
Logic and Probabilistic Models
of Belief Change

Eric Pacuit

Department of Philosophy
University of Maryland, College Park

pacuit.org

February 20, 2016

Eric Pacuit 1

pacuit.org


K0 Kt = K0 ∗ ϕ=⇒

Learn that ϕ

Suppose that ϕ

p0 pt = ???=⇒
Learning experience
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Suppose that W is a set of states (the set of outcomes).

A σ-algebra is a set Σ ⊆ ℘(W ) such that

I W ∈ Σ

I If A ∈ Σ, then A ∈ Σ

I If {Ai} is a countable collection of sets from Σ, then⋃
i Ai ∈ Σ

A probability function is a function p : Σ→ [0, 1] satisfying:

I p(W ) = 1

I p(A ∪ B) = p(A) + p(B) whenever A ∩ B = ∅

(W ,Σ, p) is called a probability space.
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Probability

Kolmogorov Axioms:

1. For each E , 0 ≤ p(E ) ≤ 1

2. p(W ) = 1, p(∅) = 0

3. If E1, . . . ,En, . . . are pairwise disjoint (Ei ∩ Ej = ∅ for i 6= j),
then p(

⋃
i Ei ) =

∑
i p(Ei )

I p(E ) = 1− p(E ) (E is the complement of E )

I If E ⊆ F then p(E ) ≤ p(F )

I p(E ∪ F ) = p(E ) + p(F ) + p(E ∩ F )
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Suppose that (L, |=) is a logic. A probability function is a map
p : L → [0, 1] such that

1. For each E , 0 ≤ p(ϕ) ≤ 1

2. p(ϕ) = 1 if |= ϕ

3. If p(ϕ ∨ ψ) = p(ϕ) + p(ψ) when |= ¬(ϕ ∧ ψ).
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J. Joyce. A nonpragmatic vindication of probabilism. Philosophy of Science 65,
575603 (1998).

H. Greaves. Epistemic decision theory. Mind (2013.
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Conditional Probability

The probability of E given F , dented p(E |F ), is defined to be

p(E |F ) =
p(E ∩ F )

p(F )
.

provided P(F ) > 0.
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Bayes Theorem

A. Hájek. What conditional probability could not be. Synthese, 137, pp. 273 -
323, 2003.

“The ratio is an analysis not a definition of conditional probability”.

What is the probability that a Democrat will be the next president?

What is the probability that a Democrat will be the next president,
given that a Democrat will be the next president?
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Conditioning

When you acquire new evidence E , the new probability of any
proposition H should be the previous conditional probability of H
given E . I.e., q(H) = p(H | E ).

I If p is a probability function, and q(H) = p(H | E ) for each
H, then q is a probability function.

I (Assuming E1 and E2 are consistent) If q comes from p by
conditioning on E1 and r comes from q by conditioning on E2,
the result of condition on E2 first then E1 would have been
the same, namely r(·) = p(· | E1 ∩ E2).
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Setting pt(·) = p0(· | E ) is demonstrably the correct thing to do
just in case, for all propositions H ∈ Σ, both:

1. Certainty: pt(E ) = 1

2. Rigidity: pt(H | E ) = p0(H | E )
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People are often not aware of all that they have learnt or they fail
to adequately represent it, and it is only the failure of the Rigidity
condition that alerts us to this.
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Three Prisoner’s Problem

Three prisoners A,B and C have been tried for murder and their
verdicts will told to them tomorrow morning. They know only that
one of them will be declared guilty and will be executed while the
others will be set free. The identity of the condemned prisoner is
revealed to the very reliable prison guard, but not to the prisoners
themselves. Prisoner A asks the guard “Please give this letter to
one of my friends — to the one who is to be released. We both
know that at least one of them will be released”.

Eric Pacuit 12



Three Prisoner’s Problem

An hour later, A asks the guard “Can you tell me which of my
friends you gave the letter to? It should give me no clue regarding
my own status because, regardless of my fate, each of my friends
had an equal chance of receiving my letter.” The guard told him
that B received his letter.

Prisoner A then concluded that the probability that he will be
released is 1/2 (since the only people without a verdict are A and
C ).
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Three Prisoner’s Problem

But, A thinks to himself:

Before I talked to the guard my chance of being executed
was 1 in 3. Now that he told me B has been released,
only C and I remain, so my chances of being executed
have gone from 33.33% to 50%. What happened? I
made certain not to ask for any information relevant to
my own fate...

Explain what is wrong with A’s reasoning.
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A’s reasoning

Consider the following events:

GA: “Prisoner A will be declared guilty” (we have p(GA) = 1/3)

IB : “Prisoner B will be declared innocent” (we have p(IB) = 2/3)

We have p(IB | GA) = 1: “If A is declared guilty then B will be
declared innocent.”

Bayes Theorem:

p(GA | IB) = p(IB | GA)
p(GA)

p(IB)
= 1 · 1/3

2/3
= 1/2
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A’s reasoning, corrected

But, A did not receive the information that B will be declared
innocent, but rather that “the guard said that B will be declared
innocent.” So, A should have conditioned on the event:

I ′B : “The guard said that B will be declared innocent”

Given that p(I ′B | GA) is 1/2 (given that A is guilty, there is a
50-50 chance that the guard could have given the letter to B or
C ). This gives us the following correct calculation:

p(GA | I ′B) = p(I ′B | GA)
p(GA)

p(I ′B)
= 1/2 · 1/3

1/2
= 1/3
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Setting pt(·) = p0(· | E ) is demonstrably the correct thing to do
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Observation by candlelight

An agent inspects a piece of cloth by candlelight, and gets the
impression that it is green (G ), although he concedes that it might
be blue (B) or even (but very improbably) violet (V ).

p0(G ) = p0(B) = 0.3, p0(V ) = 0.4

⇓

pt(G ) = 0.7, pt(B) = 0.25, pt(V ) = .05

Is there a proposition E such that pt(·) = p0(· | E )?
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Jeffrey Conditionalization

When an observation bears directly on the probabilities over a
partition {Ei}, changing them from p(Ei ) to q(Ei ), the new
probability for any proposition H should be

q(H) =
∑
i

p(H | Ei )q(Ei )

Rigidity: If q is obtained from p by Jeffrey Conditioning on the
partition {E ,E} with q(E ) = 1, then q(·) = p(· | E ).
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a0.25

c0.25

b 0.25

d 0.25

F1 F2

E1

E2

The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(a) = p({a} | E1)∗p∗(E1)+p({a} | E2)∗p∗(E2) = 0.25∗0.5+0 = 0.4
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The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(b) = p0({b} | E1)∗p(E1)+p0({b} | E2)∗p(E2) = 0+0.5∗0.8 = 0.4
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a0.4

c0.25

b 0.4

d 0.25

F1 F2

E1

E2

The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(c) = p0({c} | E1)∗p(E1)+p0({c} | E2)∗p(E2) = 0+0.5∗0.2 = 0.1
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The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(d) = p0({d} | E1)∗p(E1)+p0({d} | E2)∗p(E2) = 0+0.5∗0.2 = 0.1
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F1 F2

E1

E2

The probability that the guilty party is left-handed is 0.8
E1 = {a, b}, E2 = {c , d}

p(E1) = 0.8 p(E2) = 0.2

p(d) = p0({d} | E1)∗p(E1)+p0({d} | E2)∗p(E2) = 0+0.5∗0.2 = 0.1
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c0.1

b 0.4

d 0.1

E1

E2

F1 F2

The probability that the guilty party is left-handed is 0.8
F1 = {a, c}, F2 = {b, d}

p(F1) = 0.7 p(F2) = 0.3

p(a) = p0({a} | F1)∗p(F1)+p0({a} | F2)∗p(F2) = 0.8∗0.7+0 = 0.56
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a0.56

c0.14

b 0.24

d 0.06

E1

E2

F1 F2

The probability that the guilty party is left-handed is 0.8
F1 = {a, c}, F2 = {b, d}

p(F1) = 0.7 p(E2) = 0.3

p(a) = p0({a} | F1)∗p(F1)+p0({a} | F2)∗p(F2) = 0.8∗0.7+0 = 0.56
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P. Diaconis and S. Zabell. Updating Subjective Probability. Journal of the
American Statistical Association, Vol. 77, No. 380., pp. 822-830 (1982).
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Suppose we are thinking about three trials of a new surgical
procedure. Under the usual circumstances a probability assignment
is made on the eight possible outcomes
R = {000, 001, 010, 011, 100, 101, 110, 111}, where 1 denotes a
successful outcome, 0 not.

Suppose a colleague informs us that another hospital had
performed this type of operation 100 times, with 80 successful
outcomes. This is clearly relevant information and we obviously
want to revise our opinion.

The information cannot be put in terms of the occurrence of an
event in the original eight-point space R, and the Bayes rule is not
directly available.
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1. Complete Reassessment. In the absence of further structure it is
always possible to react to the new information by completely
reassessing P∗, presumably using the same techniques used to
quantify the original distribution P.
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2. Retrospective Conditioning. Some subjectivists have suggested
trying to analyze this kind of problem by momentarily disregarding
the new information, quantifying a distribution on a space W ∗ rich
enough to allow ordinary conditioning to be used, and then using
Bayes’ rule.

Eric Pacuit 24



3. Exchangeability. The three future trials may be regarded as
exchangeable with the 100 trials reported by our colleague.
Standard Bayesian computations can then be used. However, given
that the operations will have been performed at two, possibly very
different, hospitals with possibly very different patient populations,
this assumption might very well be judged unsatisfactory.
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4. Jeffrey’s Rule. Suppose that the original probability assignment
P was exchangeable. That is, P(001) = P(010) = P(100) and
P(110) = P(101) = P(011). Consider a partition {Ei}3i=0, where
E0 = {000}, E1 = {001, 010, 100}, E2 = {110, 101, 011} and
E3 = {111}. To complete the probability assignment P∗, we need
a subjective assessment of each P∗(Ei ), then use Jeffrey’s Rule to
define a full probability measure.
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Conditioning

I If q comes from p by conditioning on E , then q(E ) = 1

I If p(E1) = 1 then p(E1 | E2) = 1 for any E2 consistent with E1

I If p(E1) = 1 then p(A | E2) is undefined whenever E2 is
inconsistent with E1, since p(E2) = 0
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Fact. Jeffrey conditioning is not commutative.

J. Weisberg. Commutativity or Holism? A Dilemma for Conditionalizers. British
Journal of the Philosophy of Science, 60(4), pp. 793-812, 2009.

Commutativity on Experiences Any rule for updating degrees
of belief on experiences should be such that the result of updating
credences on one experience and then another should be the same
as the result of updating on the same two experiences in reverse
order.

Holism For any experience and any proposition, there is a
“defeater” proposition, such that your degree of belief in the first
proposition, upon having the experience, should depend on your
degree of belief in the defeater proposition.
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“When conditional probability is defined by the ratio rule, it has
limited expressive capacity. We would like to allow propositions
that have been accorded zero probability to serve as conditions for
the probability of other propositions. This is impossible when
p(x | a) is put as p(a ∧ x)/p(a), for it is undefined when p(a) = 0.

I Borel: Suppose a point is selected at random from the surface
of the earth. What is the probability that it lies in the
Western hemisphere, given that it lies on the equator?

D. Makinson. Conditional Probability in the Light of Qualitative Belief Change.
Journal of Philosophical Logic.
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Problem: The condition a is consistent but of zero probability (the
critical zone).

Solutions:

I Carnap: Whenever p(x) = 0 then x is inconsistent.

Define pa(·) as p(· | a). By the left projection,
pa(x) = p(x | a), then pa(¬a) = p(¬a | a) = 0 since p(a).
Thus, pa(¬a) = 0 even though ¬a is inconsistent.

I p(x | a) = 1 for every value x when p(a) = 0. Not very useful.

I p(x | a) is the limit of the values of p(x | a′) for suitable
infinite sequence of non-critical approximations a′ to a. Only
defined on special domains.
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Define pa(·) as p(· | a). By the left projection,
pa(x) = p(x | a), then pa(¬a) = p(¬a | a) = 0 since p(a).
Thus, pa(¬a) = 0 even though ¬a is inconsistent.

I p(x | a) = 1 for every value x when p(a) = 0.

Not very useful.

I p(x | a) is the limit of the values of p(x | a′) for suitable
infinite sequence of non-critical approximations a′ to a. Only
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CPS (Popper Space)

A conditional probability space (CPS) over (W ,A) is a tuple
(W ,A,B, µ) such that A is an algebra over W , B is a set of
subsets of W (not necessarily an algebra) that does not contain ∅
and µ : A×B→ [0, 1] satisfying the following conditions:

1. µ(U | U) = 1 if U ∈ B

2. µ(E1 ∪ E1 | U) = µ(E1 | U) + µ(E2 | U) if E1 ∩ E2 = ∅,
U ∈ B and E1,E2 ∈ A

3. µ(E | U) = µ(E | X ) ∗ µ(X | U) if E ⊆ X ⊆ U, U,X ∈ B
and E ∈ A.
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p : L × L → [0, 1]

van Fraassen Axioms:

I vF1 p(x , a) = p(x , a′) whenever a ≡ a′

I vF2 pa is a one-place Kolmogorov probability function with
pa(a) = 1

I vF3 p(x ∧ y , a) = p(x , a) ∗ p(y , a ∧ x) for all a, x , y

“for ‘most’ values of the right argument of the two-place function,
the left projections should be proper one-place Kolmogorov
functions, while in the remaining cases it should be the unit
function.”
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(Positive): when p(a,>) > 0 then pa is a proper Kolmogorov
function.

(Carnap) When a is consistent then p(a,>) > 0.

(Unit) When a is consistent but p(a,>) = 0, then pa is the unit
function.

(HL) When a is consistent but p(a,>) = 0, then pa is a proper
Kolmogorov probability function.
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What does ‘most propositions’ mean?

I The van Fraassen system: an unspecified subset (possibly
empty) of the consistent propositions,

I The Popper system: all propositions that are above the
critical zone or in an unspecified subset (possibly empty) of it,

I The Unit system: for all propositions above the critical zone
but no others,

I The Hosiasson-Lindenbaum system: for all propositions above
or in the critical zone,

I Carnaps system: we can say any of the last three, since the
critical zone is declared empty.
m
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LPS (Lexicographic Probability Space)

A lexicographic probability space (LPS) (of length α) is a tuple
(W ,Σ, ~µ) where W is a set of possible worlds, Σ is an algebra over
W and ~µ is a sequence of (finitely/countable additive) probability
measures on (W ,Σ) indexed by ordinals < α.
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Fix an LPS ~µ = (µ0, . . . , µn)

I E is certain: µ0(E ) = 1

I E is absolutely certain: µi (E ) = 1 for all i = 1, . . . , n

I E is assumed: there exists k such that µi (E ) = 1 for all i ≤ k
and µi (E ) = 0 for all k < i < n.
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NPS (non-standard probability measures)

R∗ is a non-Archimedean field that includes the real numbers as a
subfield but also has infinitesimals.

For all b ∈ R∗ such that −r < b < r for some r ∈ R, there is a
unique closest real number a such that |a− b| is an infinitesimal.
Let st(b) denote the closest standard real to b.

A nonstandard probability space (NPS) is a tuple (W ,Σ, µ)
where W is a set of possible worlds, Σ is an algebra over W and µ
assigns to elements of Σ, nonnegative elements of R∗ such that
µ(W ) = 1, µ(E ∪ F ) = µ(E ) + µ(F ) if E and F are disjoint.
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J. Halpern. Lexicographic probability, conditional probability, and nonstandard
probability. Games and Economic Behavior, 68:1, pgs. 155 - 179, 2010.
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K0 Kt = K0 ∗ ϕ=⇒

Learn that ϕ

Suppose that ϕ

p0 pt = ???=⇒
Learning experience
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Bridge Principles

Probability 1: Bel(A) iff P(A) = 1

The Lockean Thesis: Bel(A) iff P(A) > r

Decision-theoretic accounts: Bel(A) iff∑
w∈W P({w}) · u(bel A,w) has such-and-such property

The Nihilistic proposal: “...no explication of belief is possible
within the confines of the probability model.”
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Preface Paradox

D. Makinson. The Paradox of the Preface. Analysis, 25, 205 - 207, 1965.
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Preface Paradox

Suppose that in the course of his book an author makes a great
many assertions: s1, s2, . . . , sn.

Given each one of these, he believes that it is true (for each i ,
BA(si ))

If he has already written other books, and received corrections
from readers and reviewers, he may also believe that not everything
he has written in his latest book is true.

BA(¬(s1 ∧ s2 ∧ · · · ∧ sn))

But {s1, . . . , sn,¬(s1 ∧ · · · ∧ sn)} is logically inconsistent.
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Preface Paradox

A philosopher who asserts “all of my present philosophical
positions are correct” would be regarded as rash and over-confident

A philosopher who asserts “at least some of my present
philosophical beliefs will turn out to be incorrect” is simply being
sensible and honest.
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Preface Paradox

1. each belief from the set {s1, . . . , sn, sn+1} is rational

2. the set {s1, . . . , sn, sn+1} of beliefs is rational.

1. does not necessarily imply 2.
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Preface Paradox: The Problem

“The author of the book is being rational even though
inconsistent. More than this: he is being rational even though he
believes each of a certain collection of statements, which he knows
are logically incompatible....this appears to present a living and
everyday example of a situation which philosophers have commonly
dismissed as absurd; that it is sometimes rational to hold
incompatible beliefs.”

D. Makinson. The Paradox of the Preface. Analysis, 25, 205 - 207, 1965.
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H. Leitgeb. The Review Paradox: On the Diachronic Costs of Not Closing
Rational Belief Under Conjunction. Nous, 2013.
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Belt is the set of propositions believed at time t

Pt is the agent’s degree of belief function at time t

t ′ > t
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P1 If the degrees of belief that the agents assigns to two
propositions are identical then either the agent believes both of
them or neither of them.

For all X ,Y : if Pt(X ) = Pt(Y ), then Belt(X ) iff Belt(Y ).
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P2 If the agent already believes X , then updating on the piece
of evidence X does not change her system of (all-or-nothing)
beliefs at all.

For all X : if the evidence that the agent obtains between t and
t ′ > t is the proposition X , but it holds already that Belt(X ), then
for all Y :

Belt′(Y ) iff Belt(Y )
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P3 When the agent learns, this is captured probabilistically by
conditionalization.

For all X (with Pt(X ) > 0): if the evidence that the agent obtains
between t and t ′ > t is the proposition X , but it holds already that
Belt(X ), then for all Y :

Pt′(Y ) = Pt(Y | X )

Eric Pacuit 50



Assume Belt(A),Belt(B) but not Belt(A ∩ B)

I Suppose that the agent receive A as evidence.

I Pt′(B) = Pt(B | A) = Pt(A ∩ B | A) = Pt′(A ∩ B).

I By P1, the agent must have the same doxastic attitude
towards B and A ∩ B.

I By P2, the agent’s attitude towards B and A ∩ B must be the
same at t ′ as at t.

I But, Belt(B) and not Belt(A ∩ B)
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t t ′Receives evidence A

Belt(A),Belt(B)

¬Belt(A ∩ B)

0 < Pt(A) < 1

Pt′(B) = Pt(B | A)

Pt′(A ∩ B) = Pt(A ∩ B | A) = Pt(B | A)

Belt′(B) iff Belt′(A ∩ B)

Belt(A) iff Belt′(A)

Belt(B) iff Belt′(B)

Belt(A ∩ B) iff Belt′(A ∩ B)

Assumption

Belt(B) iff Belt′(B) iff Belt′(A ∩ B) iff Belt(A ∩ B)
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Lottery Paradox

H. Kyburg. Probability and the Logic of Rational Belief. Wesleyan University
Press, 1961.

I. Douven and T. Williamson. Generalizing the Lottery Paradox. British Journal
of the Philosophy of Science, 57, 755 - 779, 2006.

G. Wheeler. A Review of the Lottery Paradox. Probability and Inference: Essays
in honor of Henry E. Kyburg, Jr., College Publications, 2007.
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Lottery Paradox

Consider a fair lottery with 1,000,000 tickets and one prize.

The probability that a given ticket will win is 0.000001
(1/1, 000, 000) and the probability that it will not win is 0.999999.

“Surely if a sheer probability is ever sufficient to warrant the
acceptance of a hypothesis, this is a case”

For each lottery ticket ti (i = 1, . . . , 1000000), the agent believes
that ti will loose BA(¬‘ti will win’)
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Lottery Paradox

A rule of acceptance: If S and T are acceptable statements,
their conjunction is also acceptable.

So, the conjunction
∧1000000

i=1 ‘ti will not win’ should be accepted.
That is, the agent should rationally accept that no lottery ticket
will win.

But, this is a fair lottery, so at least one ticket is guaranteed to win!
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The Lottery Paradox

Kyburg: The following are inconsistent,

1. It is rational to accept a proposition that is very likely true,

2. It is not rational to accept a propositional that you are aware
is inconsistent

3. It is rational to accept a proposition P and it is rational to
accept another proposition P ′ then it is rational to accept
P ∧ P ′
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