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Accuracy

Accuracy. An epistemic agent ought to approximate the truth. In
other words, she ought to minimize her inaccuracy.
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Accuracy

Accuracy (Synchronic expected local). An agent ought to
minimize the expected local inaccuracy of her degrees of
credence in all propositions A ⊆W by the lights of her current
belief function, relative to a legitimate local inaccuracy measure
and over the set of worlds that are currently epistemically possible
for her.

Accuracy (Synchronic expected global). An agent ought to
minimize the expected global inaccuracy of her current belief
function by the lights of her current belief function, relative to a
legitimate global inaccuracy measure and over the set of worlds
that are currently epistemically possible for her
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Measuring Inaccuracy

Alethic Vindication The ideal credence function at world w is the
omniscient credence function at w , namely, vw .

Perfectionism The accuracy of a credence function at a world is
its proximity to the ideal credence function at that world.

Squared Euclidean Distance Distance between credence
functions is measured by squared Euclidean distance.

Eric Pacuit 5



B. de Finetti. Theory of Probability. John Wiley and Sons, 1974.

J. Pred, R. Seiringer, E. Lieb, D. Osherson, H. V. Poor, and S. Kulkarni. Proba-
bilistic Coherence and Proper Scoring Rules. IEEE Transactions on Information
Theory, 2009.

Eric Pacuit 6



Consider a vector E = (E1, . . . ,En) of events.

A forecast for E is a vector f = (f1, . . . , fn).

Two possible defects:

1. There may be a rival forecast g that guarantees a lower
penalty than the one for f, regardless of which events come
to pass.

2. The events in E may be related by inclusion or partition and f
might violate constraints imposed by probability.

de Finetti, Predd et al., Lindley, . . . : The two defects are
equivalent.
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Brier Score

E = (E ,F ) with E ⊆ F

f = (0.6, 0.9)

E
F

w

Penalty: (0− 0.6)2 + (1− 0.9)2 = 0.37
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Proper Scoring Rule

E = (E ,F ) with E ⊆ F

f = (0.6, 0.9)

Expected Penalty for E :
0.6 ∗ (1− 0.6)2 + 0.4 ∗ (0− 0.6)2 = 0.230

Expected Penalty for E by lying:
0.6 ∗ (1− 0.65)2 + 0.4 ∗ (0− 0.65)2 = 0.2425
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Proper Scoring Rule

Suppose your probability for an event E is p, that your announced
probability is x , and that your penalty assessed according ot the
rule (1− x)2 if E comes out true; (0− x)2 otherwise. Then your
expected penalty is uniquely minimized by choosing x = p.

Absolute Deviation

Expected Penalty for E :
0.6 ∗ |1− 0.6|+ 0.4 ∗ |0− 0.6| = 0.48

Expected Penalty for E by lying:
0.6 ∗ |1− 0.65|+ 0.4 ∗ |0− 0.65| = 0.47
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E = (E ,F ) with E ⊆ F

f = (0.6, 0.9)
f ′ = (0.95, 0.55)

Penalties:

Possibility f f ′

E true, F true 0.17 0.205

E false, F true 0.37 1.105

E false, F false 1.17 1.205
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S is a sample space. Subsets of S are events. Let E = (E1, . . . ,En)
be a vector of events.

A forecast is an element of [0, 1]n. A forecast is coherent if there
is a probability measure µ over S such that for all i = 1, . . . , n,
fi = µ(Ei ).

A function s : {0, 1} × [0, 1]→ [0,∞] is a proper scoring rule in
case:

1. ps(1, x) + (1− p)s(0, x) si uniquely minimized at x = p for
p ∈ [0, 1].

2. s is continuous. For i ∈ {0, 1}, limn→∞ s(i , xn) = s(i , x) for
any sequence xn from [0, 1] converging to x .

Eric Pacuit 12



S is a sample space. Subsets of S are events. Let E = (E1, . . . ,En)
be a vector of events.

A forecast is an element of [0, 1]n. A forecast is coherent if there
is a probability measure µ over S such that for all i = 1, . . . , n,
fi = µ(Ei ).

A function s : {0, 1} × [0, 1]→ [0,∞] is a proper scoring rule in
case:

1. ps(1, x) + (1− p)s(0, x) si uniquely minimized at x = p for
p ∈ [0, 1].

2. s is continuous. For i ∈ {0, 1}, limn→∞ s(i , xn) = s(i , x) for
any sequence xn from [0, 1] converging to x .

Eric Pacuit 12



S is a sample space. Subsets of S are events. Let E = (E1, . . . ,En)
be a vector of events.

A forecast is an element of [0, 1]n. A forecast is coherent if there
is a probability measure µ over S such that for all i = 1, . . . , n,
fi = µ(Ei ).

A function s : {0, 1} × [0, 1]→ [0,∞] is a proper scoring rule in
case:

1. ps(1, x) + (1− p)s(0, x) si uniquely minimized at x = p for
p ∈ [0, 1].

2. s is continuous. For i ∈ {0, 1}, limn→∞ s(i , xn) = s(i , x) for
any sequence xn from [0, 1] converging to x .

Eric Pacuit 12



Penalty

Given a proper scoring rule s, the penalty Ps based on s for
forecast f and w ∈ S is given by:

Ps(w , f) =
n∑

i=1

s(χEi
(w), fi )

f is weakly dominated by g in case Ps(w , g) ≤ Ps(w , f) for all
w ∈ S .

f is weakly dominated by g in case Ps(w , g) < Ps(w , f) for all
w ∈ S .
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Theorem Let f be a forecast.

1. If f is coherent, then it is not weakly dominated by any
forecast g 6= f

2. If f is incoherent, then it is strongly dominated by some
coherent forecast g
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b(wH , (r1, r2))

wH : The coin is facing heads up.

wT : The coin is facing tails up.
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Suppose that F is an algebra, WF is the set of “ideal credences”,
i.e., for a state w , vw ∈WF is defined as follows, for each X ∈ F :

vw (X ) =

{
1 w ∈ X

0 otherwise

CF is the set of credences over F (non-negative real-valued
functions on F).

Inaccuracy measure: I : WF × CF → [0,∞] is measure for
credence functions on F .
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Credal Veritism the only source of value for credences that is
relevant to their epistemic status is their gradational accuracy,
where the gradational accuracy of a credence in a true proposition
is higher when the credence is closer to 1, which we might think of
as the ideal or vindicated credence in a true proposition, while the
gradational accuracy of a false proposition is higher when the
credence is closer to 0, which we might think of as the ideal or
vindicated credence in a false proposition. Thus, the only source of
disvalue for credences is their gradational inaccuracy.
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Example: Brier Score

Suppose that W is a set of states, F is a set of propositions, c is a
credence function on F and for w ∈W , vw : F → {0, 1} is a
“valuation function”. The brier score for c is:
b : WF × CF → [0,∞]

b(w , c) =
∑
X∈F
|vw (X )− c(X )|2
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Joycean Inaccuracy

Structure: For each w ∈W , I (w , c) is a non-negative, continuous
function that goes to infinity in the limit as c(X ) goes to infinity
for any X .

Extensionality: At each possible world w , I (w , c) is a function of
nothing other than the truth-values that w assigns to propositions
and the degrees of confidence that c assigns these propositions
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Joycean Inaccuracy

Dominance: The accuracy of a system of degrees of belief is an
increasing function of the believer’s degree of confidence in any
truth and a decreasing function of her degree of confidence in any
falsehood.

If c(Y ) = c∗(Y ) for every Y ∈ F other than X , then
I (w , c) > I (w , c∗) if and only if |vw (X )− c(x)| > |vw (X )− c∗(X )|

Normality If |vw (X )− c(X )| = |vw∗(X )− c∗(X )| for all X ∈ F ,
then I (w , c) = I (w∗, c∗).
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Strong Convexity: For any two distinct credence functions that
are equally inaccurate at a given world, the third credence function
obtained by “splitting the difference” between them and taking an
equal mixture of the two is less inaccurate than either of them.
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Joyce’s Theorem. Suppose that F is an algebra and
I : WF × CF → [0,∞] is a Joycean inaccuracy measure for
credence functions on F . Now suppose that c∗ is a credence
function in CF that violates Probabilism. Then, there is a credence
function c ′ ∈ CF satisfying Probabilism such that
I (w , c ′) < I (w , c) for all w ∈WF .
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Naive Dominance A rational agent will not adopt an option
when there is another option that has lower disutility at all worlds.

Eric Pacuit 24



Joyces accuracy argument for Probabilism

1. Credal Veritism + Joycean Inaccuracy

2. Naive Dominance

3. Joyce’s Theorem

Therefore,

4 Probabilism
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Good egg (s1) Bad egg (s2)

Break into a
bowl (A1)

six egg omelet
(o1)

no omelet and
five good eggs
destroyed (o2)

Break into a
cup (A2)

six egg omelet
and a cup to

wash (o3)

five egg omelet
and a cup to

wash (o4)

Throw away
(A3)

five egg omelet
and one good
egg destroyed

(o5)

five egg omelet
(o6)

EUp(A) =
∑

i p(si )U(A(si ))
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Throw away
(A3)

five egg omelet
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s1 s2 · · · sn−1 sn

A1 · · · EUp(A1)

A2 · · · EUp(A2)

...
...

...

Am−1 · · · EUp(Am−1)

Am · · · EUp(Am)

EUp(A) =
∑

i p(si )U(si ,A)

EUp(A) =
∑

i p(si )U(si , psi )
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s1 s2 · · · sn−1 sn

A1 ps1 ps2 · · · psm−1 psn EUp(A1)

A2 qs1 qs2 · · · qsm−1 qsn EUp(A2)

...
...

...

Am−1 rs1 rs2 · · · rsm−1 rsn EUp(Am−1)

Am os1 os2 · · · osm−1 osn EUp(Am)

For each i , xsi is a probability on S .

I.e., ps2 : S → [0, 1] with
∑

i ps2(si ) = 1
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Mike has a coin. He is unsure as to whether or not it is a fair coin
specifically, he assigns 50% credence to its being fair but he is (let
us suppose) certain that either it is fair or it is weighted in such a
way that the chances for outcomes (Heads,Tails) on a given toss
are (14 ,

3
4) respectively. The coin is about to be tossed; after

observing the result of the toss, Mike will reassess his degrees of
belief as to whether or not the coin is fair. He must decide in
advance how the reassessment will proceed: which credence
distribution he will move to if he sees heads, and which if he sees
tails. We want to know how that decision should proceed.
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The agent contemplates a set S of (mutually exclusive and jointly
exhaustive) possible states of the world; he is unsure as to which
element of S obtains.

S = {sFH , sFT , sUH , sUT}
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sFH sUH sFT sUT

A1 psFH psUH psFT psUT

A2 qsFH qsUH qsFT qsUT
...

...
...

...
...

Am−1 rsFH rsUH rsFT rsUT

Am xsFH xsUH xsFT xsUT

sFH1
4

sUH 1
8

sFT1
4

sUT 3
8

sFH1
4

sUH 1
8

sFT1
4

sUT 3
8

EU(A) =
∑

i p(si )U(A(si ))
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U(s, ps) = −(1− p(s))2 −
∑
s ′ 6=s

(0− p(s ′))2
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U(H, p(H)) = −(1− p(H))2 − (0− p(T ))2

= −(1− p(H))2 − (0− (1− p(H)))2

= −(1− p(H))2 − (p(H)− 1)2

= −(1− 2p(H) + (p(H))2 − ((p(H))2 − 2p(H) + 1)

= −2(p(H))2 + 4p(H)− 2
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sFH0.9 sUH r2

sFTr3 sUT r4

U(sFH , (0.9, 0.1, 0, 0)) = −0.12 − 0.12 = −0.02

U(sFH , (0.9, 0.05, 0.05, 0)) = −0.12 − 0.052 − 0.052 = −0.02 = −0.015

U(sFH , (0.9, 0.033, 0.033, 0.034)) = −0.12 − 0.052 − 0.052 = −0.013334
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sFH sUH sFT sUT

A1 pH pH pT pT
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...
...

...
...
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0.25 ∗ (−0.22) + 0.125 ∗ (−0.889)
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sFH sUH sFT sUT

A1 pH pH pT pT

A2 qH qH qT qT
...

...
...

...
...

Am−1 rsFH rsUH rsFT rsUT

Am xsFH xsUH xsFT xsUT

0.25 ∗ (−0.5) + 0.125 ∗ (−0.5)

+0.25 ∗ (−1.125) + 0.375 ∗ (−0.125)

= −0.515625
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sUH 1
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sFT1
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constant acts
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s1 s2 · · · sn−1 sn

A1 ps1 ps2 · · · psm−1 psn EUp(A1)

A2 qs1 qs2 · · · qsm−1 qsn EUp(A2)
...

...
...

kq q q · · · q q EUp(Am−1)

kr r r · · · r r EUp(Am−1)
...

...
...

Am−1 rs1 rs2 · · · rsm−1 rsn EUp(Am−1)

Am ps1 ps2 · · · psm−1 psn EUp(Am)

EUp(kq) =
∑

i p(si )U(si , q)
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p recommends q, denoted p
R−→ q, iff when the only available

acts are the constant acts, kq maximizes expected utility calculated
with respect to p, i.e., for all r ∈ P, EUp(kq) ≥ EUp(kr ).

if p recommends no distribution distinct from q, then p strongly
recommends q.

if p recommends p, then p is self-recommending. Iff, in addition,
p recommends no distribution distinct from p, say that p is
strongly self-recommending. Iff p is not self-recommending, say
that p is self-undermining.
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U is everywhere stable iff, according to U, every probability
distribution is self-recommending.

U is everywhere strongly stable iff, according to U, every
probability distribution is strongly self-recommending.

U is partly stable iff, according to U, some probability
distributions are self-recommending and others are
self-undermining.

U is nowhere stable iff, according to U, every probability
distribution is self-undermining.
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Conditionalization from prior p∗: given experiment E , Cond is
defined by

Cond : For all Ej ∈ E , Cond(Ej) = p∗(· | Ej)

Quasi-Conditionalization from prior p∗ given experiment E :
given experiment E , QC is defined by

QC: For all Ej ∈ E , QC(Ej) = {q ∈ P | Cond(Ej)
R−→ q}
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Theorem. Of all acts that are available given and experiment E ,
each quasi-conditionalizing updating rule is optimal. I.e.,

∀Q ∈ QC, ∀R ∈ AE ,EUp∗(Q) ≥ EUp∗(R)
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For any act R,

EUp∗(R) =
∑

s∈S p
∗(s)U(s,R(s))

=
∑

Ej∈E
∑

s∈Ej
p∗(s)U(s,R(Ej))

=
∑

Ej∈E
∑

s∈Ej
p∗(s ∧ Ej)U(s,R(Ej))

=
∑

Ej∈E
∑

s∈Ej

p∗(Ej )
p∗(Ej )

p∗(s ∧ Ej)U(s,R(Ej))

=
∑

Ej∈E p(Ej)(
∑

s∈Ej
p∗(s | Ej)U(s,R(Ej)))

=
∑

Ej∈E p(Ej)EU
p∗(· | Ej )(kR(Ej ))
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For Q ∈ QS, EUp∗(Q) =
∑

Ej∈E p
∗(Ej)EU

p∗(· | Ej )(kQ(Ej ))

For all Q ∈ QS, for all Ej ∈ E , Cond(Ej)
R−→ Q(Ej)

For all Q ∈ QC, for all Ej ∈ E , for all R ∈ A,

EUp∗(· | Ej )(kQ(Ej )) ≥ EUp∗(· | Ej )(kR(Ej ))

∑
j

p∗(Ej)EU
p∗(· | Ej )(kQ(Ej )) ≥

∑
j

p∗(Ej)EU
p∗(· | Ej )(kR(Ej ))
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∀Q ∈ QC, ∀R ∈ AE ,EUp∗(Q) ≥ EUp∗(R)

I Have we shown that every quasi-conditional act is optimal,
without any assumptions on the utility functions?? No!

I In the absences of information about the utility function, we
have no idea what the recommended probabilitites
{Q(Ej)}Ej∈E are.

I We know that all quasi-conditional acts are optimal, but we
do not know which acts those are.
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Corollary 1. Conditionalization is optimal for a given experiment
E if the conditional probabilities {p∗(· | Ej) | Ej ∈ E} are
self-recommending. If, in addition, at least one of the conditional
probabilities is strongly self-recommending, then conditionalization
is strongly optimal.

Corollary 2. If the agents epistemic utility function U is
everywhere stable, then conditionalization is optimal. If U is
everywhere strongly stable, then conditionalization is strongly
optimal.
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U(s, p) = −
∑
X⊆S

λX (χX (s)− p(X ))2
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H. Greaves. Epistemic decision theory. Mind (2013).
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(1) What an agent believes does not causally influence the truth of
the propositions that her beliefs are about.

(2) While one generally hopes that the agent is more likely to
believe that P if P is true than if P is false, still the fact that S
believes that P on the basis of evidence E is not itself additional
evidence in favor of, or against, P.
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Promotion

Alice is up for promotion. Her boss, however, is a deeply insecure
type: he is more likely to promote Alice if she comes across as
lacking in confidence. Furthermore, Alice is useless at play-acting,
so she will come across that way iff she really does have a low
degree of belief that shes going to get the promotion. Specifically,
the chance1 of her getting the promotion will be 1− x , where x is
whatever degree of belief she chooses to have in the proposition P
that she will be promoted. What credence in P is it epistemically
rational for Alice to have?
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Leap

Bob stands on the brink of a chasm, summoning up the courage to
try and leap across it. Confidence helps him in such situations:
specifically, for any value of x between 0 and 1, if Bob attempted
to leap across the chasm while having degree of belief x that he
would succeed, his chance of success would then be x . What
credence in success is it epistemically rational for Bob to have?
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Arrogance

Dennis is wondering whether or not he is arrogant. He takes a low
(resp. a high) degree of belief that one is arrogant to be evidence
for the proposition that one in fact is (resp. is not) arrogant:
specifically, his credence in the proposition A that he is arrogant,
conditional on the proposition that he will end up with credence x
in A, is 1− x , for all x ∈ [0, 1]. What credence is it epistemically
rational for Dennis to have in the proposition A that he is arrogant?
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Imps

Emily is taking a walk through the Garden of Epistemic Imps. A
child plays on the grass in front of her. In a nearby summerhouse
are n further children, each of whom may or may not come out to
play in a minute. They are able to read Emily’s mind, and their
algorithm for deciding whether to play outdoors is as follows. If she
forms degree of belief 0 that there is now a child before her, they
will come out to play. If she forms degree of belief 1 that there is a
child before her, they will roll a fair die, and come out to play iff
the outcome is an even number.
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Imps

More generally, the summerhouse children will play with chance
1− 1

2q(C0), where q(C0) is the degree of belief Emily adopts in
the proposition C0 that there is now a child before her. Emily’s
epistemic decision is the choice of credences in the proposition C0

that there is now a child before her, and, for each j = 1, . . . , n, the
proposition Cj that the jth summerhouse child will be outdoors in
a few minutes’ time.
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Imps

1. Emily has conclusive evidence that there is now a child before
her, so presumably she should retain her degree of belief 1 in
the proposition C0 that indeed there is.

2. There will be a chance of 0.5 of each summerhouse child
coming out to play, so she should have credence 0.5 in each
Ci .

3. If Emily can just persuade herself to ignore her evidence for
C0, and adopt (at the other extreme) credence 0 in C0, then,
by adopting degree of belief 1 in each Cj (j = 1, . . . , 10) she
can guarantee a perfect match to the remaining truths.

Is it epistemically rational to accept this ‘epistemic
bribe’?
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Savage Decision Theory

EUCr (a) =
∑
s∈S

Cr(s)U(s & a)
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If the state partition is simply that over which the agent is
selecting credences, since the epistemic utility function is a proper
scoring rule and no new information is to be acquired, the theory
will simply recommend retaining ones initial credences, whatever
they happen to be. This epistemic decision theory will therefore
not capture the sense in which, for example, any credence in P
other than 0.5 in the Promotion case is epistemically deficient.

The predictions of ‘Savage’ EDT depend on the state partition. For
example, in the Promotion case, if the states are propositions that
specify how the chance of promotion depends on the agents choice
of epistemic act, the theory does indeed recover the intuitively
correct result that only credence 0.5 in P is rationally permitted
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Deterrence Problem: You park your car in a dodgy neighbourhood.
A hooligan approaches you, and tells you that he will probably
smash your windscreen while youre gone unless you pay him $10
now; if you do pay, he will probably leave your car alone. The acts
are {pay, donot pay}. What should you do?
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Evidential Decision Theory

EUCr (a) =
∑
s∈S

Cr(s | a)U(s & a)
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Newcomb’s Paradox

Two boxes in front of you, A and B.

Box A contains $1,000 and box B contains either $1,000,000 or
nothing.

Your choice: either open both boxes, or else just open B. (You can
keep whatever is inside any box you open, but you may not keep
what is inside a box you do not open).
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Newcomb’s Paradox

A very powerful being, who has been invariably accurate in his
predictions about your behavior in the past, has already acted in
the following way:

1. If he has predicted that you will open just box B, he has in
addition put $1,000,000 in box B

2. If he has predicted you will open both boxes, he has put
nothing in box B.

What should you do?

R. Nozick. Newcomb’s Problem and Two Principles of Choice. 1969.
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Newcomb’s Paradox

B = 1M B = 0

1 Box 1M 0

2 Boxes 1M + 1000 1000

B = 1M B = 0

1 Box h 1− h

2 Boxes 1− h h
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Newcomb’s Paradox

In this case, Jeffrey’s theory predicts that you should take only the
opaque box. But this, as is generally (if not universally) accepted,
is the wrong answer.
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I Orthodox Bayesian: It is a problem of act-state dependence
(1-box)

I Causal Decision Theory: expected utility involves probabilities
of causal counterfactuals (2-box)

I No Acyclic Reasons: reasoning cannot refer to the act of
choice in an essential way (2-box)...plus some “mental
gymnastics” (1-box)

I “Tickle”: Pr( page box contain $0 | T & 1-box) =
Pr( page box contain $0 | T & 2-box) (2-box)

I Evidential Decision Theory: decisions to act provides evidence
for the consequences (1-box)

I Ratifiability: decision makers must assess the act in light of
the decision to perform it and only choose acts that are
self-ratifiable (1-box)
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Causal Decision Theory

A. Egan. Some Counterexamples to Causal Decision Theory. Philosophical
Review, 116(1), pgs. 93 - 114, 2007.
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The Psychopath Button: Paul is debating whether to press the
‘kill all psychopaths’ button. It would, he thinks, be much better
to live in a world with no psychopaths.

Unfortunately, Paul is quite
confident that only a psychopath would press such a button. Paul
very strongly prefers living in a world with psychopaths to dying.
Should Paul press the button?

(Set aside your theoretical commitments and put yourself in Paul’s
situation. Would you press the button? Would you take yourself to
be irrational for not doing so?)
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p(press buttondead) = 0.001

p(press buttonlive in a world without psychopaths) = 0.999

This is because Paul either is or is not a psychopath, and the
probability of the two possibilities does not depend on what he
decides to do.
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Press Button: p(press buttondead) · u(dead) +
p(press buttonlive in a world without psychopaths) ·
u(live in a world without psychopaths) =
(0.001 · −100) + (0.99 · 1) = 0.89

Do Not Press Button:
p(do not press buttonlive in a world with psychopaths) ·
u(live in a world with psychopaths) = 1 · 0 = 0
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Death in Damascus

A man in Damascus knows that he has an appointment with
Death at midnight. He will escape Death if he manages at
midnight not to be at the place of his appointment. He can be in
either Damascus or Aleppo at midnight.

As the man knows, Death
is a good predictor of his whereabouts. If he stays in Damascus, he
thereby has evidence that Death will look for him in Damascus.
However, if he goes to Aleppo he thereby has evidence that Death
will look for him in Aleppo. Wherever he decides to be at
midnight, he has evidence that he would be better off at the other
place. No decision is stable.

A. Gibbard and W. Harper. Counterfactuals and Two Kinds of Expected Utility.
In Ifs: Conditionals, Belief, Decision, Chance, and Time, pp. 153190, 1978.
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Ratifiability

The notion of ratifiability is applicable only where, during
deliberation, the agent finds it conceivable that he will not manage
to perform the act he finally decides to perform, but will find
himself performing one of the other available acts instead...The
option in question is ratifiable or not depending on whether or not
the expected desirability of actually carrying out each of the
alternatives (in spite of having chosen to carry out a different
option, as hypothesized) (Jeffrey, 1983, pgs. 18-20)
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Deliberational Decision Theory

A rational agent should not necessarily perform the act that has
highest expected utility according to her initial credences; rather,
she should allow her credences to develop according to a specified
dynamical rule (which rule involves the expected utilities of the
acts under consideration), and she should perform the mixed act
with probabilities equal to her equilibrium credences.

This theory gives intuitively reasonable judgements in all problem
cases considered to date.
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A problem for Epistemic Decision Theory

Causal practical decision theory would issue the correct verdict on
a practical analogue of our Imps case, but we have no epistemic
decision theory that deals adequately with this case.

There is no theory that recovers the obviously correct result that
an agent (epistemically-) should retain credence 1 in propositions
for which she has conclusive evidence, even in the face of
‘epistemic bribes’.

Problem: a decision-theoretic utility function always assesses
epistemic utility globally, and hence will always be open to the
move of increasing overall expected epistemic utility by making a
sacrifice of a relatively small number of propositions; our intuitive
notion of epistemic rationality, meanwhile, does not seem to
exhibit this willingness.
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Perfectionism The accuracy of a credence function at a world is
its proximity to the ideal credence function at that world.
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Let S be a set. A distance is a function D : S × S → R+
0 such

that

I D is non-negative: D(c , c ′) ≥ 0 with equality iff c = c ′

I D is symmetric: D(c, c ′) = D(c ′, c)

I D satisfies triangle inequality: D(c, c ′′) ≤ D(c , c ′) + D(c ′, c ′′)

We will assume that D satisfies non-negativity. I.e., D is a
divergence.
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Perfectionism If I is a legitimate inaccuracy measure, there is a
divergence D such that I (w , c) = D(iw , c). Recall: iw is the ideal
or vindicated credence function at w . We say that D generates I
(relative to that notion of vindication).
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Brier Accuracy

Alethic Vindication The ideal credence function at world w is
the omniscient credence function at w , namely, vw .

Squared Euclidean Distance Distance between credence
functions is measured by squared Euclidean distance.
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Additivity

If I is a legitimate (global) measure of inaccuracy, then there is a
local measure of inaccuracy s such that

I (w , c) =
∑
X∈F

s(iw (X ), c(X ))

where iw is the ideal credence at w .
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When we say that we represent an agent by her credence function,
it can sound as if we’re representing her as having a single, unified
doxastic state.

Really, we are just representing her as having an agglomeration of
individual doxastic states, namely, the individual credences she
assigns to the various propositions about which she has an opinion.
A credence function is simply a mathematical way of representing
this agglomeration; it is a way of collecting together these
individual credences into a single object.
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I is a legitimate inaccuracy measure, then there is a divergence D
such that

I I (w , c) = D(iw , c) (in such a case, we write I = ID)
I There is a function s : [0, 1]× [0, 1]→ [0,∞] such that

• for all x , y ∈ [0, 1], s(x , y) ≥ 0 with equality if x = y .
• D(c , c ′) =

∑
X∈F s(c(X ), c ′(X ))
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Continuity If I is a legitimate inaccuracy measure and there is a
divergence D generated by s such that

I (w , c) = ID(w , c) = D(iw , c) =
∑
X∈F

s(iw (X ), c(X ))

then s(x , y) is continuous in both its arguments.
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To demand that s is continuous in its second argument is to say
that there are no ‘jumps’ in inaccuracy as credences change - that
is, small changes in credence will give rise to small changes in
inaccuracy; there can be no small shift in credence that is
accompanied by a large jump in inaccuracy.
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Calibration

Granting that [an agent] is going to think always in the same way
about all yellow toadstools, we can ask what degree of confidence
it would be best for him to have that they are unwholesome. And
the answer is that it will in general be best for his degree of belief
that a yellow toadstool is unwholesome to be equal to the
proportion of yellow toadstools that are unwholesome. (This
follows from the meaning of degree of belief.)
adf (Ramsey, 1931, 195)
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Decomposition If I is a legitimate inaccuracy measure generated
by a divergence D, then there are α, β such that

D(vw , c) = αD(cw , c) + βD(vw , c
w )

cw is the ideally calibrated credence in w .
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Theorem (Pettigrew). Suppose Alethic Vindication, Perfectionism,
Divergence Additivity, Divergence Continuity and Decomposition.
Then, if I is a legitimate inaccuracy measure, there is an additive
Bregman divergence D such that I (w , c) = D(vw , c).
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Symmetry If I is a legitimate inaccuracy measure generated by a
divergence D, then D is symmetric: that is, D(c , c ′) = D(c ′, c) for
all c , c ′
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Theorem (Pettigrew). Suppose Alethic Vindication, Perfectionism,
Divergence Additivity, Divergence Continuity, Decomposition, and
Symmetry. Then, if I is a legitimate inaccuracy measure, then I is
the Brier score or some linear transformation of it.
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