conjunction is a necessary but not a sufficient condition for common knowledge. See

[9] for an illuminating discussion and a reconstruction of Lewis’ notion of common knowledge. Nonetheless,

following [3], the definition given in this section has become standard in game theory and epistemic logic.
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Example 2.3 Suppose that there are two coins, each sitting in different drawers, and two

agents, Ann (a) and Bob (b). For i = 1, 2, let Hi denote the event “the coin in drawer i

is facing heads up” and let Ti denote the event “the coin in drawer i is facing tails up”.

Ann looks at the coin in drawer 1 and Bob looks at the coin in drawer 2. Suppose that

after observing their respective coins, there is an announcement over a loudspeaker that

both coins are facing heads up (H1 ∩ H2). Assume that Ann was listening closely, but the

announcement was not perfectly clear, and so the probability that she heard correctly is 0.9.

Bob was not paying as close attention, and so the probability that he heard correctly is 0.8.

Given that these probabilities are commonly known by Ann and Bob, the initial probability

of state w1 (where H1 and H2 are both true) is 0.9× 0.8 = 0.72. Similar calculations for the

remaining states give us the following diagram (I draw an i-labeled line between two states

when the two states are in the same information cell for agent i). Furthermore, note that

both agents have the same prior probability, so only one number is assigned to each state.

H1, H2

0.72

w1

T1, H2

0.18

w2

H1, T2

0.08

w3

T1, T2

0.02

w4

b

b

a a

In particular, we have that w1 ∈ B0.9
a (H1∩H2)∩B0.8

b (H1∩H2). This means that X = {w1} is

an evident 0.8-belief for both Ann and Bob. Since X ⊆ B0.8
a (H1 ∩H2) = {w1, w2, w3, w4} =

B0.8
b (H1∩H2), we have that w1 ∈ C0.8

a,b (H1∩H2). That is, while it is not common knowledge

that the coins are both facing heads up, it is common 0.8-belief that they are. Finally, note

that the agents’ posteriors for the event H1 ∩H2 are 0.9 and 0.8.
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2.3 The Agreement Theorems

Using the above definitions, I can now state Aumann’s Theorem and Monderer and Samet’s

generalization involving common p-belief. I start with the statement of Aumann’s Theorem.

Theorem 2.4 (Aumann, [3]) Suppose that (W,F) is a finite probability space and µ is

a probability measure on (W,F). Further, suppose that there is a common prior: for each

i ∈ A, µi = µ is i’s prior probability measure. For all real numbers r1, . . . , rn ∈ [0, 1] and

events E ∈ F , if C(
⋂
i∈A[Ei = ri]) 6= ∅, then for all i, j ∈ A, ri = rj.

The proof of this theorem is not difficult once the definitions are in place (see [3]). Next, the

Monderer and Samet result identifies the consequence of assuming that the agents’ posterior

probabilities of an event E are commonly p-believed (rather than commonly known).

Theorem 2.5 (Monderer and Samet, [32]) Suppose that (W,F) is a finite probability

space and µ is a probability measure on (W,F). Further, suppose that there is a com-

mon prior: for each i ∈ A, µi = µ is i’s prior probability measure. For all real numbers

r1, . . . , rn ∈ [0, 1] and events E ⊆ W , if Cp(
⋂
i∈A[Ei = ri]) 6= ∅, then for all i, j ∈ A,

|ri − rj| < 1− p.

The original result in [32] had a different bound on the differences between the posteriors.

The bound used in the above version was provided by Zvika Neeman [36], who also showed

that this bound cannot be improved. In the special case when p = 1 and the posteriors

are commonly p-believed, then the differences between the posteriors is 1 − p = 0 (i.e., the

posteriors must be the same). Thus, the above theorem generalizes Aumann’s Theorem. 7

7Note that common 1-belief is not necessarily equivalent to common knowledge. The two may come

apart when there are states in an information cell that are assigned probability 0. Dealing with probability

0 events is a very interesting topic, although I do not focus on it in this paper.
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Example 2.6 To further illustrate this theorem, consider the model depicted in Example

2.3, and let E = H1 ∩ H2. Then, the prior probability of E is µa(E) = µb(E) = 0.72,

while the posterior probability of E is µa,w1(E) = 0.9 and µb,w1(E) = 0.8. Furthermore,

we can easily see that [Ea = 0.9] = {w1, w3} and [Eb = 0.8] = {w1, w2}. In this model,

C0.8
{a,b}([Ea = 0.9] ∩ [Eb = 0.8]) = C0.8

{a,b}({w1}) = {w1}. Indeed, we have that |µa,w1(E) −

µb,w1(E)| = 0.9− 0.8 = 0.1 < 1− 0.8, as expected according to Theorem 2.5.

3 Dynamics

Aumann’s theorem raises a natural question: How, exactly, do the agents come to agree on

their posteriors? If there is common knowledge of the posteriors of an event, then these

posteriors must be equal. However, in general, common knowledge will be achieved only

after the agents gather and exchange information.

3.1 Processes of Inquiry and Information Exchange

There are two main stages to this dynamic process of information exchange. Starting with

a common probability space (W,F , µ):

1. Each agent i receives private information represented by a partition Πi on W . The

idea is that the agents each ask questions, or perform experiments, the accumulated

answers (or results) of which result in a partition over the set of states. It is assumed

that the agents know the question that the other agents ask (i.e., each agent i knows

the partitions Πj for each agent J), but not the answers that they receive (i.e., for each

agent i and state w, i does not, in general, know the event Πj(w)).

2. The agents exchange some information based on their current knowledge and beliefs.
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The information exchanged could be the answer to the question that they asked [43], the

posteriors of some fixed event E [19, 3], whether the agents would accept a bet based on

E [41], or, more generally, the output of some discrete random variable [33, 38]. Based

on the information received from the other agent(s), the agents (further) refine their

initial partition. This may result in new information that the agents can exchange.

This dynamic process of information exchange converges when the agents cannot learn

anything new. That is, there is convergence when no further exchange of information results

in any change to the agents’ knowledge or beliefs.

Many interesting questions can be asked about information exchange in general, beyond

the issue of convergence. For instance, what is commonly known (or commonly believed)

among the agents after a process converges? Or, have the agents reached consensus about

some previous disagreement? For instance, is there agreement about the posterior probability

of some fixed event, or about whether to accept a bet based on some fixed event?

3.2 Announcing Posterior Probabilities and Model Update

Geanakoplos and Polemarchakis develop a dynamic characterization of Aumann’s theorem by

defining a general process of information exchange among agents with different information

along the lines of the process described above [19]. 8 The authors show that when the

agents exchange their current probability for some fixed event E, convergence is reached

after a finite number of exchanges. Furthermore, when the process of information exchange

converges, there is common knowledge of the current probabilities of E. Aumann’s theorem,

then, implies that these probabilities must be the same. Thus, the exchange of information

results not only in common knowledge, but also in consensus about the probability of E.

8See [10, 11] for a discussion of dynamic modal logics of beliefs motivated by this work.
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This result is a dynamic characterization of Aumann’s agreeing to disagree theorem. To

make this statement more precise, we give some formal definitions.

An epistemic-probability model is a tuple M = 〈W, {Πi}i∈A, µ〉, where W 6= ∅ is a

finite set of states, for each i ∈ A, Πi is a partition on W , and µ is a probability measure on9

W (µ is the common prior). In the remainder of this paper, we will mostly be interested

in pairs (M, w), called pointed epistemic-probability models, whereM is an epistemic

probability model and w is a state fromM. As the agents exchange information, this model

is transformed into a new one – a common idea in the literature on information dynamics

[5, 44, 37].

The type of transformation studied by Geanakoplos and Polemarchakis and subsequent

researchers involves a refinement of the agents’ partitions. A partition Π is a refinement of

Π′, provided that for all X ∈ Π′, there are Y1, . . . , Yk ∈ Πi such that X = Y1 ∪ · · · ∪ Yk. We

also say that Π′ is a coarsening of Π. Given an event E ⊆ W and a partition Πi of W for

agent i, let ΠE
i be the coarsest partition that refines Πi and for all X ∈ ΠE

i , either X ⊆ E

or E ⊆ X. If Πi represents i’s current information, or current question, then ΠE
i represents

i’s information after updating with E. Given a sequence of events E = (E1, . . . , En), let

ME = 〈W, {ΠEi
i }i∈A, µ〉. Then, ME describes the agents’ knowledge and beliefs after every

i ∈ A updates their partition with the event Ei. Using this notation, we can describe the

information exchanges used in a dynamic characterization of Aumann’s Theorem.

Suppose that M = 〈W, {Πi}i∈A, µ〉 is an epistemic-probability model, F ⊆ W is an

event, and v ∈ W is the “actual world”. For each i ∈ A, let ri = µi,v(F ). Then, the

information exchanged at state v by all the agents is the sequence E = (E1, . . . , En), where

9Since the set set of states W is finite, we can assume that the σ-algebra is ℘(W ). Furthermore, it is

often convenient, when the set of states is finite, to view the probability measure as a function µ : W → [0, 1]

with
∑

w∈W µ(w) = 1. Then, the probability of any set X ⊆W is µ(X) =
∑

w∈X µ(w).
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for each i ∈ A, Ei =
⋂
j∈A,j 6=i{w | µj,w(F ) = rj}. That is, each agent i learns the other

agents’ current probability of the event F . The agents “indirectly” share their information by

repeatedly reporting their posteriors of the event F at state v. This sequence of information

exchanges is described by a sequence of model transformations:

(M0, v)
E0=⇒ (M1, v)

E1=⇒ (M2, v)
E2=⇒ · · · Em−1

=⇒ (Mm, v),

where for k = 0, . . . ,m − 1, Ek is the information about the agents’ posterior probabilities

of F from model Mk at state v, and for k = 0, . . . ,m− 1, Mk+1 =MEk
k .

A sequence of model transformations is said to converge when no further information

exchanges change the model. That is, a sequence converges when there is a model Mm

such thatMEm
m =M. Geanakoplos and Polemarchakis prove that for any (finite) epistemic

probability model M, event F and state v from M, the sequence of model transformations

generated by F and (M, v) is guaranteed to converge. For an epistemic-probability model

M, event F and state v, let M[F, v] be the epistemic-probability model that is generated

after a sequence of information exchanges about the posteriors of F at v converges.

Since the posteriors of the event F inM[F, v] are common knowledge, Aumann’s theorem

then guarantees that the posteriors must be the same in M[F, v]. 10

The convergence of the agents’ opinions about an event F depends on the assumption

that there is a common prior and that the agents know the other agents’ possible information

cells. I.e., the agents know which question was asked, or experiment performed, by the other

agents. If an agent i announces that her posterior for F is r, then the other agents can rule

out any state in which conditioning the common prior on i’s information at that state does

not assign probability r to F . Thus, even if all the agents announce the same posterior for

10Actually, one can see that the posteriors for the event F must be equal without appealing to Aumann’s

Theorem. That is, it can be shown that the agents’ posteriors for F must be equal in M[F, v], cf. [11].
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an event, they may still learn something. This is illustrated by the following example.

Example 3.1 Recall the situation described in Example 2.3. Two (fair) coins are flipped

and placed in two different boxes. Ann observes the coin in the first box and Bob observes

the coin in the second box. Let M0 represent Ann and Bob’s beliefs before they observe

the coins. Assume that both Ann and Bob initially believe that the coins are fair. Then,

M0 = 〈W, {Πi}i∈{a,b}, µ〉, where Πa = Πb = {W} and for j = 1, . . . , 4, µ(wj) = 1
4
. We are

interested in 4 events: H1 = {w1, w3} (the coin in box 1 is lying heads up); H2 = {w1, w2}

(the coin in box 2 is lying heads up); T1 = {w2, w4} (the coin in box 1 is lying tails up); and

T2 = {w3, w4} (the coin is box 2 is lying tails up).

The first “learning event” is that Ann observes the coin in box 1 and Bob observes the coin

in box 2. The agents’ observations transform the modelM0 intoM1 = 〈W, {ΠH1
a ,ΠH2

b }, µ〉,

in which Ann knows whether coin 1 is heads up or tails up (Ka(H1) ∪ Ka(T1)) and Bob

knows whether coin 2 is heads up or tails up (Kb(H2)∨Kb(T2)). We are assuming here that

the observations are “out in the open”, so that Ann knows that Bob is observing the coin in

box 2 and Bob knows that Ann is observing the coin in box 1. 11 After the agents observe

the coins in their respective boxes, they exchange information. Suppose that both coins are

lying heads up. There are two situations to contrast.

In the first situation, the agents exchange their current probabilities of the event E =

H1 ∩ H2. Note that the agents’ posterior probabilities are the same for E: µa,w1(E) =

µb,w1(E) = 1
2
. However, the agents do learn something from this exchange of information.

Since µa,w2(E) = µa,w4(E) = 0 and µb,w2(E) = µb,w4(E) = 0, it becomes common knowledge

that both coins are lying heads up. Thus, the agents become certain of event E (i.e., both

Ann and Bob assign probability 1 to E after exchanging their information). Indeed, note

11This assumption can be dropped using ideas from dynamic epistemic logic: see [44, 37] for a discussion.
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that we get the same result even if the coins are biased (so that the initial probability is not

uniform). In general, the agents will become certain of the event E in any model in which

µ(E | ΠH1
a (w1)) 6= µ(E | ΠT1

a (w1)) or µ(E | ΠH2
b (w1)) 6= µ(E | ΠT2

b (w1)). So, for example, the

agents will become certain of E after exchanging their probabilities for E in the model that

was described in Example 2.3.

In the second situation, the agents exchange their current probabilities of the event

F = (H1∩H2)∪(T1∩T2). That is, F is the event “the coins in the boxes match”. As in the first

situation, both Ann and Bob assign probability 1/2 to this event: µa,w1(F ) = µb,w1(F ) = 1
2
.

However, in this case, exchanging their current probabilities of F does not result in any

changes to the model. This is because µ(F | H1) = µ(F | T1) = µ(F | H2) = µ(F | T2) = 1
2
.

Note that the same phenomenon occurs if we assume that the coins are perfectly correlated

(so that, in M0, we have µ(w1) = µ(w4) = 1
2

and µ(w2) = µ(w3) = 0), and the agents

exchange their current probabilities of E.

In both cases, the agents’ initial observations result in the same probability of the event

in question. In the first situation, sharing these probabilities causes the agents to become

certain of the event. In the second situation, however, sharing the probabilities does not

result in any changes to the agents’ knowledge or beliefs. The crucial difference is the agents’

higher-order information—i.e., what the agents know about the other agent’s knowledge and

beliefs. It is the higher-order information that drives the changes in the agents’ beliefs about

an event E. Suppose that agent j announces that the probability of some event E is q. Given

j’s current information partition and this announcement, the other agents can partition the

set of states into those in which j’s announcement is true (i.e., j’s current probability of E is

q) and those in which the announcement is false. The agents then use this new information

to refine their partitions.
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3.3 Information Exchanges for Common p-Belief

What type of information exchanges should be used in a dynamic characterization of Mon-

derer and Samet’s generalization of Aumann’s Theorem? That is, for an event F and an

epistemic-probability model M, what dynamic process will converge on a model in which

there is common p-belief of the agents’ current probability of F?

I start by considering a specific example. The goal is to explain how we account for the

model from Example 2.3. That is, if the above-discussed two situations from Example 3.1

represent two extreme points on a scale of different types of dynamic processes of information

exchanges, then is there an intermediate type of process that results in the model from

Example 2.3?

One way to answer this question is to use a “softer” type of belief change to represent

the agents’ initial observation. The idea is that situations such as the one described in the

model from Example 2.3 arise because the agents receive uncertain evidence about the coins.

The standard way to update beliefs given uncertain evidence is to use an approach pioneered

by Richard Jeffrey [26]. Here are some relevant details for our purpose.

In the dynamic process of information exchange described in this section, initially, each

agent receives some evidence. In the situations described above, each agent receives different

evidence (Ann receives evidence that the coin in box 1 is heads up, while Bob receives

evidence that the coin in box 2 is heads up), but both are certain that the evidence is

correct. Thus, after taking this evidence into account, Ann is certain that the coin is lying

heads up in box 1, and Bob is certain that the coin is lying heads up in box 2. Jeffrey

is interested in situations in which the agents shift their probabilities in response to some

evidence, though they do not necessarily become certain that the evidence is correct. For

instance, Ann and Bob may observe the coins in the boxes under a dim light. For a set of
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states W , Jeffrey calls a sequence (Q1 : r1, . . . , Qm : rm) a learning experience, where {Qi}

is a partition on W , for each j = 1, . . . ,m, rj ∈ [0, 1], and
∑

j rj = 1. The intuition is that

each rj is the new posterior of the partition cell Qj.

Then here is the new update rule. Given a probability µ on W , the new probability given

a learning experience (Q1 : r1, . . . , Qm : rm), denoted by µnew, of an event E is:

µnew(E) =
n∑
i=1

riµ(E | Qi).

It is not hard to see that Jeffrey updating is a generalization of conditioning: The above

equation reduces to standard conditioning with a learning sequence in which exactly one

element has a weight of 1, while all the others have weights of 0.

Starting with the initial model M0, suppose that Ann’s learning experience is (H1 :

0.9, T1 : 0.1) and Bob’s is (H1 : 0.8, T1 : 0.2). Then, the model from Example 2.3 results from

Ann and Bob applying the Jeffrey update rule and assuming that these learning experiences

are common knowledge. This type of multi-agent Jeffrey update can be represented using

the probabilistic event models and update rule from [45]. 12

However, this is not the end of the story. As noted above, if Ann and Bob share their

probabilities of the event E in the model from Example 2.3, then they will become certain in

the event E. This implies that the model from Example 2.3 can be maintained as long as Ann

and Bob do not communicate. A complete analysis should allow exchanges of information

to be intermixed with learning about an event, either by conditioning or by Jeffrey update.

We conclude with a brief discussion of some of the issues that arise when moving from

12The details of the probabilistic event models and update rules are beyond the scope of this article. One

may consult [45] for a discussion. An interesting question for future research is to explore the types of

epistemic-probability models that arise from to look at the long-run dynamics of applying of updating an

epistemic-probability model with a sequence of probabilistic event models.
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common knowledge to common p-belief. I will not arrive at a complete solution, but we will

see what I take to be the main challenge. Again, it helps to illustrate our theme with a

specific example, this time, a scenario based on the proof of Proposition 1 in [19].

Example 3.2 Suppose that M0 = 〈W, {Πa,Πb}, µ0〉, where

• W = {w1, w2, w3, w4, w5, w6, w7, w8, w9};

• Πa = {{w1, w2, w3}, {w4, w5, w6}, {w7, w8, w9}} and

Πb = {{w1, w2, w3, w4}, {w5, w6, w7, w8}, {w9}};

• for all j = 1, . . . , 9, µ(wj) = 1
9
.

Moreover, suppose that the event that we are interested in is E = {w1, w5, w9}. The relevant

model (without the probabilities) is pictured as follows – where agent a’s partition is the

solid line; agent b’s partition is the dashed line; and E is the gray ellipse:

w1 w2 w3

w4 w5 w6

w7 w8 w9

Starting with this initial model, the process of information exchanges that was described in

this section proceeds as follows:

18



• Round 1: Ann announces that her probability of E is 1
3

and Bob announces that his

is 1
4
. After the agents share these probabilities, the probabilities in E do not change.

However, Ann’s partition is refined so that Πa(w7) = {w7, w8} and Πa(w9) = {w9}.

Bob’s partition is not changed either. Thus, this refinement does not change Ann’s

and Bob’s probability for E.

• Round 2: Ann announces that her probability of E is 1
3

and Bob announces that his is 1
4
.

As a result of this announcement, Bob refines his partition so that Πb(w5) = {w5, w6}

and Πb(w7) = {w7, w8}. Once again, this refinement does not change Ann’s and Bob’s

probability for E.

• Round 3: Ann announces that her probability of E is 1
3

and Bob announces that

his is 1
4
. As a result of this announcement, Ann further refines her partition so that

Πa(w4) = {w4} and Πa(w5) = {w5, w6}. This refinement does not change Ann’s and

Bob’s probability for E.

• Round 4: Ann announces that her probability of E is 1
3

and Bob announces that

his is 1
4
. As a result of this announcement, Bob further refines his partition so that

Πb(w4) = {w4} and Πb(w1) = {w1, w2, w3}. Now Ann and Bob both assign probability

1
3

to the event E.

After round 4, the process converges since there is no new information that can be shared.

Note that, as the reader is invited to check, w1 ∈ C
1
4 (E), and this does not change during

the information exchange – until the process converges, when we have w ∈ C 1
3 (E).

So, we have identified an obvious further question at this stage. What type of information

updates will increase the p so that there is common p-belief of the event E? If we want to
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increase the common p-belief of the event E, then there needs to be a more drastic change

to Ann and Bob’s probabilities during the process of information exchange.

One natural approach is to assume that the agents receive information that changes the

relative likelihood of their information cells. For instance, suppose that in round 1, the agents

learn that Ann’s partition cell {w1, w2, w3} is twice as likely as her other cells. This can be

represented by a Jeffrey update along the lines of the ones used in the previous section. The

problem with this approach is that this type of change in the probabilities does not shift the

agents’ posteriors of the event E. Indeed, a defining feature of Jeffrey updating is that an

agent’s conditional probabilities are left unchanged [14].

So, clearly, more is to be done in analyzing the agent dynamics that we started with.

In particular, one important clue from our example is that increasing the common p-belief

of the event E is closely tied to learning about E. That is, the type of updates that will

increase common p-belief of E involve simply raising the (prior) probability of E.

We leave our discussion of probabilistic-epistemic update dynamics at this stage, hoping

to have illustrated the main issues and challenges involved in analyzing Monderer-Samet

type results and related scenarios. A complete analysis of the dynamic processes that result

from combining learning directly about an event while also allowing agents to share their

probabilities of that event will be left for another paper.

4 Logical Considerations

One obvious approach to studying the fine-structure of the scenarios discussed in the pre-

ceding sections is the introduction of logical languages and their associated techniques for

analyzing reasoning by, or about, agents.
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4.1 Epistemic Probabilistic Base Logic

Many different logical frameworks have been proposed to reason about epistemic-probability

models [17, 16, 25, 46, 45]. One may consult [13] for a comparative discussion of these

different logical frameworks. In this section, I highlight the formal language from [16, 17],

being the most natural language to formalize the agreement theorems discussed in this paper.

Suppose that At is a countable set of atomic propositions, and then, let L be the smallest

set of formulas generated by the following grammar:

p | ¬ϕ | ϕ ∧ ψ | Kiϕ | Cϕ | p1Pi(ϕ1) + · · ·+ pkPi(ϕk) ≥ q

where i ∈ A, p ∈ At and p1, . . . , pk, q are rational numbers in [0, 1]. 13 The additional

Boolean connectives (∨,→,↔) are defined as usual. This language can be interpreted on

our earlier epistemic-probability models, when we add a valuation function to interpret the

atomic propositions. Suppose that M = 〈W, {Πi}i∈A, {µi}, V 〉 is an epistemic-probability

model where V : At→ ℘(W ) is a valuation function. Truth of formulas ϕ ∈ L at a pointed

epistemic-probability model, denoted M, w |= ϕ, is defined by recursion:

• M, w |= p iff w ∈ V (p)

• M, w |= ¬ϕ iff M, w 6|= ϕ

• M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

• M, w |= Kiϕ iff w ∈ Ki([[ϕ]]M)

• M, w |= Cϕ iff w ∈ C([[ϕ]]M)

• M, w |= p1Pi(ϕ) + · · ·+ pkPi(ϕ) ≥ q iff
∑k

j=1 pjµi([[ϕj]]M | Πi(w)) ≥ q.

13Here the restriction to rational numbers ensures that the language is countable.
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It is straightforward to show that we can now also define formulas p1Pi(ϕ) + · · · +

pkPi(ϕ) ≤ q and p1Pi(ϕ)+· · ·+pkPi(ϕ) = q, with the obvious interpretations. Furthermore,

for rational numbers p, q ∈ [0, 1], it is useful to define p = q to be the formula pPi(>) +

−qPi(>) = 0 (where > is the formula p ∨ ¬p).

Excursion. In much of the literature on epistemic-probability modal logic, a more general

semantics is used, with different probability measures assigned to each state. A general

epistemic-probability model is then a structure 〈W, {Ri}i∈A, {πi}i∈A, V 〉, where W 6= ∅; for

each i ∈ A, Ri ⊆ W × W is an equivalence relation and V : At → ℘(W ) is a valuation

function. For each i ∈ A, πi assigns a probability function to each state: For each i ∈ A,

πi : W → (W ⇀ [0, 1]) such that14 for all w ∈ W ,

∑
v∈dom(πi(w))

πi(w)(v) = 1

Then, the interpretation of the earlier basic probability formula is:

M, w |= p1Pi(ϕ) + · · ·+ pkPi(ϕ) ≥ q iff
∑k

i=1 piPi(w)([[ϕ]]M) ≥ q,

where for any set X ⊆ W , Pi(w)(X) =
∑

v∈X Pi(w)(v).

There are two important differences between this model and the epistemic-probability models

used in this paper. The first is that since agents’ probability functions may vary from

state to state, the agents do not necessarily know their probability function. The second

difference is that the probability functions used to interpret the probability formulas are not

conditioned on the agents’ current information. The approach taken in this section ensures

that for all formulas ϕ, rational numbers p ∈ [0, 1] and epistemic-probability models M,

14The notation π : W ⇀ [0, 1] means that π is partial function. Let dom(π) be the domain of π. This

assumption does not play an important role in this paper, though it is is needed in order to deal with states

that should be ignored when assigning probability to an event. For instance, after ϕ is publicly announced,

the states that do not satisfy ϕ should not figure into any probabilistic calculations.
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Bp
i ([[ϕ]]M) = [[Pi(ϕ) ≥ p]]M. In both frameworks, conditional probability is definable: For

formulas ϕ and ψ, let Pi(ϕ | ψ) ≥ q be defined as Pi(ϕ ∧ ψ) +−qPi(ψ) = 0. 15

In the above language L, the agreeing to disagree theorem is expressible as follows:

C(Pa(ϕ) = p ∧Pb(ϕ) = q)→ p = q

Aumann’s result says that the above formula is valid (true at all states) on any model

in which there is a common prior. Completely formalizing this theorem would require a

formula that expresses the fact that there is a common prior. One may consult [22, 23, 18]

for approaches to this challenging problem, and [11] for a complete logical analysis of this

approach to formalizing Aumann’s Theorem.

4.2 Extension to Common p-Belief

In order to extend the above logical analysis to Monderer and Samet’s generalization of

Aumann’s theorem, we must go beyond the above formalism, and add a common p-belief

operator to the language. To do this we add, for each rational number p ∈ [0, 1], a modal

operator Cp to the language L. The interpretation of these formulas is straightforward:

M, w |= Cpϕ iff w ∈ Cp([[ϕ]]M)

In a language with common p-belief operators defined in this way, the Monderer and Samet

agreement theorem can be expressed – where the same comment as above applies about the

further task of formalizing the common prior:

Cp(Pa(ϕ) = p ∧Pb(ϕ) = q)→ ((a− b < 1− p) ∧ (b− a < 1− p))
15One further difficulty with expressing Bp

i ([[ϕ]]M) precisely is in finding formulas that express agent i’s

information at each state. See [11] for an elegant solution to this problem when formalizing Aumann’s

theorem in this more general setting, as well as other relevant results: see below.
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To the best of my knowledge, finding a complete logic for the language L with common

p-belief operators is still an open problem (cf. [16] for a brief discussion).

4.3 Dynamic Logics of Probabilistic Epistemic Update

In this richer setting, the processes of information exchange discussed in Section 3 can also

be subjected to a logical analysis using existing dynamic epistemic-probability logics [45, 12].

In particular, announcements of the agents’ current posteriors can be described in the

language using a public announcement operator. For each ϕ ∈ L (with common p-belief oper-

ators), let [ϕ]ψ be a formula with the intended interpretation is that “after ϕ is publicly an-

nounced, ψ is true”. Suppose thatM = 〈W, {Πi}i∈A, {µi}i∈A, V 〉 is an epistemic-probability

model. The model Mϕ is the structure 〈Wϕ, {Πϕ
i }i∈A, {µ

ϕ
i }i∈A, V ϕ〉, where Wϕ = W , for

all i ∈ A, Πϕ = Π
[[ϕ]]M
i , V ϕ = V , and for all µϕi (·) = µi(· | [[ϕ]]M). This assumes that only

formulas that are assigned non-zero probability are announced (cf. [12] for an illuminating

discussion of this). Truth of public announcement formulas is defined as follows:

M, w |= [ϕ]ψ iff, if M, w |= ϕ, then Mϕ, w |= ψ.

The above formula assumes that only true statements can be announced. This assumption

can be dropped (see [12] for a discussion), although this extra generality is not needed for

the purposes of this section. As a basic application, the key single step in the process of

information exchanges discussed in Section 3 is represented by the dynamic formula [Pa(ϕ) =

p ∧ Pa(ϕ) = q]ψ. A complete logic for the dynamic processes of information exchange that

underlie Aumann’s Theorem can be found in [11].
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4.4 Toward a Dynamic Logic for Common p-Belief

I conclude this section with a brief discussion of a key logical issue for the Monderer-Samet

setting. What are the recursion axioms for the common p-belief operators?

A fundamental insight in the dynamic epistemic logic literature [44] is that there is a

strong logical relationship between what is true before and after an announcement in the form

of so-called recursion axioms. The recursion axioms describe the effect of an announcement

(or indeed, any relevant sort of information-producing event) in terms of what is true before

the announcement. For instance, the reader can easily check that the following formula is

valid (i.e., true at all states) in any epistemic-probability model:

[ψ](Pi(ϕ) ≥ q)↔ (ϕ→ Pi([ψ]ϕ | ψ) ≥ q)

When a logical language becomes strictly more expressive by adding public announcement

operators, recursion axioms are not always available. Adding public announcement operators

to epistemic logic (even without probability operators) with common knowledge is such a

case. It was shown by [5] that the language of epistemic logic with common knowledge

and public announcements is more expressive than epistemic logic with common knowledge.

Therefore, a recursion axiom for formulas of the form [ϕ]Cψ does not exist.

Nonetheless, a recursion axiom-style analysis is still possible [42]. The key idea is to

introduce a conditional common knowledge operator C(ϕ, ψ) saying that ϕ is true at all

states that are reachable by finite paths of the agents’ accessible relations going through

states satisfying ϕ. There are recursion axioms in this more expressive language:

[!ψ]Cϕ↔ (ψ → C([!ψ]ϕ, ψ).

A natural question is whether this approach can be extended to common p-belief op-

erators. The answer is that we can, but the definition of conditional common p-belief op-
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erators requires some care. We first define a conditional p-belief operator: Bp
i (E,F ) =

{w | µi(E | Πi(w) ∩ F ) ≥ p}. Then, conditional common p-belief is defined as follows:

Cp(E,F ) = {w | there is a U ⊆ W such that w ∈ U ∩ F , U ⊆ Bp(U, F ), and U ⊆ Bp(E,F )}

Once this definition is in place, it is not hard to see that the following formula is valid:

[!ψ]Cpϕ↔ (ψ → Cp([!ψ]ϕ, ψ).

This section has merely given a taste of the insights that can be gained by using existing

dynamic epistemic probability logics to reason about agreement theorems and the dynamic

processes of information exchange that leads to agreement. A lot more lies ahead of us. 16

5 Conclusion

This article has raised more questions than it has answered, and its main contribution is

conceptual rather than technical. It has argued for a more fine-grained analysis of the

dynamic process of information exchange that underlies agreeing to disagree type results.

Our main goal was to develop a model that describes the evolution of the agents’ knowledge

and beliefs as they interact with each other and the environment. At each moment, the agents

receive an input. This input might be an announcement from one or more of the agents in

the group (about some property of the agent’s current beliefs, such as the probability of some

fixed event), or, more generally, some signal revealing the value of some unknown random

variable. Based on this input, the agents update their beliefs.

We have shown how concrete results from game theory sharpen our intuitions and raise

concrete issues in thinking about the preceding phenomena through the lense of probabilistic

16For further illustrations, the reader may consult [10] in a framework without probabilities.
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update steps. We also hope to have shown, or at least made it plausible to the reader, how

the logical framework discussed in Section 4 is a rich and flexible tool that can be used to

study many dynamic processes of interactive social belief change.
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