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Abstract

This paper compares inference to the best explanation with Bayes’ rule in a social
setting, specifically, in the context of a variant of the Hegselmann-Krause model
in which agents do not only update their belief states on the basis of evidence
they receive directly from the world but also take into account the belief states of
their fellow agents. So far, the update rules mentioned have been studied only in
an individualistic setting, and it is known that in such a setting both have their
strengths as well as their weaknesses. Here, it is shown that in a social setting,
inference to the best explanation outperforms Bayes’ rule according to every
desirable criterion.

It is widely agreed that, at least as a matter of sociological fact, our scientific activities are
aimed at more than producing predictively accurate theories. We seek for theories that
also explain the data, that make us understand why the data are as they are. It is more
controversial whether prediction and explanation ought to both play a part (whether or
not these parts are equal) in the epistemic evaluation of scientific theories. If one theory
is predictively as successful as another, but the former is a better explanation of the data
than the latter, does that mean that we should put greater confidence in the former?

There is evidence indicating that people do tend to invest more confidence in a
hypothesis, the better that hypothesis explains the data.' According to some theorists—
often called “explanationists”—this tendency has a rational basis. In the opinion of
these theorists, the so-called inference to the best explanation (IBE), which in its sim-
plest form licenses an inference to the truth of the hypothesis that best explains the
available data (Harman [1965], p. 324), is a key normative principle of both everyday
and scientific reasoning.®

'See, e.g., (Koehler [1991]), (Pennington and Hastie [1992]), (Lombrozo [2006], [2007]), and (Lom-
brozo and Carey [2006]).

See, among many others, (Boyd [1984]), (Musgrave [1988]), (McMullin [1992]), (Psillos [1999]), and
(Lipton [2004]).



The normative status of IBE has long been questioned by advocates of Bayesian
confirmation theory. According to these philosophers, IBE faces two challenges, one
from dynamic Dutch book considerations, the other from inaccuracy minimization
considerations. However, it was shown in (Douven [2013]) that IBE can meet both
challenges: even if adherence to IBE were to make one vulnerable to Dutch books,
the rule has compensating advantages; and inaccuracy minimization considerations
actually favor IBE over Bayes’ rule, given various plausible understandings of what it
is to minimize inaccuracy. At the same time, the results that have been published so
far show that there is still a sense of inaccuracy minimization—expressed in terms of
average incurred penalties as measured by some standard scoring rule—in which Bayes’
rule may outperform IBE, leaving the question of which of the two rules (if either) is to
be preferred still open.

The aforementioned results pertain to comparisons of IBE and Bayes’ rule in a
strictly individualistic setting, which presupposes agents to update their beliefs on in-
coming information whilst completely disregarding the beliefs of other agents. Lately,
researchers from various quarters have started to draw attention to the fact that this
presupposition is often far from realistic: in reality, our beliefs and belief changes may
depend as much on our interactions with others—parents, children, teachers, students,
colleagues—as on the evidence we receive immediately from the world. This paper
considers both IBE and Bayes’ rule in a social setting, in which agents can communicate
their beliefs to others and thereby influence those others’ beliefs. As a formal frame-
work for studying and comparing the rules, we use an extension of the well-known
Hegselmann-Krause model for opinion dynamics, which allows an agent to update
partly on the basis of the belief states of her epistemic neighbors, that is, agents whose
belief states are not too far off (in a certain sense) from the agent’s own belief state. The
upshot will be that if agents do not only update their degrees of belief on the basis of
evidence but also take into account the degrees of belief of their epistemic neighbors,
then the noted advantage of Bayesian updating evaporates and IBE does better than
Bayes’ rule on every reasonable understanding of inaccuracy minimization.

Any comparison of IBE and Bayes’ rule requires two issues to be clarified first:
(i) given that IBE lacks a canonical formulation, we must know which rule exactly
we are to compare with Bayes’ rule; and (ii) we must know along which dimension
or dimensions the rules are to be compared with each other. The first two sections
address these issues, Section 1 presenting a precise probabilistic version of IBE and
Section 2 describing the criteria (directly related to the already mentioned Dutch book
and inaccuracy minimization considerations) that have been used for comparing IBE
and Bayes’ rule in a context of individualistic epistemology. Then, in Section 3, we turn
to an evaluation of IBE and Bayes’ rule in the context of social epistemology.

1. What is inference to the best explanation? In the literature, one finds a number
of different principles proposed under the heading of IBE. All these principles share the
broad idea—call this “the core idea”—that inference is to be governed by considerations



of explanatory goodness. What is further common to most of them is that they are
stated in terms of a categorical notion of belief or acceptance, as when we are told that
“[i]t is reasonable to accept a satisfactory explanation of any fact, which is the best
available explanation of that fact, as true” (Musgrave [1988], p. 239; italics omitted), or
that “IBE authorises the acceptance of a hypothesis H, on the basis that it is the best
explanation of the evidence” (Psillos [2004:83]; italics omitted), or that the guiding idea
behind IBE is that “a hypothesis is accepted on the basis of a judgement that it best
explains the available evidence” (Psillos [2007], p. 442). These and similar formulations
may suggest that IBE belongs to (in Foley’s [1992] terminology) the epistemology of
belief—which is concerned with categorical beliefs—rather than to the epistemology
of degrees of belief. If this suggestion were correct, the debate between Bayesians
and explanationists might boil down to the more general debate between Bayesians
and mainstream epistemologists about whether categorical belief talk has a place in
scientific philosophy. But we are not aware of any theorists holding that explanationists
are committed to the epistemology of belief. And while explications of the core idea in
probabilistic terms are few, they are not altogether absent from the literature.

In fact, a number of authors have recently sought to state IBE in such a way as to
make it consistent with Bayes’ rule, and thus dissolve the apparent opposition between
explanationists and Bayesians. According to these authors, Bayesians should even
welcome the insight that explanation has confirmation-theoretic import, as it provides
them with a much-needed supplement to their doctrine.”

To see why they think this, first recall that to apply Bayes’ rule and thereby determine
the probability to be assigned to a hypothesis H upon the receipt of evidence E, one
must be able to assign unconditional probabilities to H and E (the “prior” of H and
the “marginal likelihood” of E) as well as a probability to E conditional on H (the
“likelihood” of H on E). Where are these values to come from? For some hypotheses
and pieces of evidence, the likelihood can be determined analytically; for instance, the
likelihood of “Coin C has a bias for heads of .7” on “The next toss with C will be heads”
equals .7. However, the kind of case where semantic analysis suffices to fix priors and
likelihoods is special. For the remaining cases, Bayesians have little to offer beyond
the contention that, in those cases, any choice of priors and likelihoods is as good as
any other, as long as the choice respects the axioms of probability. Most Bayesians are
well aware, however, that this subjectivist feature of their doctrine is the single most
important reason for others not to endorse it.

The aforementioned authors believe that IBE can help Bayesians precisely in over-
coming the subjectivism that adheres to their position. According to these authors, the
solution is to adopt as a further principle that priors and likelihoods are to be based on
explanatory considerations. For instance, if H is an a priori better explanation than H*
is (e.g., because H is mathematically simpler than H*), then H ought to receive a higher
prior than H*. Similarly, if H is a better explanation of E than H* is, then the likelihood
of H on E should be higher than the likelihood of H* on E. Thus understood, IBE is

3See, for instance, (Okasha [2000]), (Lipton [2004], Ch. 7), and (Weisberg [2009]).



not in competition with Bayes’ rule. It could hardly be, given that on this construal IBE
is not an update rule at all, but rather helps with preliminary work that is to be carried
out before Bayes’ rule can be applied.

Even if the proposal is granted, the constraints it places on priors and likelihoods are
still so weak—in general, there will be indefinitely many ways to comply with them—that
it will do little to persuade those who are offended by the subjective nature of Bayesian
rationality. Moreover, many explanationists will have envisioned a more substantive
confirmation-theoretic role for explanatory considerations. They will insist that, while
such considerations may help in determining priors and likelihoods, IBE is an update
rule in its own right, and as such on a par with Bayes’ rule, rather than subservient to it.

Somewhat ironically, the possibly most straightforward explication of IBE as a
probabilistic update rule is to be found in the writings of Bas van Fraassen, one of
IBE’s staunchest critics. In the following, we use the label “IBE” for the probabilistic
interpretation of the explanationist’s core idea that van Fraassen ([1989], Ch. 6) proposes,
and keep using “IBE” for the core idea itself. To state IBE, let {H;};, be a set of
self-consistent, mutually exclusive, and jointly exhaustive hypotheses, and let Pr(-) be
one’s probability function prior to learning E. Then, for all i, one’s new probability for
H; after E (and nothing stronger) has been learnt—designated by “Pr[E](H;)”—comes
from Pr via IBE iff

Pr(H;) Pr(E|H,) + f(H;,E)

Pr{E)(H,) = '
D= (e PrE T H) + 7(H, B))

Here, f is a function that assigns a bonus ¢ > 0 to the hypothesis that explains the given
evidence E best in light of the background knowledge, and that assigns zero to the other
hypotheses.

Thus understood, IBE amounts to a generalization of Bayes’ rule: the latter is the
instance of the above schema with f the constant 0 function. Bayes’ rule is known to be
equivalent to the conjunction of Certainty and Rigidity. According to Certainty, after
updating on E, E has probability 1, and according to Rigidity, probabilities conditional
on E remain as they were before the update on E. One readily verifies that IBE violates
the latter condition if ¢ > 0. For let Pr(H; | E) = a/b (for some a > 0, b > 0). Then,
where Hjis the best explanation of E, Pr[E](H;) = (a + 0)/(b + ¢) < Pr(H; | E) ifi # j,
and Pr[E](H;) = (a+¢)/(b+c) > Pr(H; | E) ifi = j.

To be sure, IBE is properly called an update rule only when the function f has been
specified. To provide a general definition of this function is a tall order, given that f is to
assign bonuses for best explanations, and that there is no unanimity on what is required
for a hypothesis to count as the best explanation; worse yet, there is no unanimity on
what counts as an explanation. This is not a problem specifically for explanationists. It
is a problem for anyone—whatever his or her confirmation-theoretic leanings—who
holds that explaining is among the core scientific activities, and that philosophers of
science should be able to account for such activities.

Van Fraassen sidesteps this problem by comparing IBE and Bayes’ rule in the context
of a simple statistical model which affords an arguably uncontentious characterization of



best explanation. We follow suit here. The model van Fraassen considers consists of a set
{H;}o<i<10 of eleven hypotheses concerning the bias of a given coin C, where for each i,
H; is the hypothesis that C has a bias for heads of i/10; it is assumed that one of these
hypotheses is true. Then, where E; indicates that the outcome of the j-th toss in a series
of tosses with C is E, van Fraassen defines H; to best explain heads; iff i/10 is closer to
the frequency of heads in the first j tosses with C than k/10, for k € {0, ..., 10} with
k # i. Note that, given this definition, it can happen that two different bias hypotheses
both qualify as best explanations for the same evidence; for instance, if there have been
64 heads in the first 99 tosses, then, in light of the background knowledge, both Hy and
H,, best explain heads .

As for the definition of f, let f(H;, E;) = c if H; is the unique best explanation of
Ejlet f(H;, E;) = f(Hy, Ej) = 0.5cif, for i # k, both H; and H, best explain Ej; and
let f(H;, E;) = 0 otherwise. As stated, IBE can be said to explicate IBE only if ¢ > 0;
later on, we will be more specific about the value of c.

It is worth noting that no claim is being made here to the effect that IBE is the correct
or best explication of IBE.* Even if there are better explications, we believe that IBE
merits attention in the context of the present discussion given that (i) it offers an update
rule at variance with Bayes’ rule which (i) is at least inspired by the explanationist’s core
idea that explanation has confirmation-theoretic import, (iii) has been targeted and
claimed to be untenable by one of the leading opponents of that idea, and (iv) will be seen
to be not only tenable but to have a number of important virtues in comparison with
IBE and, when combined with the idea of social updating, to do better than Bayesian
updating (also conceived as a social procedure) in every desirable way.

2. Judging the rules—by which lights? This brings us to our second question, the
question of which criteria we are to assume in evaluating the rules at issue. Presumably,
we will want an update rule to be formally adequate, at least in that it outputs a probability
function when given a probability function as input. Bayes’ rule is known to pass this
criterion. As for IBE, first note that it is safe to assume that, for all E, f(H,E) = 0
whenever H is a tautology or a contradiction. If we make the further formal assumption
that, for all E, f(H v H*,E) = f(H, E) + f(H*, E) whenever H and H* are mutually
exclusive,” then it is easy to prove that updating a probability function via IBE leads
again to a probability function.

However, according to what for a long time has been the main Bayesian argument
against IBE, or indeed against any update rule at variance with Bayes’ rule, updating via
any version of IBE or any other non-Bayesian rule is bound to lead to something almost
as bad as formal inadequacy in the above sense, namely, to synchronic incoherence. The
notion of synchronic incoherence is standardly operationalized by means of so-called

*For instance, one could propose an alternative to the function f that assigns partial bonuses to multiple
hypotheses, or a bonus that depends on the amount of information—suitably measured—that is available.

®We call this a “formal assumption” because it may not enjoy much intuitive support. On the other hand,
in practice the assumption may also play no role, given that we do not tend to consider the explanatory
power of disjunctions of hypotheses.



dynamic Dutch books. A Dutch book is a collection of bets that jointly guarantee a net
loss, the distinctive feature of a dynamic Dutch book being that the bets are placed at
different points in time, typically before and after a belief change on the basis of newly
acquired evidence. David Lewis ([1999]) argued that one is vulnerable to a dynamic
Dutch book unless one updates via Bayes’ rule. Van Fraassen ([1989], Ch. 6) makes the
argument vivid by means of IBE and the above statistical model: he presents an agent
who updates on the outcomes of tosses with C via IBE and as a result falls victim to a
Dutch bookie who, at different points in time, offers the agent bets on the outcomes
of specific tosses with C. As van Fraassen shows, the bets are such that they jointly
cannot but have a negative net payoff, and yet each of them seems fair to the agent at the
moment at which it is offered. For bettors, losing is all in the game, but accepting bets
that guarantee a net loss, where one could have seen the loss coming, is surely irrational.
Whence the conclusion that Bayes’ rule is the only rational update rule.

This argument is problematic for a variety of reasons. For one, suppose updating via
some non-Bayesian rule exposes one to Dutch bookies, and thus may lead to monetary
losses.® Then it is still to be noted that nothing anyone has said rules out that updating
via some non-Bayesian rule has compensating advantages or even advantages that vastly
outweigh the exposure to Dutch bookies.” In fact, in recent work using the above
coin-tossing model, it was shown that if one updates via IBE, one will on average be
faster—typically much faster—in assigning a high probability (say, a probability of .9) to
the true bias hypotheses than if one updates via Bayes’ rule (Douven [2013]). If those are
right who take high probability to be necessary for assertion or for action more generally,
this means that, for instance, a scientist who updates via IBE may typically be sooner in
a position to announce the results of her research than her Bayesian competitors who
are trying to determine the truth of the same hypothesis or hypotheses—which can
greatly improve her career prospects. In the same work, it is also shown more directly
how the difference between Bayes’ rule and IBE as regards speed of convergence to the
truth can place persons updating via the latter rule in a financially more advantageous
position. As a result, any losses an IBE explanationist may incur at the hands of a Dutch
bookie may be more than made up for by gains she would not have had were she to
update via Bayes’ rule.®

®“May,” because in actuality it may never happen that a bookie offers one a set of bets that together
form a dynamic Dutch book.

7 As an anonymous referee noted, Bayesians have traditionally taken vulnerability to dynamic Dutch
books to expose some kind of inconsistency (see, e.g., Skyrms [1987]). The question that still needs
answering, however, is why anyone would want to avoid being inconsistent in that sense (whichever precise
sense it is).

¥Roche and Sober ([2013]) seek to buttress the conclusion of van Fraassen’s version of the dynamic
Dutch book argument by arguing that explanatory considerations cannot provide the kind of probabilistic
boost that they are supposed to provide according to explanationists wedded to IBE or similar rules.
Specifically, they argue that the evidence E for a hypothesis H screens off from H any fact F about
explanatory connections between E and H, meaning that Pr(H | E A F) = Pr(H | E). It is to be noted,
however, that their argument for this claim proceeds from start to end on Bayesian assumptions. If giving
bonuses to best explanations makes no sense from a Bayesian perspective, why should that bother the
explanationist? It is also to be noted that there may be no reading of Pr(H | E A F) and Pr(H | E) that is



This is all supposing that updating via IBE or some other non-Bayesian rule does
expose one to dynamic Dutch books. It need not do so. Igor Douven ([1999]) argues
that update rules like Bayes’ rule and IBE are not to be assessed in isolation but as
parts of packages of principles which, next to one or more update rules, also include
decision-theoretic principles. Building on work by Patrick Maher ([1992]), Douven
presents a package of principles that includes IBE but that nonetheless guards one
against Dutch bookies; the package allows one to infer to the best explanation—as
formalized by IBE or possibly also some other probabilistic update rule—free of charge,
pace Lewis and van Fraassen.’

In short, it is far from clear that we should adopt as a criterion for evaluating update
rules that they keep us out of the hands of Dutch bookies. But even if we do adopt
that criterion, explanationists can make sure—Dby taking on board certain additional,
decision-theoretic principles—that their rule does just as well on this score as Bayes’
rule.

The appeal to decision-theoretic principles in the present context already hints at a
reason why, over the past ten years or so, many in the Bayesian community have become
increasingly dissatisfied with the dynamic Dutch book approach to vindicating Bayes’
rule. Update rules are rules for changing our beliefs, or degrees of belief, which makes it
a question of epistemic rationality whether or not we are justified in relying on them
(if we do). Whether reliance on any such rule makes us liable to financial losses rather
seems to be a question of practical or prudential rationality. It is not a priori that acting
as an epistemically responsible agent is prudentially always the best thing to do. Trying
to see the world as it is may be epistemically mandatory, but may be less than prudent if
a realistic picture of the world makes one more prone to suffering from depression than
fostering a rosier—albeit distorted—picture would do. In other words, the dynamic
Dutch book argument seems to be addressing exactly the wrong issue.

This has led a number of philosophers to develop a different approach to defending
Bayes’ rule, one inspired by the thought that update rules, like other epistemic principles,
are to be assessed in light of their conduciveness to our epistemic goal.'® All else being
equal, if one epistemic principle is more likely to help us achieve our epistemic goal
than another, then where we have to choose between the two, it is epistemically rational
to adopt the former rather than the latter. And what these philosophers have tried to
show is exactly that Bayes’ rule is more conducive to our epistemic goal than any other
update rule. If that is right, then implicitly this shows those who rely on IBE, or on
some other explication of IBE at odds with Bayes’ rule, to be epistemically irrational.

However, the new strategy appears to be hardly less problematic than the dynamic
Dutch book strategy. In mainstream epistemology, there is widespread agreement that

neutral in the present debate. For instance, in Douven’s ([1999]) proposal, Pr(H | E) is defined so as to
equal Pr[E](H)—which, you may recall, is the result of updating H on E in accordance with IBE—whereas
for Bayesians it equals Pry(H), which is the result of updating H on E in accordance with Bayes’ rule; and
as mentioned in the previous section, Pr[E](H) and Pry(H) are, in general, not equal.

%See also (Tregear [2004]).

0gee, e.g., (Rosenkrantz [1992]) and (Leitgeb and Pettigrew [2010]).



our epistemic goal is to believe all that is true and nothing that is false (e.g., Lehrer
[1974], p. 202, Foley [1993], p. 19)."" This is conceived as an ideal that every epistemic
agent ought to aim at, even if they will always fall short of realizing it. But Bayes’ rule
and IBE have their homes not in mainstream epistemology—which is the previously
mentioned epistemology of belief simpliciter—but rather in the epistemology of degrees
of belief. And it is at least not immediately obvious how to translate the epistemic goal,
as traditionally conceived, into the vocabulary of the epistemology of degrees of belief.

The same doubts that have arisen in relation to the dynamic Dutch book defense of
Bayes’ rule have also arisen in relation to the older (non-dynamic) Dutch book defense
of the static part of Bayesianism, that is, the part according to which our degrees of belief
at any one moment should obey the probability axioms. In the context of mounting
a new; distinctively nonpragmatic and epistemic defense of that static part, Jim Joyce
([1999]) proposed to translate the epistemic goal as traditionally understood in terms of
minimizing the inaccuracy of our degrees of belief. In his proposal, we ought to aim at
having degrees of belief that are as accurate as possible. The notion of accuracy at stake is
operationalized by reference to a scoring rule, specifically the so-called Brier rule. Given
a set {H;};,, of mutually exclusive and jointly exhaustive hypotheses, and [H;] € {0, 1}
being the truth value of H;, the Brier rule assigns a penalty of Y7 ([H;] — Pr(H;)) to
an agent whose degrees of belief are given by Pr(-). Intuitively and roughly, what this
amounts to is that, all else being equal, one is more accurate the higher one’s degree of
belief in the true hypothesis, and again ceteris paribus, one is more accurate the lower
one’s degree of belief in any false hypothesis.

In a recent attempt to defend the dynamic part of Bayesianism—Bayes’ rule—in a
similar nonpragmatic fashion, Hannes Leitgeb and Richard Pettigrew ([2010]) adopt
Joyce’s formulation of our epistemic goal. The claim they then argue for is that Bayes’
rule does better than any other update rule in achieving our epistemic goal, understood
in Joyce’s sense. To be more precise, they argue that by updating according to Bayes’ rule,
an agent minimizes her expected inaccuracy, meaning that, as judged by her current
degrees of belief, the inaccuracy of her new degrees of belief updated on evidence she
receives is going to be lower if she updates via Bayes’ rule than if she updates via some
non-Bayesian rule. However, whilst this may be enough for achieving the epistemic
goal on one reading of inaccuracy minimization, there are other readings that seem at
least as legitimate and therefore are at least as relevant to the present discussion.

Note that, when understood in a dynamic context, Joyce’s formulation of our epis-
temic goal is ambiguous in multiple ways. That one ought to minimize the inaccuracy of
one’s degrees of belief could for instance be interpreted as meaning any of the following:

1. that every update ought to minimize expected inaccuracy;

2. that every update ought to minimize actual inaccuracy;

3. that every update ought to contribute to the long-term project of coming to have
a minimally inaccurate representation of the world.

"This view is widely but not universally shared. For instance, Sartwell ([1992]) and Kelp ([2014]) argue
for an epistemic goal in terms of knowledge rather than true belief.



Moreover, if our epistemic goal is understood in the sense of the third interpretation,
there are further questions to be asked about how to balance precision and speed of
convergence. Most notably, should we aim to have minimally inaccurate degrees of
belief in the long run, disregarding entirely how long the run may be, or should we aim
to minimize the inaccuracy of our degrees of beliefs in a more limited timeframe, even
if that comes at the expense of precision (i.e., even if we could achieve greater accuracy
if time constraints played no role)?'?

Minimizing expected inaccuracy of the post-update belief state and minimizing
actual inaccuracy of that belief state will not in general amount to the same thing, and
neither amounts to realizing the epistemic goal in the sense of interpretation 3 (mini-
mizing actual long-term inaccuracy)." So, granted that Bayes’ rule is most conducive
toward realizing our epistemic goal in the first sense—as Leitgeb and Pettigrew show—
IBE or some other formalization of IBE may still be more conducive toward realizing
our epistemic goal in one of the other senses. This means that, absent a reason to deem
realizing our epistemic goal in the former sense more important than realizing it in the
latter sense, the inaccuracy minimization defense of Bayes’ rule is ineffective.

In fact, in light of Robbie Williams’ ([2012], p. 835) observation that it is unclear
what is so desirable about having maximized one’s chances of being accurate as judged
from a perspective one has already abandoned, it would seem that the second and third
interpretations above provide more reasonable conceptions of our epistemic goal than
the first one. Even apart from the fact that that perspective has been abandoned, that
a perspective is involved at all makes inaccuracy minimization on this interpretation
quite disanalogous to our epistemic goal as traditionally conceived. The latter, after all,
posits something objective that we should aspire to, not something that is intrinsically
dependent on our beliefs or degrees of belief, however misguided these might be from
the point of view of an objective bystander.

Moreover, if the epistemic goal as proposed by Joyce is indeed to mirror what
traditional epistemologists have taken to be our epistemic goal, then, it seems, we should
go with interpretation 3 (regardless of how that interpretation is further specified). For
in traditional epistemology, our epistemic goal is commonly conceived as an ideal to be
attained, or rather approached, in the long run (see, e.g., Latus [2000] and Goldman
[2010]).

It might be thought that while it has been shown that Bayes’ rule is most conducive
to our epistemic goal in the sense of interpretation 1, it is so far mere speculation that
IBE might outperform Bayes’ rule when our epistemic goal is understood in one of the
other two senses. That is not quite true, however. Douven ([2013]) reports the outcomes

2See on the trade-off between precision and speed of convergence, (Zollman [2007], [2010]) and
(Douven [2010]).

“Given some scoring rules, the long-term project of inaccuracy minimization is at least closely related
to the goal of convergence to the truth as understood earlier in this section. For instance, the so-called log
score rule looks only at the probability an agent assigns to the true hypothesis: according to this rule, an
agent’s penalty equals In(Pr(H,)), with H; the true hypothesis. This is not so for the Brier rule, however,
which looks at the probability the agent assigns to the true hypothesis, but also looks at how the remaining
probability is distributed over the false hypotheses.



of computer simulations in which IBE does much better on average than Bayes’ rule
in realizing the long-term goal of having maximally accurate degrees of belief. These
simulations assume the statistical model described in Section 1, and further assume a
Bayesian agent and an IBE explanationist to update their degrees of belief after each
toss of a coin C which in total is tossed 1000 times. For each bias that the coin can
have according to the said model, 1000 such simulated sequences of 1000 coin tosses
were run. In each simulation, Brier penalties incurred after the 100th, 250th, 500th,
750th, and 1000th updates were calculated for both the Bayesian and the explanationist.
For all biases that were considered, the explanationist at each of those reference points
got assigned a lower penalty than the Bayesian in the vast majority of simulations.
For anyone concerned with realizing the long-term project of arriving at a maximally
accurate degrees-of-belief function, that would seem an excellent reason to prefer IBE
over Bayes’ rule.

There is a complicating factor, however. For the same paper shows that when,
for each of the possible biases, the average penalty—averaged over all 1000 simulated
sequences—incurred at the reference points is calculated, there is mostly no difference,
but when there is a difference between the explanationist’s and the Bayesian’s scores, it
is always a small difference in favor of the Bayesian. At first, this may seem surprising.
But the explanation is fairly straightforward.

The three columns of Figure 1 show the results of three simulations with a coin
bias of .1, .5, and .9, respectively.14 The upper row shows the developments of the
degrees of belief assigned to the true hypothesis by two agents who receive exactly the
same evidence (if one sees heads coming up at a given toss, then so does the other, and
analogously for tails), where one agent is a Bayesian (represented by the black circles)
and the other is an explanationist (represented by the colored squares). The lower row
shows the corresponding Brier penalties that they incur at every step. In the bias .1 and
bias .9 simulations, it is quite clear that the explanationist does better than the Bayesian
at least insofar as the explanationist’s confidence in the true bias hypothesis converges
faster to 1 than the Bayesian’s confidence in that hypothesis. It is also clear that in those
cases, the explanationist incurs lower Brier penalties than the Bayesian after every or
almost every update.

However, the bias .5 simulation nicely illustrates a characteristic feature of the
explanationist, to wit, that in a clear sense, she is an enthusiastic learner, or at least
a more enthusiastic learner than the Bayesian. In that simulation, we clearly see the
same pattern in how the explanationist’s and the Bayesian’s degree of belief in the
true hypothesis change over time. It is just that the pattern is more pronounced in the
case of the explanationist. Whereas this enthusiasm is precisely what in general leads
the explanationist to assign a high probability to the true hypothesis faster than the
Bayesian (in the long or medium-length run), it is also what leads her further astray
than the Bayesian in the event that a sequence of tosses contains a longer subsequence

" Given the relation between the bias for heads ( p) and the bias for tails (1 — p), biases .1 and .9 lead to
similar results. Showing results for both gives us an opportunity to inspect the variation between different
runs of the simulation.
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Figure 1: Simulations with a randomly chosen sequence of 250 tosses with a coin with
bias p = .1 (left column), bias p = .5 (middle column), and bias p = .9 (right column).
Upper row: probability of true bias hypothesis; lower row: Brier penalties. Colored
squares: explanationist; black circles: Bayesian.

of consecutive tosses whose relative frequency of heads deviates strongly from the
coin’s bias for heads (in the short run). In other words, where we have said that the
explanationist is a more enthusiastic learner than the Bayesian, the Bayesian may rightly
point out that the explanationist is at the same time a less cautious learner than the
Bayesian.

The second panel in the bottom row of Figure 1 makes it plain how this may lead
to relatively large differences in the Brier penalties incurred by the agents. When in
the beginning of the simulation the degrees of belief for the true bias hypothesis of
both the explanationist and the Bayesian start to drop, the drop is much greater for
the explanationist, and around the fiftieth toss, the explanationist even comes close to
believing the truth to a degree of 0 when her Bayesian colleague’s degree of belief for
the same hypothesis is still above .2. In the graph, we see this visualized as an eruption
in the explanationist’s Brier score, with the explanationist coming close to incurring
the maximal Brier penalty around the fiftieth toss.

To put the point in general terms, due to her enthusiasm, the explanationist mostly
does better than the Bayesian, where doing better also means that she incurs a lower
Brier penalty. But if things go wrong—in the form of the occurrence of subsequences
of the type mentioned above—then they tend to go wrong much more badly for the
explanationist than for the Bayesian, and in fact so much so that, averaged over all
simulations, the explanationist still incurs a slightly greater Brier penalty than the
Bayesian.

The aim of the work summarized here was not to establish the superiority of IBE.
It was the more modest goal of exhibiting some flaws in the extant arguments for
Bayes’ rule. Indeed, nothing said in that work gives reason to believe that inaccuracy
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minimization in the sense of incurring minimal average Brier penalties is somehow
outweighed by inaccuracy minimization in one or more other senses. Nor will we
provide such a reason here. Rather, our goal in the following is to show that if Bayes’
rule and IBE are compared in a setting that takes into account social aspects of our
belief management, the comparison may well turn out in favor of IBE in all important
respects.

3. From an individualistic to a social perspective. Following pioneering work by
Alvin Goldman (see his [1999] for an overview of the early work), from the 1990s
onwards epistemologists have started paying explicit attention to the role or roles social
practices play in our epistemic lives. By now, it is broadly accepted that an epistemology
that considers epistemic agents as isolated from their social environment—as traditional
epistemology has long done—cannot but miss important aspects of the belief- and
knowledge-forming processes: our epistemic states are not just shaped by evidence
we receive directly from the world, but also by our interactions with other epistemic
agents. This insight (as one can surely call it) has led to the study of such topics as the
conditions under which we are warranted in accepting a person’s testimony, different
ways of aggregating opinions and judgments, the role of experts in society, and the
resolution of disagreements amongst epistemic peers.

It is important to note that no social epistemologist—as those following Goldman’s
lead are now commonly called—has ever suggested that individualistic epistemology
has not led to any true understanding. Some epistemically significant episodes of a
person’s life are well captured by the traditional model of the thinker facing, and trying
to make sense of, the world on her own. Indeed, it could hardly be said that, because
they leave out of the picture possible epistemic contributions from the updater’s social
surroundings, the various arguments pro and con Bayes’ rule, IBE, and other update
mechanisms are of no value. After all, sometimes we do take into account, over a certain
period of time, one piece of evidence after the other, without in the interim consulting
or otherwise interacting with others.

But often enough, we do not. Scientists conduct a study or experiment relevant to
a hypothesis they are testing, register the data they get, discuss their work over lunch
with colleagues investigating the same hypothesis or (probably less frequently) discuss
it at a conference with researchers from others labs also focussing on the hypothesis, go
back to their lab to gather further data, and so on. During the process, the confidence
they invest in their hypothesis may be affected as much by the incoming data as by the
exchanges they have with their colleagues. The question of whether the social dimension
might make a difference to the standing of this or that update rule, and specifically
whether it might make a difference to the standings of Bayes’ rule and IBE or other
explications of IBE, has never been asked. It is the topic of the remainder of this paper.

More specifically, we compare Bayesian and explanationist updating again along
the dimensions of inaccuracy minimization and speed of convergence, but this time
the comparison will be made within a social setting. Our main tool of investigation will
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be computer simulations, where the simulations will all pertain to the earlier statistical
model of eleven bias hypotheses. To model the distinctively social aspect, we use
an extended version of the Hegselmann-Krause (HK) model for studying opinion
dynamics in societies of agents who interact doxastically by basing their opinions wholly
or partly on the opinions of others. We begin by describing this model as originally
presented by Hegselmann and Krause.'”

3.1. The Hegselmann-Krause model. 'The HK model has been studied extensively by
philosophers, social scientists, mathematicians, and physicists. Questions that have
been investigated by means of this model include the question under which conditions
belief polarization tends to occur in societies of doxastically interacting agents, the
question under which conditions the opinions of such agents tend to converge, questions
concerning the speed with which opinions diverge or converge, the question of whether
it makes a difference to such processes if data are noisy, the question of the influence of
what exactly the truth is, and many others.'®

The versions of the model developed and studied by Hegselmann and Krause assume
communities of agents who are trying to determine the value 7 of some unspecified
parameter, where it is antecedently given that 7 € (0,1]." In the simplest model,
all agents in the community update repeatedly and simultaneously by averaging the
opinions of the agents that are in their Bounded Confidence Interval (BCI), which is
the case precisely when an agent’s opinion is not too far off the agent’s own opinion. In
most studies with the model (both this simple model and more complicated variants),
being “not too far off” is simply taken to mean that the absolute difference between the
opinions is below some threshold value €.

In a more interesting version of the model, the agents again update their opinions
repeatedly and simultaneously by taking into account the opinions of agents within
their BCI, but now they take a weighted average instead of the straight average of those
opinions and the value of 7."® More exactly, the opinion of agent x; after the (u + 1)-st
update is given by
(HK) xu+1) = Z xj(w) + (1-a)7,

1
(x —
|X1(u)| jeX;(u)

where x;(u) is the opinion of agent x; after the u-th update, @ € [0, 1], and X;(u) =
{j: x;(u) € BCI}."”

Bgee (Hegselmann and Krause [2002], [2005], [2006], [2009]).

'See for example, next to the papers by Hegselmann and Krause cited in the previous note, (Dittmer
[2001]), (Fortunato [2004]), (Lorenz [2007]), (Douven and Riegler [2010]), and (Kurz and Rambau [2011]).

The exclusion of 0 from the interval makes computations easier but otherwise has no significance.

%The idea is not, obviously, that the agents know the value of 7. Rather, it is that the agents receive
information that somehow points in the direction of that value. See Hegselmann and Krause [2006, Sect. 1]
for a detailed account of how to interpret this part of their model.

“We are slightly simplifying here in that, in some computer experiments, Hegselmann and Krause
allow both the confidence interval and the weighting factor « to vary for different agents.
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The belief states of agents in the versions of the HK model studied by Hegselmann
and Krause always consist, at any given point in time, of one value. But their model
is very flexible and it has been extended to one in which agents are equipped with
richer belief states in that they hold opinions on various related or unrelated matters
(Riegler and Douven [2009] and Wenmackers, Vanpoucke, and Douven [2012], [2014]).
Also, while Hegselmann and Krause in their writings concentrate on purely descriptive
questions—like the ones mentioned earlier, for instance, concerning the circumstances
under which communities of initially disagreeing agents tend to converge—in the
meantime, the model has also been used to address various normative questions, such
as what the right response is to the discovery that one disagrees about an issue with
one or more epistemic peers.zo We here recruit a new extension of the HK model in
the service of addressing another normative issue, to wit, the issue of which update
procedure someone attempting to be rational ought to deploy.

3.2. A probabilistic extension of the HK model. In the new extension of the model,
the belief states of agents at any given time do not consist of a single real number—as
they do in the original HK model—or of a vector of 0’s and 1’s, encoding whether the
agents do or do not believe particular propositions, as in Riegler and Douven’s ([2009])
extension of the HK model. Rather, in the new model, belief states are represented
by probability functions. The language these functions are defined on consists of the
eleven bias hypotheses introduced toward the end of Section 1 and the truth-functional
combinations of these hypotheses, although now it is a bit more realistic (though not
strictly necessary—see note 25) to suppose that the hypotheses concern the bias, not of
a single coin, but of a set of coins, one for each agent, which perhaps all come from the
same factory and at any rate are known to have the same (at least initially unknown)
bias.

Just as in the model with the update procedure (HK), the agents in the extended
model take into account both evidence from the world—in this case, evidence about
the bias of their respective coin, which comes to them in the form of tosses they ob-
serve—and the opinions of those agents that are in their BCL. Obviously, the BCI now
must be defined differently from before. There are many options here, with which one
may want to experiment. In our simulations, we went for the very straightforward
definition which lets two agents be in each other’s BCI iff the sum of the absolute
differences in the probabilities they assign to the eleven bias hypotheses is below a given
threshold value. Put more formally, agent i with belief state Pr;(-) is within the BCI of
agent j with belief state Pr;(-) iff

10
A(Pri(~),Prj(-)) = Z|Pri(Hk)—Prj(Hk)| < e
k=0

Note that, as in the original HK model, an agent is always in her own BCL

2See (Douven [2010]), (Douven and Riegler [2010]), (Douven and Kelp [2011]), and (Kelp and Douven
[2012]).
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As will be described in more detail below, in our simulations we study communities
of agents who update repeatedly and simultaneously. The communities are characterized
by the fact that their members all update via the same procedure, which consists of
two steps, a first step—the “evidential” step—in which the agent updates on incoming
evidence—the outcome of a toss with the agent’s coin—and a second, “averaging” step
in which the agent averages over the belief states of the agents in her BCI. More precisely,
let Prj’(-) be the belief state of agent i at stage of inquiry u, and let X(Pr}'(-)) be the
set of agents j such that A(Pr;(-), Pri(-)) < e, for some given value of €. Then where
agent j at stage u learns evidence E}‘, the update rule we are proposing is given by this
algorithm:

Algorithm: update rule (in pseudocode)

for eachi € {0,...,10} do

Pr{(H;) Pri(E} | H;) + f(H;, E})

$20(Pry(H) Pr(E} | Hy) + f(Hy, EY))

Uevi u
Prj d[Ej](H,-) —
end for
for eachi € {0,...,10} do

ZmeX(Pr?eVid) Pry [Ep] (H))

Prv[EY|(H;) «
;oI ‘X(Pr?”)

end for
for eachi € {0,...,10} do

u+1 Uy r ol

end for

It will be clear that this is actually just a schema, yielding a different update rule for each
possible combination of € and explanation bonus c assigned by f. The communities to
be studied will differ from each other in the values their members assign to c—which
is relevant in the evidential step—and €, which is relevant in the averaging step. Note
that if both € and c are 0, we obtain Bayes’ rule. With € = 0 and ¢ > 0, we obtain an
instance—the instance for the specific value of c—of the IBE schema defined earlier. A
community of agents for which ¢ = 0 but € > 0 can be considered to be a community of
“averaging Bayesians,” that is, agents who update by Bayes’ rule on the evidence they
receive from the world but then immediately also let their belief states be further shaped
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by the belief states of other agents in their community.*' If instead both ¢ > 0 and € > 0,
we have a community of “averaging explanationists,” that is, explanationists who are
also willing to take into account what beliefs certain other agents in their community
hold.

We have two further comments on this. First, we know from Section 2 that, given
minimal assumptions on f, if Pr?( -) is a probability function, then so is Pr=(-). And
given that (i) any convex combination of probability functions is itself a probability
function,”” and (ii) the straight average of a number of probability functions is a convex
combination of these functions, it follows that Pr’®(-), and hence also Pr]’f+1 (+),isa prob-
ability function whenever Pr,id(-) is a probabﬂ,ity function for each m € X(Pri=(-)).

And second, taking a convex combination of the probability functions of the in-
dividual agents in a group is the best studied method of forming social probability
functions.” Authors concerned with social probability functions have mostly con-
sidered assigning different weights to the probability functions of the various agents,
typically in order to reflect agents’ opinions about other agents’ expertise or past perfor-
mance. The averaging part of our update rule is in some regards simpler and in others
less simple than those procedures. It is simpler in that we form probability functions
from individual probability functions by taking only straight averages of individual
probability functions, and it is less simple in that we do not take a straight average of the
probability functions of all given agents, but only of those whose probability function is
close enough to that of the agent whose probability is being updated.

3.3. Simulations. We have conducted simulations with communities of agents who
repeatedly and simultaneously update on coin tosses.”* Each agent has her own coin,

*!"The update rule that we consider for “social Bayesians” or “averaging Bayesians” consists of a social
averaging component and a Bayesian component; it is not Bayesian as a whole. We do not rule out the
possibility of an entirely Bayesian way for an agent to aggregate the indirect evidence, as obtained via
social interactions. For instance, one may think of a Bayesian who considers various ways in which the
other agents may be updating, thereby applying ideas from model averaging—ideas that are native to
Bayesian statistics. However, to implement this suggestion in a practical situation requires making many
special assumptions about the situation, whereas we aim for a learning rule that is very broadly applicable
(without much modification).

2Given a set {A;},q, such that A; € [0,1] for alli and Y7, A, = 1, and given a set {Pr,()},,, of
probability functions, the function Pr(-) = Y| A, Pr;(+) is said to be a convex combination of the Pr;(-).

21t now often goes by the name of “linear opinion pooling,” which was introduced in (Stone [1961]).
Discussion of this method goes back at least to Laplace’s Essai Philosophique sur la Probabilité from 1814
(Bacharach [1979]). See (Genest and Zidek [1986]) and (Cooke [1991]) for useful overviews of methods
of aggregating probability judgments.

*In this paper, we are interested in finite groups of agents (e.g., fifty peers) who consider a relatively
small number of hypotheses (e.g., eleven bias hypotheses) and who interact intermittently. Since there exist
relatively few analytical solutions for problems involving discrete variables, this type of questions is usually
addressed by numerical simulations. A formulation in terms of continuous variables can be obtained
by considering a limit situation, such as an infinite population, a continuum of bias hypotheses, and/or
continual interaction. Although analytical solutions may be more readily obtainable in the continuous case,
they do not apply to the original problem directly. Hence, we have opted here for a purely computational
approach. (This, of course, does not preclude that further insights may be gained by means of analytical
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but the coins are antecedently known to all have the same bias, where a bias of x is
interpreted as indicating that the objective probability for heads on any given coin toss
equals x.*° All agents in all communities start with a flat distribution over the eleven
bias hypotheses, which, as stated, are now interpreted as being about the bias of the coins
instead of about the bias of a single coin. All communities consist of agents that update
by the same specific instance of the algorithm described above, that is, the algorithm
with fixed values for € and c¢. One could also consider mixed communities, whose agents
have different values for € and ¢, but we highlight this possibility here only as a possible
avenue for future research.

Specifically, we conducted, for each bias for heads p € {0,.1,.2,.3, 4,.5},°° for
each value of ¢ € {0,0.1,0.2,...,1}, and for each value of ¢ € {0,0.1,0.2,..., 1}, 50
simulations with communities of 50 agents, all having their own coin with bias p. The
agents tossed their coins simultaneously and immediately updated on the outcome,
using the instance of the algorithm schema for the given values of € and c; they repeated
this 500 times. Thus, altogether we conducted 6 x 11 x 11 x 50 = 36,300 simulations.*”

It is to be noted that for each possible bias, we generated 50 sets of 50 sequences
(one for each agent) of 500 tosses. For that bias, these same 50 sets were used for all
combinations of € and ¢ that we investigated. To give a concrete example of what this
entails: in the 14th simulation for p = .4, € = 0.7 and ¢ = 0.1, the 50 agents were fed the
same 50 sequences (one per agent) as the 50 agents in the 14th simulation for p = .4,
€ = 0.2 and ¢ = 0.9. An intuitive way to think about this is that, given a bias p and
two particular combinations of values for € and c, the agents considered in the n-th
simulation for the one combination are in a sense the epistemic counterparts of the
agents considered in the n-th simulation for the other combination: for each agent in
one simulation there is an agent in the other simulation such that both agents receive
exactly the same evidence during the whole simulation; it is just that both update on
that evidence by means of different instances of the algorithm schema.

What the simulations ultimately do is compare 121 (= 11 x 11) update rules, one for
each combination of € and c. As stated above, these rules can be thought of as different
ways to socialize Bayes’ rule (as long as we keep ¢ = 0) as well as the explanationist
idea (for ¢ > 0). All rules were compared with respect to speed of convergence and
cumulative Brier penalties, as was done for Bayes’ rule (the combination of € = 0 and
¢ = 0) and IBE (the combination of € = 0 and ¢ = 0.1) in Douven ([2013]).

methods.)

* Alternatively, we could assume that one coin has been used to generate a very long sequence of tosses,
which is then cut into as many equal segments as there are agents, giving one segment to each agent.

*%Tt was unnecessary to run simulations for all eleven possible bias hypotheses. Simulation outcomes for
the assumption that the objective probability for heads is p can also be interpreted as simulation outcomes
for the assumption that that bias is 1 — p, simply by switching the interpretation of which code (in our
simulations 0 and 1) stands for heads and which for tails.

*’The simulations were programmed in Mathematica 9 and were run on the Millipede Cluster at the
University of Groningen. We thank the cluster team and in particular Bob Droge for technical assistance.
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4. Results and discussion. We first look at Brier penalties. After each update, we
calculated the Brier score for each agent and then averaged over the 50 agents. We
summed the averages for all 500 tosses of the given simulation and finally calculated
the average over the 50 simulations. (Note that the maximum that could be reached in
this way is 50,000: the maximum Brier penalty for an agent after an update is 2, so for
all 50 agents it is 100, so summed over 500 updates it is 50,000.) Figure 2 represents the
results.

I— 400
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0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

p=.23 p=4 p=.5

- 100
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€

Figure 2: Average Brier scores per agent, for 6 different possible biases (p = x indicates
that the objective probability for each of the coins to come up heads is x).

Inspection of the leftmost columns of the various panels confirms the findings
summarized in Section 2: the square in the left lower corner of the panels represents
Bayes’ rule, and the square just above that represents IBE as it was defined for the
simulations described in Section 2. It is clear that if there is a difference in color between
the squares, the lower one is closer to purple, indicating that the average total Brier
penalty incurred over all 500 tosses is never higher for Bayes’ rule and sometimes
lower. In fact, given that in each of the leftmost columns, the square at the bottom is at
least as close to purple as any other square in the same column, we get an immediate
strengthening of the previous results: assigning a higher explanation bonus than 0.1
will not lead to better results than can be obtained with Bayes’ rule.

The most significant finding is that by listening to the agents within their BCI,
explanationists can do better in terms of average total Brier penalty minimization
than Bayesians. Indeed, for many combinations of values for € and c, explanationists
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Figure 3: Combinations of € and c¢ that do better than Bayes’ rule (¢ = 0, ¢ = 0)
are represented as light blue squares; combinations that do best for a given bias are
represented as dark blue squares.

will typically do better than Bayesians. While for those combinations, explanationists
typically do somewhat better than non-averaging Bayesians, they typically do a whole
lot better than averaging Bayesians. Indeed, the difference in average total Brier penalty
over the 500 tosses between the averaging explanationist rule with e = 1 and ¢ = 0.1
and the averaging Bayesian rule with € = 1 and ¢ = 0 is over 300 (with a theoretical
maximum of 1000).

The plots in Figure 3 show both for which combinations of ¢ and € the explanationist
does better in terms of average total Brier penalty minimization than the pure (i.e.,
non-averaging) Bayesian—these combinations are marked as light blue squares—and
also ngfh combination does best in absolute terms: this is marked as a dark blue
square.

*For the bias values .1 < p < .5, the position of the dark blue square varies in a nonsystematic way.
This shows that 50 simulations are insufficient to identify the exact combination of variables that leads to
the smallest Brier penalty. This lack of numerical stability is due to the fact that lower Brier penalties are
more sensitive to small variations. The other results presented in this work do not depend crucially on
such small fluctuations, so we have kept the number of simulations equal to 50 throughout to keep the
required computation time within limits.
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Figure 4: Combinations of € and ¢ that do better than any Bayesian rule (¢ = 0 with any
value for €) are represented as light blue squares.

It is also interesting to know which combinations of € and ¢ do better than any
version of Bayes’ rule, whether averaging or non-averaging (thus better than any value
of € combined with ¢ = 0). This question is answered by the plots in Figure 4.

It is evident from the plots in Figures 3 and 4 that, with the exception of the p = .1
case, some explanationist rule always does better in terms of minimizing average total
Brier penalties than all (averaging or non-averaging) Bayesian rules. Naturally, it could
still be that in the p = .1 case, the difference in favor of the averaging version of
Bayes’ rule with € = 0.7 (which gives the best result, as Figure 3 shows) is so large that,
averaging over all possible biases the coins can have, it would still be better to go with
that version of Bayes’ rule than with any explanationist rule. That is not so, however. In
our simulations, the difference between Bayes’ rule with € = 0.7 and any explanationist
rule with ¢ = 0.1 and € € {0.7,0.8,0.9, 1} or with ¢ = 0.2 and € € {0.8,0.9, 1} is minimal:
the former rule incurs an average total penalty of approximately 22 over the 500 tosses,
each of the latter rules incurs an average total penalty of approximately 28 over the 500
tosses.

In Douven ([2013]), it was shown that, in an individualistic setting (¢ = 0), IBE does
better than Bayes’ rule in some respects, but not in all. In particular, we saw that, in the
simulations reported in that paper, Bayes’ rule on average incurred a slightly lower total
Brier penalty than IBE. On the other hand, we saw that, in those simulations, Bayes’
rule typically led to a (slightly) higher Brier score than IBE. Moreover, IBE was also
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seen to do better in terms of speed of convergence to the truth than Bayes’ rule. We have
seen by now that, as far as average total Brier penalties are concerned, the explanationist
can easily do better than the Bayesian when updating proceeds in a social setting. The
question still to be answered is whether, in such a setting, the explanationist can have it
all, and so can choose values for € and ¢ such that she not only does best with regard
to average total Brier penalties but also with regard to the chance that she will incur a
lower Brier penalty than her Bayesian counterpart as well as with regard to the speed
with which probabilities converge to the truth.

As for Brier scores, we picked as an explanationist rule the algorithm with e = 1
and ¢ = 0.1—which comes out as one of the best combinations with regard to average
total Brier scores, as was seen, and thus the one which the explanationist might want to
pick—and compared this with all social versions of Bayes’ rule, that is, the algorithm
with any combination of € and ¢ such that € > 0 and ¢ = 0. The comparison proceeded
as follows: in each simulation and after each round of updates, we summed the agents
in the explanationist community who had incurred a lower Brier penalty than their
counterparts” in the Bayesian community, summed the agents in the Bayesian com-
munity who had incurred a lower Brier penalty than their explanationist counterparts,
subtracted the latter from the former, and then averaged over all 50 simulations. This
yields for each round of updates a number between 50 and —50, where the maximum is
reached for a given update u if all 50 explanationist agents have a lower Brier score than
their 50 Bayesian counterparts after the u-th update in all 50 simulations, and where
the minimum is reached if the converse situation obtains, that is, if all 50 Bayesian
agents in all 50 simulations have a lower Brier score after the u-th update than their 50
explanationist counterparts in those simulations after the same update.”®

From a (social) Bayesian perspective, the comparison turned out most favorably for
€ = 0.1 and least favorably for € = 1. Figure 5 plots the results of the above simulations
for these (for the Bayesian) best and worst settings in blue and purple, respectively,
for each of the biases we considered; for each of these biases, the graphs for the other
values of € lie almost in their entirety between the two plotted in the panels of the figure.
It appears that for almost the whole range of updates, all agents in the explanationist
community do better than their counterparts in the € = 1 Bayesian community for all
biases with the exception of p = .1 (in which case they still do better in the long run).
The comparison with the e = 0.1 Bayesian community is slightly more nuanced. Still,
although for biases .2 to .5 there is a brief episode during which the Bayesian community
does better overall than the explanationist community, in the long run, virtually all
explanationists do better than their € = 0.1 Bayesian counterparts.

*Recall that agents are each other’s counterparts iff they receive the same sequence of 500 coin tosses.
Recall further that, given how the simulations are set up, for each possible bias and each simulation carried
out for that possibility, every agent in a community has a counterpart in every other community.

**We indicated that we are interested in the chance that an explanationist incurs a lower Brier score
than her Bayesian counterpart. However, the quantity plotted in Figure 5 is not a frequency, so it cannot
be interpreted as (an estimation of) the chance directly. However, it is a linear function of the relevant
frequency. In particular, to transform the difference plotted in the figure into a frequency, we have to add
the number of agents (here 50) to it and divide the total by twice the number of agents (here 100).
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Figure 5: Average differences over 50 simulations between explanationists (¢ = 1,
¢ = 0.1) who are faster than their Bayesian counterparts, where purple indicates the
results under the assumption that for all Bayesians € = 1 and blue the results under the
assumption that for all Bayesians € = 0.1 (¢ = 0 for all Bayesians). (For p = 0, there is
no difference between the two graphs.)

Finally, we turn to the dimension of speed of convergence. In Douven [2013],
speed of convergence was operationalized in terms of how fast agents come to assign a
probability above .9 to the true bias hypothesis. We went with this operationalization
and compared in this respect each of the averaging versions of Bayes’ rule with (again)
the explanationist rule that sets e = 1 and ¢ = 0.1.

The results found in the earlier paper—to wit, that IBE updaters are in general faster
than Bayesians in assigning a high probability to the true hypothesis—were found to
generalize: the averaging explanationist rule in general has one assign a high probability
to the truth faster than any of the averaging Bayesian rules. However, the difference
between these averaging rules is even more pronounced than the one found for the
non-averaging rules. We again show the results for the Bayesian rules only for € = 0.1
and € = 1, which are again the best and worst case, respectively, for the Bayesian. From
top to bottom, the three rows of graphs in Figure 6 show for, respectively, ¢ = 1 in
combination with ¢ = 0, € = 0.1 in combination with ¢ = 0, and € = 1 in combination
with ¢ = 0.1, the percentage of agents in a population who assign, after the various
updates, a probability above .9 to the truth, averaged over the 50 simulations. It is seen
that when the coins have a strong bias (i.e., close to 0 or 1), both the Bayesian community
(for either value of €) and the explanationist community come rather quickly to assign
in their entirety a high probability to the truth.

By contrast, when the coins have a more moderate bias, then whereas the expla-
nationists all assign a high probability to the truth after 250 to 350 tosses, the whole
Bayesian community—in the € = 1 case—or at least a large part of that community—in
the € = 0.1 case—assigns a probability beneath the .9 threshold to the truth for the
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Figure 6: Percentage of population that assigns a probability above .9 to the true bias
hypothesis, for possible biases p = 0 to p = .5. Top row: € = 1, ¢ = 0; middle row:
€ = 0.1, ¢ = 0; bottom row: € = 1, ¢ = 0.1. (Each row shows the same graph twice, from
two different angles.)
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whole series of 500 tosses. To make clearer that the explanationists do much better
also than the € = 0.1 Bayesians (which may not be immediately clear from the graphs),
we mention that, on average over all biases and all updates, at the end of the series
of updates 64 per cent of the explanationists assign a high probability to the truth as
compared to 41 per cent of those Bayesians.

agents

0.5

0
% of
agents

b
number ] ‘ E ]—

1 I
o 200 A

Figure 7: Percentage of population that assigns a probability above .9 to the true bias
hypothesis, for possible biases p = 0 to p = .5. Upper row: € = 0, ¢ = 0; lower row:
€=0,c=0.1

Supposing the results obtained so far to have some generality that goes beyond the
statistical model of Section 1, they strongly suggest that, in a social setting, one ought
to be an explanationist. This is not only so if one’s goal is to maximize the speed with
which one comes to assign a high probability to the true hypothesis, but also if one’s
goal is to minimize one’s inaccuracy, whether this is understood in terms of maximizing
the chance that one incurs lower Brier penalties than one’s Bayesian counterparts (or
colleagues, in real life) or in terms of incurring on average a lower Brier penalty than
one’s Bayesian counterparts. This is a stronger conclusion than the one which was
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reached for updating in an individualistic setting, where simulations resulted in a more
fragmented picture.

The results may also raise the hope that an independent argument in favor of social
updating is in the offing. As stated, social epistemologists have drawn attention to the
epistemic importance of various social practices: we often (have to) rely on others to
extend our knowledge. It is no tenet of social epistemology that we should rely on others
whenever possible. But the results visualized by Figures 2-4 might seem to suggest that,
whenever we have a choice—which will not always be the case—we should not only go
by the evidence we receive directly from the world but also let our beliefs be influenced
by colleagues and others whose beliefs are close enough to our own.

However, this is not generally supported by our data. Figure 7 represents the results
from our simulations concerning speed of convergence of non-averaging Bayesian
communities and non-averaging explanationist communities. Comparison of the top
row in this figure with the second and third row in Figure 6 shows that, in terms of
speed of convergence, the non-averaging Bayesian communities do better than the
(in the present respect) best averaging Bayesian communities as well as one of the
(in the present respect) best averaging explanationist communities. Of course, as the
lower row in Figure 7 shows, the non-averaging explanationist communities do better
still. (That non-averaging explanationist communities do better in the current respect
than non-averaging Bayesian communities was already known from the simulations
discussed in Section 2.)

I \ \;l\‘"'

200 300 400 500

illiiiuui" ~

Figure 8: Average differences over 50 simulations between averaging explanationists
(€ = 1, ¢ = 0.1) and their non-averaging Bayesian counterparts (left panel), respectively
their non-averaging explanationist counterparts (right panel).

We can also compare, after any given update, the number of explanationists in an
averaging community that have a Brier score that is lower than their Bayesian counter-
part’s score after the given update, as we did in Figure 5 for averaging explanationists
and averaging Bayesians. It is clear from the left panel of Figure 8 that, overall, non-
averaging Bayesians do better than the averaging explanationists with e = 1 and ¢ = 0.1
(which are among the best averaging explanationists in this respect). We knew from the
simulations described in Douven [2013] that non-averaging explanationists do better
in this respect than non-averaging Bayesians, so the right panel of Figure 8 shows, not
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surprisingly, that non-averaging explanationists do much better in the respect of Brier
score minimization than their averaging explanationist counterparts.

But note that even if we do not have a general argument in favor of social updating,
we still find something interesting, to wit, that if you want to understand the epistemic
goal of truth approximation in terms of either speed of convergence or increasing the
chance of incurring a low Brier score, then, if you can, you should ignore the beliefs of
others in your community. As was shown in Douven [2013], however, in those cases
you have a reason to be an explanationist. If, on the other hand, you want to understand
the epistemic goal in terms of minimizing average total Brier score, then, as far as the
above results go, you have reason to also take into account the beliefs of at least certain
others in your community (if possible). But then, as we saw, you also have reason to be
an explanationist. So, if you have the option of taking into account the beliefs of others
in your community, it may not always be best to take those beliefs into account, but it is
always best to be an explanationist.

5. Interpretation. In the previous section, we offered some discussion along with the
simulation results. We observed that—in a social setting and given various important
conceptions of our epistemic goal—IBE outperforms Bayes’ rule. Here, we wish to offer
a more in-depth discussion of the causes underlying this observation.

To this end, we address two specific questions, both related to Figures 2 and 3,
namely: (1) Why is the average Brier score per agent for most biases (other than p = .1
and p = .9) lower for an averaging explanationist than for a Bayesian? (2) In particular,
why is there such a large difference in the average Brier score between an averaging
Bayesian with a certain e-value (bottom row in Figure 2) and an explanationist with the
same e-value who assigns a small explanation bonus (¢ = 0.1; i.e., second row from the
bottom in Figure 2)?

To answer these questions, we first explain how it is possible at all to obtain a lower
expected average Brier score than an averaging Bayesian. We do this by introducing a
third option besides those of the averaging Bayesian and the averaging explanationist.
This reference strategy is Bayesian, but it is only available to an agent who has full
knowledge of the outcomes of the tosses observed by all the agents in the population.
We show how the strategy of the averaging explanationist leads to an average Brier score
that is intermediate between that of the averaging Bayesian and that of the reference
strategy.

Assume that there is an agent who is “omniscient” in the sense that she has access
to information concerning the toss results of all the agents in the population.”’ If the
only epistemic goal is to minimize the expected Brier score, Bayesian updating is the

*!Observe that in the simple model we discuss, any agent can get access to this information: based on
another agent’s probability function, the relative frequency and number of tosses can be deduced. However,
this will no longer work in more realistic cases: an agent will typically be unable to deduce the information
on which another agent’s probability function is based, since the other agent’s probability assignments are
only known partially and approximately and the details of each agent’s update process will typically vary
among agents and be unknown to others.
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optimal strategy to achieve it in a non-social setting (Douven [2013]). Hence, also
for the omniscient agent (for whom the social context is of little relevance), Bayesian
updating based on the totality of information about toss results is the optimal strategy
to achieve a minimal expected Brier score.

Compared to this reference strategy, the averaging Bayesian is much more conser-
vative, which leads to a Brier score that is higher on average. This should be easy to see.
As the omniscient Bayesian updates on the basis of results of an increasing number of
peers, the resulting peak in the probability function becomes more pronounced (larger
difference between maximal and minimal value of the probability function) than before
the update. This corresponds to the fact that the probability of the evidence’s being
misleading drops as the number of tosses increases.”> Hence it is clear that on average
this strategy will lead to the lowest Brier penalty. In contrast, by averaging over the
probability functions of peers (who have received the same results as in the reference
case), the peak position in an averaging Bayesian’s probability function will be identical
to that in the reference case, but the peak will become less pronounced than before the
update.

In situations where the agents do not have access to the toss results of others (and
cannot infer them either, as they could in our toy example), the reference strategy is not
available to them. Averaging over other agents’ probability functions may then seem an
attractive alternative strategy, given that by averaging, the agent still takes into account
more independent evidence (albeit indirectly, by looking at other agents’ probability
functions). This ensures that the position of the peak is based on more information and
thus less likely to be based on misleading evidence. And yet averaging does not reflect
this increase in information, in that the probability function obtained by averaging does
not get more pronounced. In the example on which the numerical simulations were
based, the agents observe different series of tosses all produced by coins with the same
bias, so the agents receive statistically independent information. In such a context, it is
clear that averaging over probability functions, which results in smoothing out rather
than boosting the peak at the average position, is too conservative. If the reference
strategy is not available, this leaves open the question of a better strategy (in the sense of
lowering the expected Brier score). Averaging over probability functions may be a more
natural idea in situations where the agents’ opinions are based on information that is
not (fully) independent and in which their way to arrive at probability assignments is
not necessarily based on Bayesian considerations. But in such situations, too, there may
be an update strategy that outperforms averaging Bayesians.

Informally, we are looking for a way to boost the signal of the maximum in the
probability function that results from the social updating rule based on averaging. One
way to achieve this is by introducing an explanation bonus. It increases the probability

In the current context, we may define “misleading evidence” as an initial sequence of toss results with
an observed relative frequency that deviates by more than .1 from the actual bias. For a fixed number of
toss results, the probability of producing misleading evidence is zero for extreme biases (p = 0 and p = 1)
and rises toward the middle bias (p = .5). For nonextreme biases, the more tosses the relative frequency is
based on, the lower the probability for this sample to constitute misleading evidence.
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of the hypothesis (or pair of hypotheses, in case of a tie) that receives the maximal
probability value after updating in a social way, which is closest to the overall relative
frequency.

In the toy model, it is not hard to see why this approach (usually) leads to a lower
Brier score. The reference strategy gives rise to probability functions that get more
sharply peaked as data from more agents is taken into account. The bonus can be
regarded as a crude approximation to this: it adds a single peak to the relatively flat
averaged function at the position where it reaches its maximal value. This also helps to
understand in which cases the bonus approach may fail: the bonus introduces a constant
peak, whereas the peak of the reference strategy is smaller at the beginning and more
pronounced for a larger total number of tosses (from all the agents), and also depends
on the position of the relative frequency (accounting for the variable probability of
misleading evidence).

In cases where the bias has an extreme value (i.e., p = 0 or p = 1), the observed
frequency is always exactly equal to the actual bias of the coin. Hence, for these bias
values, explanationists converge faster on the true hypothesis as compared to the (more
conservative) Bayesians. The closer the bias is to the middle value (i.e., p = .5), the
more likely it is for agents to receive misleading evidence. In this case, the conserva-
tive Bayesians may accumulate fewer penalty points as compared to explanationists,
especially at the initial stages of tossing.

Applied to our toy model, this analysis may suggest a modification of IBE, which
would allow for using a variable explanation bonus, dependent on the number of tosses
and the size of the peer group (total number of agents and €). In general, a variable
explanation bonus may codepend on factors that are harder to quantify in a numerical
model, such as the reliability of other agents, the total amount of information, and the
independence of their evidence.

We can now answer the questions posed at the beginning of this section. As for
question (1), the average Brier score per agent for most biases is lower for an averaging
explanationist than for an averaging Bayesian, because the averaging explanationist
behaves more like a reference Bayesian with direct access to all the information than the
averaging Bayesian does: the latter is too conservative and does not reflect the amount of
independent evidence the position of the maximum is based on. As for question (2), the
large difference in the average Brier score between an averaging Bayesian with a certain
e-value and an explanationist with the same e-value who assigns a small explanation
bonus arises because the probability function of the reference strategy has a small peak
at the beginning which gets more pronounced over time (as more evidence is taken into
account): this behavior can be approximated by adding a small bonus at each iteration.
In fact it may be the case that the optimal bonus has a non-zero value smaller than 0.1.
In particular, for smaller groups and smaller values of ¢, the slower growth of the peak
in the reference solution could be approximated by assigning a smaller value to c.

Since we considered a reference strategy that leads to even lower Brier scores than
those of the averaging explanationist, at this point the reader may wonder why we do
not consider the reference strategy as our preferred learning rule. Although we agree
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that the reference strategy offers an optimal solution for this very particular case, this
suggestion goes against the spirit of what we are aiming to achieve here. After all, we
are not looking for an optimal strategy for cases that are analytically tractable, in which
all the evidence is available to all the agents, and in which the only epistemic goal is to
minimize expected Brier penalty. Rather, we are looking for a learning rule that applies
in a wide range of situations, in which the model is known to be an idealization, in
which information regarding other agents’ evidence is incomplete and mediated by
probability assignments, in which we have to estimate how much independent data the
assignment of each agent is based on, in which the data may be noisy, and so on. We
are using the analytical toy model as a means to set up a simulation, not as the ultimate
case of interest.

6. Conclusion. Earlier work on IBE suggested that this rule has two clear advantages
as compared to Bayes’ rule: updating by IBE will in general take one faster to the truth, in
that one will faster assign a high probability to the true hypothesis; and it will in general
minimize one’s Brier penalties. But in that work IBE did not come out as a winner on
all counts. In particular, it was found that, while explanationists will in general incur
slightly lower Brier scores than their Bayesian counterparts, in the infrequent cases in
which explanationists incur a higher Brier score than their Bayesian counterparts, the
difference tends to be large enough to make a comparison in terms of average Brier
scores turn out in favor of Bayes’ rule.

But these results all pertained to a comparison of the two rules in an individualistic
setting. This paper set out to compare them in a social setting, which takes into account
the important role that others play in how we shape and reshape our belief states. It was
seen that, in such a setting, assuming the same statistical model that was used in the
individualistic setting, explanationist updating outperforms Bayesian updating on all
desirable counts: it takes one, in general, faster to the truth; it minimizes, in general,
one’s Brier scores; and it leads, in general, to a lower average Brier score.

Admittedly, much still needs to be done. For one thing, we need a definition of “best
explanation” that is more general than the one assumed in the simulations reported in
this paper. For another, once a more general definition of “best explanation” is available,
it remains to be seen how far our results generalize beyond the simple coin model that
was used here. Meanwhile, the present results should give pause to all those who take it
as almost a platitude that Bayesianism provides the one true confirmation theory.
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