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Abstract

We explore ways in which purely qualitative belosbiange in the AGM tradition can
throw light on options in the treatment of condita probability. First, by helping see
why we sometimes need to go beyond the ratio rafenilg conditional from one-
place probability. Second, by clarifying criteriar fchoosing between various non-
equivalent accounts of the two-place functions.rd;hby suggesting novel forms of
conditional probability, notably screened and hymisionary. Finally, we show
how qualitative uncertain inference suggests ampthery broad, class of ‘proto-
probability’ functions.
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1. Why Go Beyond the Ratio Rule?
Kolmogorov’'s postulates for one-place probabilitjnétions are simple, natural and
easy to work with, and the ratio definition of camahal probability is convenient to

use (see appendix). They have become standardhsgabeyond them?

The reasons advanced in the literature are of tveonnkinds: a metaphysical
complaint and a pragmatic appeal for greater espresess. We outline them in this



section, suggesting that while the metaphysicaliggs do not stand up to scrutiny,
there is a real need for greater expressive capagithe following section, we show
how a comparison with the situation in qualitatbadief revision makes the need all
the more evident.

1.1. Metaphysicalvs Pragmatic Considerations

It is commonly felt (see appendix) that all proli&piis at bottom conditional

anyway, and we should bring this out from the vémsginning of our formal

treatment. From a subjective perspective: a prdibalpudgement is always made
given a whole lot of background information, and o conditional on that
information. From a frequency perspective: probgbiis some sort of limiting

frequency of a type of item in a set, and if weaeg¢ or diminish the set, the
frequency will in general change.

However, the argument has its limitations. On astaittiive level, it may involve an
infinite regress. This is most easily seen in thlgfof-sets mode. Suppose we do take
probability as a two-place functign F*-[0,1] whereF is a field of subsets of a set
S This still depends on the choice &f Making it into a three-place functigo
F3_.[0,1] will not help, as that still depends & taking us one step further in an
infinite regress. The only way to eliminate all Budependence is take the domain to
be theuniversalclass. But practising probabilists never do thig] if done, it might
as well be done from the beginning with one-placefions.

Historically, the argument is reminiscent of anlgaray of looking at classical first-
order logic, according to which universal quangfionsx¢(x) are at bottom always
conditionals, since their range depends on thecehoi domain of discourse. On this
view, the dependency should be made explicit frdra beginning by always
guantifying over the entire universe, writing thestricted generalizations as
Ox[Dx - ¢(x)] whereD is the intended domain. Such a view had some cyréor a
while despite the difficulties of talking about aiversal set (so the universe was
thought of as a class rather than a set). But we bacome accustomed to working
with the simpler mode of representing universalngifigation without running into
difficulty, and the philosophical worries have simpiithered away.

The historical precedent carries a methodologesddn. Even if all quantification or
probability can be said to be in some sense camdgilj this does not imply that the
conditionality should be brought into the formalisinthe theory itself. In particular,
when certain conditions are held fixed throughautiravestigation, it may be more
convenient to take them into account only at tregestof applying the theory to
specific problems.

Taking all this into consideration, it would seehatt the metaphysical reasons for
going beyond the ratio rule and taking conditiopedbability as primitive are less
than compelling. Nevertheless, a pragmatic needairesn When conditional
probability is defined by the ratio rule, it hamiied expressive capacity. We would
like to allow propositions that have been accordedo probability to serve as
conditions for the probability of other propositornThis is impossible whep(x[a) is
put asp(alx)/p(a), for it is undefined whep(a) = 0.



The most famous example of this expressive gaueéstd Borel. Suppose a point is
selected at random from the surface of the eartmat\é the probability that it lies in
the Western hemisphere, given that it lies on teatr? The condition of lying on
the equator has probability O under the randonctele but we would be inclined to
regard the question as meaningful and even as dpalfid for its answer. Other
examples are given by e.g. van Frassen 1976.

This complaint is more modest than the metaphysiocal, pointing to a gap rather
than alleging a defect. But it is much more prothectThere is no escaping its basic
point: it would be helpful to have a more genexaiaeption that covers what we will

be callingthe critical zone— the case where the conditians consistent but of zero

probability — and we should try to formulate it.

There are, of course, quite trivial ways of makiing ratio definition cover the critical
zone. One, due to Carnap, is to declare that the moempty: whenevgx(x) = 0 then

x is inconsistent. This is known as the regulargpdition. It has the immediate effect
that the ratio definition op(xja) as p(alx)/p(a) covers all instances of the right
argument except whem is inconsistent. For inconsistemtone can then either leave
p(x|a) undefined, or take it to have value 1 for allued of the left argument

However, as remarked e.g. by Spohn 1986, this ieerike a way of avoiding the
problem than solving it. It abolishes by fiat thestshction between logical
impossibility and total improbability. Moreover, asted by Harper 1975 (page 229),
it leads to an internal inelegance. Letbe a proper one-place function satisfying
Carnap’s regularity condition, and consider the-place functionp([) determined
by the ratio definition. Now take a contingent pospion a with 1 # p(a) # 0, and
form the left projectiomp,(D)] aliasp([Ja) of the two-place function. By the definition of
left projections (see appendix) we hgugx) = p(x|a) so substituting-a for x, we
havep,(—a) = p(—ala) = p(~alla)/p(a) = 0/p(a) = 0 sincep(a) > 0. Thuspa(-a) =0
even though-a is consistent, violating the regularity conditiam applied tq,. In
other words, even whem satisfies the regularity condition, the left pajen of its
conditionalization under the ratio definition wilbt do so — which is a discord, to say
the least.

Another trivial way of covering the critical zoneto putp(xja) = 1 for every value of
x whenp(a) = 0. This might be called thatio/unit definition But while this renders
the function always-defined, and is very convenianihany contexts, it does not fill
the expressive gap satisfactorily. For under the, nuhena is in the critical zone the
left projection py(0] from right valuea of the two-place function is the constant
function with value 1, i.e. the improper one-plgezebability function. Although this
cannot be described as wrong, it is not very hélptlhena is consistent byt(a) = 0,
hopefully we should be able to conditionalize tanething more informative than the
unit function; the two-place function should in sasense be essentially conditional.

In mathematical practice one can sometimes ‘wodkid’ the problem. The idea is
that whema s in the critical zone, we should tagé|a) to be the limit of the values of
p(x|a’) for a suitable infinite sequence of non-critiegproximations’' to a. But this

procedure is possible only for suitable domainstely, fields based directly or
indirectly on the real numbers) satisfying appraggiconditions. So while it serves



well for some examples (such as the hemispherett@gaae mentioned earlier), it is
not a general solution.

1.2. Some Notational Niceties

In the following sections, we will compare variowptions for axiomatizing
conditional probability in the light of qualitativeelief revision. When doing so, we
follow certain notational conventions for clarityn particular, we distinguisip(x|a)
from p(x,a), writing:

* p(xla) with a bar when it is understood as a two-plgoerationdefined from a
one-place one by the ratio rule, i.e. by putiofgla) = p(alx)/p(a) whenp(a)
> 0, possibly with the extension that pptgja) = 1 whenp(a) = 0 (in which
case we call it the ratio/unit rule).

* p(x,@) with a comma when taking as an undefined (arbitrary or primitive)
two-place operation defined over all or part.&f

Care will always be taken to specify the arity (f@mof places) of a function under
consideration, either by mentioning it explicitby, by using place-markers asp(i),

(D), p(LoL

Throughout,Cn is the operation of classical consequence; we als® = for the
relation of classical equivalence.

2. Exploring the Critical Zone

In this section we weigh the significance of thiaal zone. We begin by showing
how an analogous zone already arises on the giaitavel for AGM belief change,
and how this helps bring out the conceptual optiomderlying different systems for
two-place conditional probability. We then revidwse systems, presenting them in a
modular way that makes manifest the rationalesipmarently technical choices.

2.1. A Leaf from the AGM Book

It is instructive to compare the situation for pmbbity change with that for
gualitative belief change in the AGM tradition iaied in Alchourrén, Gardenfors
and Makinson 1985.

There, expansion is one thing, revision anothet.KLée any belief set, i.e. a set of
propositions closed under the operatm of classical consequence, ikk= Cn(K).
The expansionof K by a is defined simply by putting{+a = Cn(K[{a}). However
revision is defined by puttingK(a = Cn((K——a)l{a}), where — is a suitable
contraction operation forming frold a subset that is consistent wah(whena is
itself consistent) and satisfying certain regujacionditions.

We thus have two different kinds of change sidesiole. Again, they differ in the
critical zonewhich, in this qualitative context, is the caseevehwe modify the belief
setK by a propositiora that isitself consistent but inconsistent wikh In this critical
zone, expansion creates blow-out to the set gfralpositions of the language, while



revision forces contraction of the belief set. @idgsthe critical zone, the two
operations coincide. This basic difference showitdh® obscured by talk of expansion
being a special case of revision, which is a sloppy of saying that the values of the
two operations are the same outside the criticakzdeither operation is a special
case of the other.

This basic conceptual difference reflects itselftlie different formal properties of
expansion and revision. There are principles that Hor expansion but not for
revision, and conversely. In particular:

* Expansion never diminishes the initial belief se¢, K [0 K+a. This is
sometimes known as the principlelmlief preservationin contrast, revision
will eliminate material from the belief set whenewbe inputa is in the
critical zone.

* Whena is inconsistent witlK, expansion gives us blow-out: batia [
K+a = Cn(K+a) = L (the whole language). In contrast for revisionenvera
is itself consistent, so i&K[A. This property of revision is known as the
principle of(input) consistency preservation

The pattern is replicated in the probabilistic extt There too we are looking at two
different kinds of operation coinciding outside liffering inside the critical zone —
which in this context, we recall, is the case wheere consistent byt(a) = 0. One is
expansionarythe other igevisionary

* The expansionary operation is given by the ratib/definition. It satisfies a
probabilistic analogue of qualitative belief presgion: p(xja) = 1 whenever
p(X) = p(x|T) = 1. Expressed with left projections(x) = 1 whenevep:(x) = 1.
In other words, conditionalizing never reduces teresponding belief set:
writing B(p) for {x: p(x) = 1} we always havé(p) O B(pa) = {X: pa(X) = 1} =
{x: p(xja) = 1} (see the appendix for a verification). No juice lost. In
contrast, a revisionary operation would allow fanchution of the associated
belief set.

* More specifically, whem(a) = 0, the expansionary operation blows-out to the
unit function (irrespective a's own consistency): in that capgXx) = p(xja) =
1 for all x, so thatB(p,) = L (see appendix or a full verification). In contraest
fully revisionary conditional probability functiowould never give us the unit
function when the conditioa s itself consistent.

These two kinds of conditionalization should nottbeught of as competing for the
position of ‘the right one’. Like expansion and issen in the qualitative context, they
can work side by side, as different kinds of capdlization. But how can the
revisionary conception best be expressed?

There are two main approaches to the problem. ©ne define a family of revision
operations that take one-place functions to oneepfanctions. That is the path taken
by Gardenfors in a pioneering paper of 1986 (irgtgt into his book of 1988). The
other approach is to define a family of two-placelability functions. That is the



path taken in varying manners by Hosiasson-Lindemba940, Rényi 1955, 1970,
1970a, Popper 1959 and others in their wake.

Although different in appearance, the two approadre intimately related, as hinted
by Gardenfors 1988 and observed explicitly by Lindtm and Rabinowicz 1989.
Here, we consider only the approach using two-placgbability functions. Our
central question is: of the differing axiom systefmistwo-place probability, is there
one that is preferable to the others, and on witatrgls?

2.2. Bird's-Eye View of Available Systems

The usual presentation of axiom systems for twaelarobability functions can be
quite confusing. The systems themselves are nayaliormulated in an intuitively
evident manner. They can also be difficult to corephue to differing choices of right
domain — sometimes the whole bf sometimes the consistent propositionsLjn
sometimes an arbitrary subsetloflying between % p(x,T) > 0} and L itself. To
facilitate comparison and focus on essentials, avetllate all systems as functions
defined onthe wholeof L% We also present the systems imadular way that is,
with a common basis and differing in what is adtted.

The leading idea is to exploit Rényi’'s insight tHat ‘most’ values of the right
argument of the two-place function, the left prtiges should be proper one-place
Kolmogorov functions, while in the remaining caseshould be the unit function.
We obtain modularity by making a different spea@tfion of what counts as ‘most’ for
each system.

We begin with the basican Fraassen systewhich was formulated (in the field of
sets mode) by van Fraassen 1976 and 1995. Its sxaoncerrall propositions, rather
than special subsets of them. They are the axiofnsight extensionality left
projection andproductrespectively, for two-place functiopsL? — [0,1].

(VF1) p(x,@) =p(x,a) whenevea = a’
(VF2) pais a one-place Kolmogorov probability function kvi,(a) = 1
(VF3) p(xy,a) = p(x,a)p(y,alx) for all formulaea, X, y
Note that (vF2), as formulated here, says fhas a one-place Kolmogorov function,

but it doesnot say whether it is proper or impropéhe unit function). Indeed, the
axioms are consistent wifia being the unit function for eveegy[] L.

Despite their modesty, the van Fraassen axioms lsavprisingly many useful
consequences. The following were already noticédden van Fraassen 1976, 1995,
Arlo Costa 2001, Arlo Costa and Parikh 2005. Fer ¢bnvenience of the reader, we
recall in the appendix the brief verifications.

* Left extensionalityp(x,a) = p(x',a) whenevex = X.
e Wheny [0 Cn(x) thenp(x,a) < p(y,a).

*  Whenp([) is defined ap(LT), then we have the ratio rule (though not its unit
extension to the critical zone, i.e. the ratio/unle).



* Whenais a contradiction, thepy is the unit function.

* The setA of alla 0 L such thap, is the unit function is an ideal. That is, it is
closed downwards (whenevard Cn(b) anda [0 A thenb O A) and also
closed under disjunction (whenewgb [0 A thenalb [1 A).

* pa is the unit function iffp(a,b) = O for all b such thatp, is a proper
Kolmogorov function.

Van Fraassen 1976, 1995 called thé] L such thatp, is a proper Kolmogorov
function normal and thea such thatp, is the unit functiomabnormal— of course,
modulo the functiomp(CI)L In that terminology, the set of all abnormalrmardae form
a non-empty ideal containing the contradictions] #rat a formula is abnormal iff
p(a,b) = 0 for all normalb. Apart from that, they do not tell us anything abwhich
formulae are normal, which abnormal.

Popper’'s systengoes some way to filling the gap. It may be oladity adding a
single axiom, stating that, is normal whenevew(a,T) > 0.

(Positive): wherp(a,T) > 0 thenp, is a proper Kolmogorov function.

More economically but less transparently, Poppsysem may also be obtained by
instead adding the statement th@tb) # 1 for somex,b (see appendix), i.e. thpf([)

is not the unit function for some formulg i.e. thatp(LD)l is not the unit two-place
function.

This still leaves unspecified the status mf when a is in the critical zone, i.e.
consistent but witlp(a,T) = 0. The other systems fill this gap in three ddfarways.
Carnap’s systerdoes so trivially, by declaring that the zonergéy:

(Carnap) Whem is consistent thep(a,T) > O.
This is equivalent to what we would get by keepimg-place functions as primitive,
declaring that only contradictions can get the @aly and using the familiar ratio

definition to generate two-place functions,

The Unit systendills the gap almost as trivially, by adding instlean axiom saying
that any left projection from a point in the créizone has constant value 1:

(Unit) Whena is consistent byt(a,T) = 0, thenp, is the unit function.

This is equivalent to what we would get by keepimg-place functions as primitive
and using the ratio/unit definition to generate {wace ones.

Hosiasson-Lindenbaum’s systéoniefly HL) regulates the critical zone by treafins
elements just like consistent propositions outditge zone. It adds to the Popper
axioms:

(HL) When a is consistent bup(a,T) = 0, thenp, is a proper Kolmogorov
probability function.



Thus, in terms of the leading idea mentioned abawest propositions’ means,
respectively:

» The van Fraassen system: an unspecified subsesilfyjoempty) of the
consistent propositions,

* The Popper system: all propositions that are altbgecritical zone or in an
unspecified subset (possibly empty) of it,

* The Unit system: for all propositions above théical zone but no others,

* The Hosiasson-Lindenbaum system: for all propas#ti@bove or in the
critical zone,

e Carnap’s system: we can say any of the last tlwieee the critical zone is
declared empty.

It is easy to check that these axiom systems arwa@nt to their usual presentations
(see appendix), giving us the sé&@srnap, Unit, HL, Popper, van Fraassenof
functions. The modular arrangement makes it cléaa glance, from their very
formulation, what the relations between the systares Specifically, we have
Carnap = UnitnHL [ Unit, HL O UnitOOHL O Popper O Popperd{1(CI)} = van
Fraassen

The first four relations were established by Lebland Roeper (1989 theorems 4 and
15, table 5, figure 15; also 1999 chapter 3 seciprwith however rather laborious
verifications from the usual formulations of thessgms, and without mentioning the
historical role of Hosiasson-Lindenbaum as a kewptrdoutor. With the present
modular formulation, the inter-relations becomeial, except for the inclusioman
Fraassen [0 Popper{ 1(CD} and the proper part of the inclusiddnitCOJHL [
Popper. The former is checked in the appendix. For theedawe need a ‘mixed’
function, failing axioms (Unit) and (HL) but satsfig the Popper axioms. Such a
function was already supplied by Leblanc and Rod®&9 in the form of a rather
enigmatic 64-element table; in the appendix we ig@the same example with an
intuitive rule-based formulation. The relationsvbeen the classes are pictured in the
Hasse diagram of Figure 1.

Figure 1. Hasse Diagram for Classes of Two-PlacelRbility Functions

» van Fraassen= Popperd{1(CD}

» Popper

UnitOHL
Unit -« HL (Hosiasson-Lindenbaum)

Carnap = UnitnHL



The reader may be surprised that we have not nmattidthe axiomatic system of
Rényi 1955, also in his later books 1970, 1970ds T$ not neglect: his work is
indeed capital, providing the leading idea on whisbst subsequent presentations
(including the present one) are based. Rather, iRésystem takes a form rather
different from those above. In effect, he preseatscheme for a range of
axiomatizationswith the right domain of the function serving aparameter. For a
suitable choice of this parameter (and a little sage) we may obtain the
axiomatization of Popper, and likewise of Hosiaskmdenbaum. Thus strictly
speaking (and taking into account the chronologgpper’'s axioms could well be
called the Rényi/Popper postulates. These histomedters are reviewed more fully
in the appendix.

3. Choosing between systems

Are there any good reasons for preferring one eséhsystems to another? From our
discussion so far, there are only two serious cwldes going beyond the ratio/unit
account, namely the systems of Hosiasson-Lindenkaanof Popper, underlined in
the diagram. In this section we discuss possibter@ for preferring one to the other,
coming to the conclusion that the choice is notaiten of correctness, but of how
revisionary we want our revisionary conditional lpability to be. We then give an
example of how the difference between the two @anesimes make a difference to
an enterprise using conditional probability.

3.1. Hosiasson-Lindenbaunvs Popper

The Hosiasson-Lindenbaum system is not just revasiyp — it is radically so,
satisfying without reserve the probabilistic coupset of consistency preservation.
That is, forevery propositiona, if it is consistent them, is a proper Kolmogorov
function. The only values of the right argument {wject to the unit function are the
inconsistent ones.

On the other hand Popper’'s system is ‘variablysiewary’: it leaves unspecified the
extent to which a function satisfying the axiomseixpansionary, and how far it is
revisionary. As one extremal case it covers fumgtig(L) that are purely
expansionary, i.g, blows out to the unit function for eveayin the critical zone as
well as for inconsistend. These are the functions satisfying the Unit axifm)
above. At the other extreme it covers the Hosiadsotlenbaum functions, wheg
never blows out in the critical zone. In betwedncavers many ‘mixed’ functions,
where for certaim,b in the critical zongy, is the unit function bup, is a proper
Kolmogorov function. Intuitively, it is in the gpi of Leblanc 1989 who asked
rhetorically: “Can’t there besomestatement oL that is ‘utterly unbelievable’, so
unbelievable indeed that — should you believe yow'd believe anything, and yet is
not truth-functionally false?”

It would be unjustifiably doctrinal to regard oné tbhese policies as right and the
other wrong. They are two more options to be adddHde traditional one of using the
ratio or ratio/unit rule. One option may be appraja in certain applications, another
elsewhere. It is not a matter of choosing once fan@ll between candidates, but of
knowing which candidate to call on for what empl&mh



It can also be said that at bottom the differene®vben the Popper and Hosiasson-
Lindenbaum options does not stem from differentceptions of probability, but from
different choices of the underlying consequenceatiat. This can be explained
formally as follows.

We have already noticed that for any two-place tioncsatisfying the Van Fraassen
axioms, and thua fortiori any Popper functiop(LD), the setA of all a [0 L such that
pa is the unit function is a non-empty ideal. Thatitscontains all contradictions,
whenevera [0 Cn(b) anda O A thenb O A, and whenevea,b [0 A thenallb [0 A.
Hence the sefl = {a: —a [0 A} is a filter, i.e. wheneveb [1 Cn(a) anda [ [1 thenb [

[, and whenevea,b [1 [ thenalb [ [1). From this in turn it follows that if we define
a supraclassical consequence operdiinonby puttingCn'(A) = Cn(ALD0) we havel]

O Cn(a) iff O0OCn{a}dn) iff —a Cn(0d) =0 iff a A iff p, is the unit function.
That is,p, is the unit functionff a is inconsistent modul@n'. Moreover, it is easy to
check that moduld&n, the functionp(LD)] continues to satisfy all the van Fraassen
axioms, given that it satisfied them modulo claasién, and sop(LL) is a Hosiasson-
Lindenbaum function modulGr.

In brief: any Popper function (modulo classicah) is a Hosiasson-Lindenbaum
function modulo a suitably defined supraclassicasequence operati®@n’, with the
abnormal elements of the critical zone becon@mginconsistent.

Thus the gap between the broader and narrowereslagsunction is less impressive
than might have been imagined. Which should we watk? Given that the tighter

constraints of HL functions make them easier todhagrit would appear good practice
to do so in applications that admit those constsaiindeed, the following policy

suggests itself: (1) When the application doesreqtire any attention to the critical
zone, stay with one-place functions as primitiv@ng the ratio or ratio/unit definition

of conditional probability. Otherwise (2) take tytace probability as primitive with

the Hosiasson-Lindenbaum axioms if the applicaadmits doing so, otherwise (3)
the Popper axioms

3.2 Does it Ever Make a Difference?

So, does it ever make a substantive difference lwkiied of essentially conditional

probability we use? In some cases it it appeadotso. An example is the theory of
‘cores’ as set out by Arlé6 Costa and Parikh 200&gi®opper functions, building on
ideas of van Fraassen 1995 and Arlé Costa 2001.

Cores were introduced to give a probabilistic aotoof the intuitive distinction
between a broader class of ‘plain’ beliefs and maveer one of ‘full’ beliefs, in such
a way thatboth sets are closed under classical consequence (ance hunder
conjunction).

Translating from the field-of-sets mode used by déhors mentioned, eore for a

Popper functiom: L?~ [0,1] is a formulac such that (1f is normal, that is, the left
projectionp. of p from the right value is a proper Kolmogorov function, and (2) for
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any consistent formula logically implying c and any formuld inconsistent wittc,
p(b,allb) = 0.

Plain beliefs modul@ are then identified with those formulae logicahyplied by at
least one core, whiltull beliefs are those implied by every core. The astlsthow
that in the finite case for any Popper functpri.’~ [0,1] there is a unique strongest
core ¢p and a unique weakest ommg so that in that case plain beliefs are those
formulae logically implied by,, while full beliefs are those implied ly. Indeed, in
the field-of-sets mode we have the same wheneeeunrtderlying set is countable and
we assume countable additivity.

However, for plain beliefs so defined, there isféatlilty. In the finite case they turn
out to be just the formulaewith p(x,T) = 1. In the field-of-sets mode, and assuming
countable additivity, this also holds whenever tineerlying set is countable. This is
given as the ‘coincidence lemma’ of Arl6 Costa 2QfHge 578, and is also an
immediate consequence of Lemma 3.1 of Arl6 CosthRarikh 2005. Thus in these
contexts, the construal gflain belief in terms of cores gives us nothing new, no
matter how we choose our Popper function. NevesHsl as Parikh has urged
(personal communication), when we are working ia timcountable case, or in the
countable one but without countable additivity, mvay not have the same collapse.

It does not seem to have been noticed in the fitsrahat for full beliefs as defined
via cores, there is another difficulty. If we woskith Hosiasson-Lindenbaum
functions rather than the broader class of all Rogpnctions, it turns out that in
every case (finite, countable, uncountable) thé aliefs so construed are just the
tautologies — which is hardly what we want. To shbis, we need only verify that

is itself a core. Using the definition above, iff@es to check thgd(-T,T) = 0 (which

is easy) and that whenevalis consistent whild is inconsistent thep(b,alb) = 0.
But by the inconsistency d&f we havep(b,allb) = p(b,a); and since is a Hosiasson-
Lindenbaum function, its left projectigm fromconsistent is a proper Kolmogorov
function, so by the inconsistencylmfigain, 0= pa(b) = p(b,a).

Thus the usefulness of cores for defining a fornlon of full belief is not robust
under these two axiomatizations of two-place prditgbSome might take this as a
point against the Hosiasson-Lindenbaum systemaditigor takes it as a point against
the edibility of cores.

4. Reverse Direction: Belief Revision in the Lighof Conditional Probability

We have been using AGM belief revision to explaimywe should take seriously a
revisionary reading of two-place probability fumets, and to throw light on the
options available for them. Insight can also benegdi by looking in the other
direction. There is a natural map from two-placebability functions satisfying the
Hosiasson-Lindenbaum (HL) postulates into (in f@aato) the family of AGM belief
revision operations modulo classical consequendes Bection is rather more
technical than the others; some readers may pi@fkip to the more exciting section
perspectives of section 5.

4.1. A Map from Conditional Probability to AGM Beli ef Revision
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Lindstréom andRabinowicz 1989 constructed a map from the clasalldbardenfors
probability-revision operations into the class d&M belief revision operations. The
construction below essentially translates it, vettme simplifications and an explicit
verification of surjectivity, into a map from thdass of Hosiasson-Lindenbaum
probability functions onto the AGM operations.

We treat AGM belief revision functions as one-plamgerations® L2, with
associated current belief sd€s Given any HL functiorp: L?>-[0,1] as defined in
section 2.2 or equivalently its appendix, we cargtthe associated functidnL - 2
and the seK = B(p), as follows.

» The operatior}: L - 2" is defined by puttingh(a) = {x: p(x,a) = 1}.

» The setB(p), also called théop of p, is defined by puttin@(p) = [K(T) ={x:
p(x,T) = 1}.

Then we can show (see appendix) that for everyuictionp: L% [0,1]:
* B(p) is a consistent belief set.

* The operatiori}: L - 2" satisfies the full set of AGM postulates{ through
(KB) with respect t@(p).

4.2. Properties of the Map: Surjective but not Injetive

The passage from to [}, is not injective: a counterexample is given in dppendix.
On the other hand, it is surjective for consistaeglief sets and under the condition of
finiteness (i.e. that the propositional languags baly finitely many mutually non-
equivalent formulae). That is: in such a langudgeevery consistent belief siétand
every revision operatiofl L - 2" satisfying the AGM postulates with respectitp
there is a HL functiop: L* - [0,1] with 0= [} andK = B(p).

The construction is quite straightforward. Givéhand consistenK for such a
language, we defing L>-[0,1] as follows:

* Inthe limiting case tha is inconsistent, pyi(x,a) = 1 for allx O L

* In the principal case tha is consistent, pup(x,a) to be the proportion of
(KCA)-worlds that arex-worlds.

Here, aworld is a maximal consistent set of formulae, ancKamorld, for X I L, is a
world Y with X 0 Y. It is straightforward to verify (see appendixatp satisfies the
HL postulates[1= [},, andK = B(p) as desired.

Thus, we have a natural surjective though non-ijecmap from the family of all
HL conditional probability functions to the famibf the AGM revision operations on
consistent belief sets. This map helps us see @l postulates as reflections of the
HL ones. To this extent, the AGM postulates magdid to go back to 1940!

The map and proof may be generalized to cover tppé&r functions; we sketch what
is involved. In the above construction, we havenbidéing AGM revision functions
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as formulated using classical consequence in thkegbaund. In fact, as was already
made clear in Alchourron, Gardenfors and Makins®85] the same theory of belief
revision carries through when formulated usingteaby supraclassical consequence
operations satisfying the Tarski closure conditiansl disjunction in the premises.
So, for a given functiop: L? - [0,1] satisfying the Popper postulates modulo atas
Cn, we first see it as a Hosiasson-Lindenbaum functrmodulo a suitable
supraclassicaCr, in the manner described in section 3.1, chechlsg that thi<Cr/
satisfies the above conditions. We then consthecsame map as above, but waithi
understood everywhere in placeC, and verify in the same manner as before.

5. Alternative forms of Conditionalization and Revsion

Existing work on qualitative belief revision canggest or provide perspective on
novel forms of conditional probability. In this $em we discuss two examples:
screened and hyper-revisionary conditionalizatibie. then explain how recent work
on qualitative but probabilistically supported irghece leads to an interesting notion
of proto-probability functions.

5.1. Screened Conditional Probability

Screened revision is a variant form of AGM beliefision. Its basic idea is to see the
operation as made up of two steps: a pre-processiey possibly followed by
application of an AGM revision. The pre-processecides the question afhetherto
revise, and this is done by checking whether tlopgsed input is consistent with a
central part of the belief set under considerati@n,a privileged subset. If the answer
is negative, the belief set remains unchangedt i positive, we apply an AGM
revision in a manner that protects the privilegestenal. Clearly, such a composite
process will not satisfy all the postulates of AGRVision: to begin with, the
postulate of successa,] K[a, may fail.

What would a probabilistic analogue of this lookel? Roughly speaking, using the
language of Leblanc cited earlier, whans too unbelievable to take seriously as a
condition, we put the probability of on conditiona to be just theunconditioned
probability ofx. In other words, for values af where for Hosiasson-Lindenbaum or
Popper the left projectiop, would be the unit function, we now require that pr.

This forces modification of the Van Fraassen axiomgarticular, the axiom (vF2)
of left projection must be weakened: we no londgeags havep,(a) = 1 since whem

is inconsistentpy(a) = pr(@) = p(aT) = 0. In another respect, (vF2) can be
strengthened: we can require that the left prajactiom any point is always a proper
Kolmogorov function, as we no longer have any wsdlfe unit function. The product
axiom (vVF3) must also be weakened. To show thissider any inconsisterd.
Unrestricted use of the product axiom would givethet for allx: pr(X) = pa(X) =

p(x.a) = p(x[x,a) = p(x,a)P(x,alkx) = p(x,a)p(x,a) = pa(X)Pa(X) = pr(X)P:(x); so that
for anyx, pr(x) is either 0 or 1 — which is quite undesirabledeabur.

The question of formulating adequate axiom systéwnsscreened versions of the
Popper and Hosiasson-Lindenbaum systems is opesseTproblems may well be
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worth investigating, for although screened condaio probability behaves in an
unfamiliar way, it is a coherent, intuitively modited, and possibly useful concept.

5.2. Hyper-revisionary Probability Functions

As is well known, for any van Fraassen functg{nl)l anda (I L, if p(a,T) > 0 then
p(x,a) is determined by a natural relativization of thmatio rule: p(x,a) =
p(allx,T)/p(a,T). Indeed, this equality is almost immediate: thedpict axiom gives us
p(alx,T) = p(a,T)B(x,aldr) = p(a,T)[P(x,a) by right extensionality, permitting division
whenp(a,T) > 0.

As remarked by Jonny Blamey (personal communicgtibnmay be suggested that
this is too conservative, even when we give elemanthe critical zone a radically
revisionary treatment in the manner of Hosiassordénbaum. For i has a very
low positive probability — say, to fix ideas, © p(a,T) < 0.01 — then a surprise
occurrence oh might sometimes lead us to question whether thetion p(LI) was
really right to givep(a,T) such a small value. We should perhaps move tmetibn
g(CDI which makes the truth @& less unexpected, i.e. puiéa,T) well abovep(a,T);
and for such ag the value ofq(x,@a) may be quite different from that of
p(alx, T)/p(a,T).

This interesting proposal has a number of repefensssome of which may be seen
as merits, others as drawbacks.

Philosophically, it drives a wedge between two etdight ways of ‘adopting’ a
conditiona. On the one hand, we may accept it because its has been revealed to
us; on the other hand, we may entertain it to expits consequences. The argument
above suggests grounds for abandonig) when confronted with the truth of a
propositiona for which p gives a very low value, but it does not suggeshgico
when we merely entertain the truth afto determine what effect it has on our
probabilities. In this way, the proposal has theritmaf putting the spotlight on a
difference that tends to be hidden by the usuatriments of conditional probability.

Pragmatically, there can be no universally fixettat point, like 0.01, at which we
should revise rather than apply the relativizetbnatle. Where to draw the line would
be a matter of context, purposes and subject maliglanced in an informal
judgement. This may be a source of frustration.

Formally, given the above short derivation of tkedativized ratio rule from the
product and left extensionality axioms, at least ohthe two would have to be given
up, or at least restricted in a suitable way. Thiguite a loss.

Finally, it is not immediately clear how the newndtion g(LI)] might be constrained
by appropriate conditions. This could be seendisappointment, or as a challenge.

What would the qualitative analogue of such hymsisionary conditionalization
look like? It would be to allow that even when ih@uis logically consistent with
belief setk, we should not always takda to beCn(K[{a}). As well as adding ira,

we should perhaps be contractikgfor despite the logical consistency of the tao,
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latter may be so implausible in the eyeKdhat the exposure of its truth may lead us
to an ‘agonizing reappraisal’ of the latter.

This, of course, is counter to one of the basicipates of AGM belief revision,
which putsk[a = Cn(K{a}) in every cas¢hata is consistent withk. In brief, AGM
does not admit any conflict less than consisterecyoeacing contraction, just as the
standard forms of conditional probability do ndbal any improbability other than
zero to force us out of the ratio rule.

Perhaps there is room for systems of revision,aruobabilistic conditionalization,
in which the background logic is not logical consexgce but some form of uncertain
inference. How to build on such an idea withoutwlarity or obscurity is another
guestion. On the probabilistic level, it would appéhat such an investigation would
have to make contact with the theory of ‘erroristais’ as developed by Fisher,
Neyman and Pearson, which analyses grounds foernpired one statistical hypothesis
to another when faced with evidence that is higmgrobable given the latter but not
the former. However, we do not attempt to expldis tine of thought further in the
present paper.

5.3. Proto-probability Functions for Qualitative Inference

In 1996, Hawthorne investigated rules of uncertafarence while, while qualitative,
may be given a probabilistic justification, formiigy an axiom system called Q. All
of its axioms are in a natural sense probabililticound, although the converse has
not yet been settled. The question arises: do wed ttee full force of the axioms of
probability in order to justify the rules of Q, can it be done with weaker constraints
on the ‘probability’ functions? In this section wbserve that considerable weakening
is possible. We need only certain modest orderrdtmoconditions from among those
derivable in the system of van Fraassen, the weakéisose presented in section 2.2.

First, we recall Hawthorne’s axioms. They conceomsequence relations |~ (in
words: snake) between formulae of classical prajposil logic. There are six Horn
rules O1-06 defining a system O, and one ‘almosnHale NR whose addition

gives Q. As alway<Cnis classical consequence ant classical equivalence:

Ol.a|~a (reflexivity )

02. Whera |~x andy [0 Cn(x), thena |~y (Rw: right weakening)

03. Whema |~x anda = b, thenb |~x (LcE: left classical equivalence)
O4. Whena |~ xly, thenal X |~y (vem: verycautious monotony)
O5. Whera |~x, b |~xand-b [0 Cn(a), thenalb |~x (XOR: exclusivel}+)
06. Whena |~x andalky |~y, thena |~ x[y (WAND: weak[H).

NR. Whenall |[~x and-b [0 Cn(a), then eithea |~x orb |~x.

As Hawthorne showed, these conditions are prolssibgily sound in the sense that
for any probability functiom(LD) satisfying Popper’s postulates and ‘threshold!
[0,1], if we define a relation by putting |~ X iff p(x,a) = t, then | satisfies all the
rules of Q.

15



Our guestion is: how much probability is really deé for the job? We show that it
can be carried out with any function into an advitrlinearly ordered set with greatest
and least elements, satisfying certain very weatditions in which no arithmetic
operations appear.

Let D be any non-empty set equipped with a relafidhat is transitive and complete
with a greatest elemeng hnd a least elemen.0A proto-probabilityfunction intoD
is any functiomp: L? - D satisfying the following six conditions:

Pl.p(aa) = 1p
P2.p(x,a) < p(y,a) whenevery [1 Cn(x)
P3.p(x,a) = p(x,b) whenevea = b

P4.p(xly,a) < p(y,alx)
P5.p(x,a) < p(x,alb) < p(x,b) whenevep(x,a) < p(x,b) and-b [0 Cn(a)
P6.p(x,a) = p(xLy,a) wheneveip(y,aly) # Op.

We call condition (P5) the principle dfsjunctive interpolationlt is closely related to
a principle of ‘alternative presumption’ of Koopmdm®40, 1940a (details in the
appendix).

Then, if we take any proto-probability functip(C,l) andt [J D, and define a relation
by puttinga |~ X iff p(x,@) = t, then | satisfies all the rules of Q. Indeed, each
condition (Q) follows directly from its counterpart (R with (NG) also following
from (P5). The verifications are trivial, bit givehe novelty of the notion of proto-
probability, we give them in full in the appendix.

It is also easy to check that the axioms for ppoimbability functions follow from
those of van Fraassem, fortiori from the stronger ones of Popper, Hosiasson-
Lindenbaum, Carnap, and the Unit system. In fdwetytare considerably weaker.
Informally, it is clear that the left projection gaproduct axioms of van Fraassen do
not hold for all proto-probability functions, everhen their top and bottom elements
are chosen as the numbers 1,0, since our condiborise latter make no use of either
addition (which is implicit in the left projectioaxiom) or multiplication (explicit in
the product axiom).

For a specific example of a proto-probability fuantthat is not a van Fraassen one,
take p: L> - [0,1] to be the characteristic function of thessiaal consequence
relation, i.e. pup(x,a) = 1 whenx [1 Cn(a), otherwisep(x,a) = 0. Clearly, this satisfies
conditions P1 through P6, but it fails (vF2) singg-x, T) = 1 while p(x,T) = 0 =
p(=x,T) for contingent formulae, so thatp; is not a Kolmogorov function. The
example can be generalized (see appendix).

Thus, the proto-probability functions are defingdpurely order-theoretic conditions
that are strictly weaker than the axioms of anyhef usual systems for conditional
probability, but are strong enough to support thles defining Hawthorne’s system Q
of probabilistic inference. In this way, the thearyqualitative uncertain inference,
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like that of qualitative belief change, provideswn@erspectives on conditional
probability.

Appendix

This appendix runs parallel to the main text. Ihteans most of the formal work,
verifications, references and historical remarkgpsuting the main text.

For Section 1: Why Go Beyond the Ratio Rule?
The Kolmogorov postulates

There are several modes for presenting the Kolnmgmostulates for one-place
probability functions, according to what we taketlasir domain. It may be a field of
sets (most common in mathematics and applicatioms)equivalently a Boolean
algebra (the preferred way of algebraists), orstteof all formulae of a propositional
language (whose quotient structure under classmpaivalence will be a free Boolean
algebra). In this paper we work in the propositlonagode, with the following
formulation (Makinson 2005) of the postulates.

A (one-place)yroper Kolmogorov functiop: L - [0,1] is any function defined on the
setL of formulae of a language closed under the Bool@amectives, into the real
numbers from O to 1, such that:

(K1) p(x) =1 for some formula
(K2) p(x) < p(y) whenevery [1 Cn(x)
(K3) p(xly) = p(X)+p(y) whenevery [1 Cn(x).

Cnis classical consequence; we also waiter classical equivalence. Thus postulate
(K1) tells us that 1 is in that range pf (K2) says thatp(x) < p(y) wheneverx
classically impliesy; (K3), called the rule of finite additivity, tellss thatp(xCy) =
p(X)+p(y) wheneverx is inconsistent withy. It is sometimes extended so as to
constrain the probability of countable unions (measily expressed in the field of
sets mode).

As remarked in the text (and observed by severthloas, notably Harper 1975 and
subsequently Gardenfors 1988, Leblanc and Roe@93)1B comparative contexts it
is convenient to regard thumit function(i.e. the functiorp that putgp(x) = 1 for every

x 0 L) as also being a Kolmogorov function, and we tallow this convention. It
can be formalized by the simple expedient of defirmKolmogorov functioras one
that iseither proper Kolmogorov function (i.e. satisfies the ab@ostulatesyr is the
unit function.Equivalently, one could weaken axi¢KB) by putting it under the
proviso thatp is not the unit function. We refer to the unit ¢tion as themproper
Kolmogorov probability function.

The ratio rule

The ratio rule for conditional probability uses an arbitrary Kalgorov functionp:
L -~ [0,1] to define a two-place function, conventionally weait asp(x|a) and read as
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‘the probability ofx givena’, defined onLx{a O L: p(a) > 0} by the rule: p(x|a) =
p(alx)/p(a) whenp(a) > 0 and otherwise undefined.

Left projections

We recall the standard concept of the left propecti: X Y of a two-place function
f: XxA-Y from pointa [0 A, defined by puttind,(x) = f(x,a) for all x [ X.

For Section 1.1. Metaphysical vs Pragmatic Considations
Metaphysical considerations

Such metaphysical views have been expressed bynédearuof probabilists, notably
Rényi 1955 and 1970, de Finetti 1974 and by sonileguphers, e.g. Hajek 2003.

Rényi 1955 (page 286) puts it briefly: “In factetprobability of an event depends
essentially on the circumstances under which trentepossibly occurs, and it is a
commonplace to say that in reality every probapibt conditional”. The same idea
recurs at greater length in his 1970 (page 35).

De Finetti 1974 (page 134) similarly remarks: “Bvevaluation of probability is
conditional; not only on the mentality or psycholagf the individual involved, at the
time in question, but also, and especially, onstlage of information in which he finds
himself at that moment.”

More recently, Hajek 2003 writes: “...given an unditional probability, there is
always a corresponding conditional probability lagk in the background. Your
assignment of 1/2 to the coin landing heads supelff seems unconditional; but
really it is conditional on tacit assumptions abthg coin, the toss, the immediate
environment, and so on. In fact, it is conditiooalyour total evidence.”

Carnap’s regularity condition

Carnap’s formulation of the additional ‘regularitgbndition may be found in his
1950 section 53 axiom C53-3 and also 1971 chapiegp&ge 101.

We note in passing that the concept of a ‘countéutd probability function’
discussed by Boutilier 1995 (building on Stalnak@70) also assumes that the critical
zone is empty. That concept, defined in the firdtse, is a curious mixture of
guantitative and qualitative ingredients. It pyi&.a), called the counterfactual
probability ofx givena, to be the proportion of the besstates of the model that are
x-states. The emptiness of the critical zone israssito ensure that the denominator
is non-zero for consistent formulae

Getting around the critical zone with limits
For a brief account of the approach by taking Ensee the Wikipedia entry under the

heading ‘Regular conditional probability’. This usé the term ‘regular’ is quite
different from that of Carnap.
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For Section 1.2. Some Notational Niceties

Two-place functions could alternatively be distiiginped from one-place ones by
different type-faces, e.g. lower case for one appeu case for the other. However
that convention meshes poorly with the standardtiwot for left projection, which we
also need to use extensively.

For Section 2.1. A Leaf from the AGM Book
How important is the critical zone?

Our view of the importance of the critical zonenscontrast with that of many writers
who minimize it. For example McGee 1994: “The peshlwe have been examining,
how to revise one’s system of beliefs upon obtgmew evidence that had prior
probability O, is not a problem that has any gpgattical significance.”

Conditional probability in the light of counterfal conditionals

An argument for going beyond the ratio definitiadntwo-place probability may also
be made in terms of counterfactual conditionalseathan belief revision. Indeed,
this is way in which it is usually done in philosogal literature going back to
Stalnaker 1970. However, in the author’s view, ¢benparison with belief revision
affords a clearer view, and also lends itself ® ¢bnstruction of very simple formal
maps, as shown in section 5 and the corresponairigopthe appendix.

Verifications of properties of B(p)

We verify the claims made in bullet points abouidiesets for probability functions.
Let the belief seB(p) corresponding to one-place functiprbe defined by putting
B(p) = {x: p(xX) = 1}. This is also sometimes called ttog of the function. WriteB+a
for the qualitative expansion &by a, i.e. B+a = Cn(Bl{a}). With p,(D! understood
as the left projection froma of the conditionalizationp([Jl)) defined fromp([)} by the
ratio/unit rule, we want show: (1) in all cas&gp) [I B(p)+a [ B(p,) and (2) in the
limiting case thap(a) = 0 we have belief explosiom(p)+a = L = B(p,), whereL is
the set of all propositions of the language.

For (1), the first inclusion is immediate from tdefinition of expansion above. To
check the second inclusion, note that sil{p,) is closed under consequenite
suffices to show that [ B(py) andB(p) [ B(pas). The former is immediate since when
p(a) > 0 thenpy(a) = 1 by the ratio definition and the Kolmogorov pdates for one-
place probability, ang,(a) is also 1 whem(a) = 0, by the unit part of the ratio/unit
definition. For the latter, it suffices to show thahenevemp(x) = 1 thenpa(x) = 1.
This is immediate whep(a) = 0. Whenp(a) > 0 we havepy(x) = p(alX)/p(a) =
p(a)/p(a) = 1 since the hypothesx) = 1 implies thatp(allx) = p(a). For (2), it
suffices to show further that whes{a) = 0 we haveB(p)+a = L. But when the
hypothesis holds thegp(-a) = 1, so~a [ B(p) and thuB(p)+a [0 Cn(-a,a) = L.

For Section 2.2. Bird’s-eye view of available systes
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Verification of consequences of the van Fraassémas

Left extensionalityp(x,a) = p(x',a) whenevewx = X'. Verificatiort By left projection,
pa is either a proper Kolmogorov function or the ufnibction. In the former case,
p(x,a) = pa(X) = pa(X) = p(X,a) using the hypothesis. In the latter cag®,a) = pa(X) =

1 =pa(X) =p(X,a) irrespective of the hypothesis.

Wheny [0 Cn(x) thenp(x,a) < p(y,a). Verification If y 0 Cn(x) thenx = y[Ix so by left
extensionality and produqi(x,a) = p(y(x,a) = p(y,a)p(x,ally) < p(y,a).

When p(l) is defined ag(LT), then we have the ratio rul®erification Suitably
instantiating the product axiomp(alx,T) = p(a,T)[P(x,aIT) = p(a,T)[P(x,a) using right
extensionality, so ip(a,T) > 0 we have(x,a) = p(alx, T)/p(a,T) = p(alx)/p(a).

Whena is a contradiction, thep, is the unit functionVerification pa(a) = p(a,a) = 1
< p(x,a) = pa(X), using left projection and an inequality alreadyablished.

The setA of all a [0 L such thatp, is the unit function is an idealerification To
show thatA is closed downwards, suppasel A anda [ Cn(b). Then 1= p(b[X,a) =
p(b,a)p(x,alb) = 1lp(x,allb) =P(x,b) = pu(X), using the first supposition, left
projection, first supposition again, second suppmsirespectively. To show thatis
closed under disjunction, suppgsg pp are both the unit function. To show thmat,
is also the unit function it suffices, by the Ipfbjection axiom to show that it is not a
proper Kolmogorov function. Suppose it is; we getamtradiction. From the van
Fraassen axioms we havy#[,alb) = p(daalb) = p(a,alb)p(daiab)) =
p(a,alb)p(l,a) = p(a,alb)l = p(a,alb) using the supposition that, is the unit
function. Likewisep(U,alb) = p(b,alb). By the supposition thgb,y, is a proper
Kolmogorov function we havp([J,allb) = 0 sop(a,alb) = 0 = p(b,a[b). By the same
supposition,p(alb,alb) < p(a,alb)+p(b,alb) = 0+0 = 0, contradicting the left
projection axiom.

Finally, we check thaa is abnormal iffp(a,b) = 0 for all normab. Verification From
right to left, suppos@(a,b) = 0 for all normalb, buta is not abnormal. Then is
normal, sop(a,a) = 0, contradicting the left projection axiom. Froeftlto right,
supposea is abnormal anth is normal. Theralb is abnormal as already established,
so 0= p(0,b) = p(0a,b) = p(a,b)p(0,alb) = p(a,b)d = p(a,b) as desired.

Verification of the alternative axiomatization betPopper system

Assume first the van Fraassen axioms plus (Pokitive need to show thafx,b) # 1
for somex,b. By left projectionp(T,T) = 1 > 0 so by (Positivep; is proper and thus
p(1,T) = 0 # 1 as desired. Now assume the van Fraassen axiosp(pb) # 1 for
somex,b. Suppose(a,T) > 0; we need to show thpj is proper, for which it suffices
to show that it is not the unit function. First @othat p((],T) = p(CCb,T) =
p(b,T)[P(1,TCb) = p(b,T)[P([1,b); but sincep(x,b) # 1 it follows thatp, is proper so
p([J,b) = 0 and thugp(1,T) = 0. But alsop(L1,T) = p(0Ca,T) = p(a,T)P(0,a), so since
p(a,T) > 0 we have([d,a) = 0 so thap, is not the unit function, as desired.
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Example of a ‘mixed’ function

Leblanc and Roeper 1989 gave an example of a tawepfunction satisfying the
Popper postulates, whose treatment of formulae prtibability zero is a mix of the
expansionary and revisionary policies. They presritt rather enigmatically as an
88 table (their Table 5). We provide it with a motensparent rule-based
presentation, which for convenience we expressfig$oaof sets.

Take the fieldF of all subsets of the three-element Set {a,$3,y}. For motivation,
think of a,B,y as of increasing levels of importance beginnimgnfia, which has no
importance at all. Pyi(x,a) = 1 unless there is some item of positive importance
and the item of greatest importanceaiis not inx. Formally, we defing: - [0,1],
in fact into {0,1}as follows:

1. If yOathenp(x,a) =1 if y O x, otherwisep(x,a) = 0
2. If yOabutp Oathenp(x,a) =1 if B 0%, otherwisegp(x,a) =0
3. If yOaandp Oathenp(x,a) = 1.

This function is a mix of the two kinds of condital probability:p({3},S = 0 =
p({a},S applying the first clause, byi((1,{B}) = O applying the second while
p(CJ,{a}) = 1 by the third. On the other hand, it is straightfard to check that it
satisfies the Popper axioms.

Historical development of conditional probability

We review the historical steps in the constructbaxioms for two-place probability
functions, working backwards from Popper 1959. kasse of comparison, we
consider them all in the propositional mode, aedtteach as defined on the whole of
L2, but comment on particularities of the originainfiulations each as we go.

Popper’s original postulates for two-place prolkabifunctions, contained in an
appendix of Popper 1959 (recalled e.g. in Lebland &oeper 1989 and more
accessibly Koons 2009) were in the propositionatendrhey reflected a desire for
the autonomy of probability theory from logic, alast algebra and set theory and so
avoided any use of concepts from those areas.fBwg are happy to use concepts of
classical logic in our presentation then, as shbwisubsequent writers, they may be
given more perspicuously, as in the following fotation of Hawthornel 996, which
require, forp: L?~[0,1], that:

(PO) p(x,a) # 1 for some formulaa, x

(P1) p(x.a =p(xb) whenevea=b

(P2) p(x,@) =1 whenevek [1Cn(a)

(P3) eithem(xly,a) = p(x,a)+p(y,a) whenever- (x(ly) [0 Cn(a), or p, is the
unit function

(P4) p(xty,a) = p(y,a)p(x,ya)

Of course, if we are working in the context of diglof sets, (P1) becomes vacuous.
Warning: The term ‘Popper function’ is sometimegdisather loosely, to refer to
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almost any primitive two-place probability functidefined over the critical zone. For
example, Lindstrém anBabinowicz 1989 use the term to refer to the nagrosiass
of Hosiasson-Lindenbaum functions, defined below.

Our modular presentation takes from Rényi 1955019B70a his leading idea that
for ‘most’ values ofa, the left projection froma will be a proper Kolmogorov
function givinga the value 1, and so is very similar in gestaltt Buits details,
Rényi's system is rather different from any of thage have considered. Formulated
in the field-of-sets mode, it treats the right domas aparameter allowing it to be
chosen as any subset of the left domain that isistamt with the axioms. These
axioms are just the product rule and the princighlat p, is a proper one-place
Kolmogorov function withpa(a) = 1, both formulated under the restriction that all
values of the right argument takes a value in &sgricted right domain. For values of
the right argument outside that subset, the prdibahinctions are left undefined. We
are thus given a scheme forfamily of axiom sets, one for each choice of right
domain.

This yields the Popper axioms if we constrain fgatrdomain to included: p(a,S >

0, whereSis the set on which the field is based, and cautythe following editing:
(a) putp(x,@) = 1 for alla with p(a,S = 0, (b) ensure consistency by allowing in the
left projection axiom thap, may be improper (as in the axiom (vF2) of secfid?),

(c) for the one-place Kolmogorov functions mentidne the left projection axiom,
weaken Rényi's assumption of countable to finitditaty, and finally (d) translate
from the field-of-sets mode to the propositionaé.on

The system of Hosiasson-Lindenbaum 1940 concerraed what she called
‘confirmation’ functions, writing them as(x,a) rather tharp(x,a) and working in the
propositional mode. This ground-breaking work hagsrbcomparatively neglected,
despite its accessible and respected place ofgatiioin. In particular, the paper is not
mentioned in Rényi 1955, 1970, or 1970a, nor in wheée-ranging discussion of
Harper 1975 or the comprehensive study of RoepérLablanc 1999. Popper 1959
does mention Hosiasson-Lindenbaum in passing, Ittt nespect to other questions
and without citing her 1940 paper. This contrasth whe explicit acknowledgement
(note 12 in new appendix iv) of the influence ohREL955 on his thinking.

Hosiasson-Lindenbaum excluded inconsistent propositfrom the right domain.
Restoring them, we get the following axioms:
(HL1) p(x,a) =1 whenevek [1 Cn(a)

(HL2) p(xy,a) = p(x,a)+p(y,a) whenever-(xlly) O Cn(a), provideda is
consistent

(HL3) p(xCy,a) = p(x,a)[p(y,alXx) for all formulaea, b, X, y

(HL4) p(x,a) = p(x,b) whenevem = b.
Axiom (HL2) thus broadens the conditions under \uttige left projection of a two-
place function satisfies additivity and is thusrager Kolmogorov function, from the

narrower condition thab(a,T) > 0 to the wider one that is consistent. The system
may be obtained fron Rényi's scheme by settingitite domain at the set of all non-
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empty sets ofS and editing by first puttingp(x,.J) = 1 and then as for Popper’s
system.

In what respect can it be said that Rényi's formolawas an advance on that of
Hosiasson-Lindenbaum? For working mathematiciamsstatisticians, its use of the
field-of-sets mode made application to practicalgbems more transparent. But at a
deeper level, the step forward wamceptual- the realization that a rather arbitrary-
looking axiom system becomes natural if we buildritund the idea that for ‘most’
values of the right argument, the left projectioiti the a proper one-place probability
function. As Rényi put it: “a conditional probakylispace is nothing else than a set of
ordinary probability spaces which are connectechveich other by [the product
axiom]” (Rényi 1955 pp 289-290).

Mini-note: We reverse a correction made by Hailper®91 (page 75) to the effect
that since Hosiasson-Lindenbaum’s formulation ighie propositional mode, it needs
a left companion to (HL4) stating thp€x,a) = p(y,a) wheneverx = y. In fact, this
follows from the postulates as given. In the limiticase thaa is inconsistent we
havep(x,a) = 1 =p(y,a) by (HL1), so supposeis consistent and=y. Then-(x[hy)

[J Cn(a), so by the additivity axiom (HL2) we hapéx[hy,a) = p(x,a)+p(-y,a). But
the supposition also gives us LHS1 by (HL1), sop(x,a)+p(-Yy,a) = 1. Moreover,
(HL1) and (HL2) imply thap(-y,a) = 1 - p(y,a), and so by arithmetig(x,a) = p(y,a).
Essentially this point was already made by Tarskihwegard to the earlier
axiomatization of Mazurkiewicz 1932 (discussed bgloand was acknowledged in
footnote 1 of that paper.

Hosiasson-Lindenbaum 1940 states that her axiomgwo-place probability are
‘analogous’ to still earlier ones of Mazurkiewic@3R. In fact, they constitute a major
simplification and clarification of his quite congx system, which requires the left
domain to contaimndividual propositions, while the right one contains comsitsets

of propositions closed under classical consequentee two kinds of proposition
drawn, moreover, from intersecting and not veryadie defined languages. In his
only example, Mazurkiewicz considers a game: tliedsgument ofp(x,A) can be
filled by a proposition describing a state of plaile the right one can be occupied
by a closed set of propositions containing thesulethe game, the current state of
play, and any mathematical apparatus needed farctieds.

In turn, Mazurkiewicz states that he is taking &s s$tarting point the axioms of
Bohlmann 1909. However, Bohlmann’s postulates areheplace probability in a
mode of unanalysed items called events and ocagsenvhich he supplements with
an ‘axiom’ defining conditional probability by thatio rule.

For some late nineteenth-century uses of conditiprabability (without any attempt
at axiomatization) see Hailperin 1988.

Thus our trail into the history of axiomatizatiooktwo-place probability that cover
the critical zone appears to end with Mazurkiewl®32 as first serious attempt,
Hosiasson-Lindenbaum 1940 as the first really sssfoé one, and Rényi 1955 for
providing a clear gestalt.

For Section 3.1. Hosiasson-Lindenbauns Popper
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We briefly review some interesting, but in the émcbnclusive reasons that could be
given for regarding one or other of the Hosiassordénbaum and Popper accounts
as intrinsically preferable to the other.

An unconvincing argument for Hosiasson-Lindenbafimeness of grain

It might be said that since classic@ln makes finer discriminations than a
supraclassicaCn’, probability theory withCn as background consequence is more
fine-grained than withCrf, giving an advantage to Hosiasson-Lindenbaum over
Popper. But this is not very convincing. In thegasitional mode, we can u€at in

the description of our probability functions buillshaintain Cn for other purposes:
we can have our cake and eat it. In the field-¢d-se algebraic mode, passage to the
guotient structure determined by a suitable fiteuld indeed lose information, but
we are not obliged to effect the passage. We cak wih Popper functions in the
original structure, simply knowing that we couldl,desired, do so in the quotient
structure.

A misdirected argument for Popper: strengtheningditbons

As well as passing from an unconditional to a cbodal function, we often need to
strengthen the condition of an already conditimra. It could be useful to be able to
express this an operation taking a two-place foncp(LI) to another two-place
function p(LD1 by the rule pm(X,@) = p(x,alb). But this operation breaks the
boundaries of Hosiasson-Lindenbaum functions. Ity rhappen that whilea is
consistentalb is not, in which case for any functigll) satisfying the Hosiasson-
Lindenbaum axioms,p(y)a is the unit function despite the consistencyapto that
pmp does not satisfy axiom (HL).

However, Popper functions face a similar problerongider any Popper function
p(LY, and leta be an inconsistent proposition. Ther(a,T) = p(a,a = 1 > 0, while
for all values ofx we have [f)a(X) = pra(X,@) = p(x,a) = 1 sincea is inconsistent, so
that (m)a is the unit function. These two facts contradia distinctive Popper axiom
(Positive).

The only way to keep our class of two-place fundi@losed under the ‘conjoined
condition’ operation is to drop (Positive) and eetrto the van Fraassen system. Thus
the convenience of being able to strengthen carditicould be seen as a point in
favour of the usefulness of that very basic system.

Changing the underlying consequence operation

If one is working in the mode of fields-of-setsBwolean algebras as carriers for the
probability functions, then one can similarly exggd?opper functions as Hosiasson-
Lindenbaum ones by passing to the quotient algdbtarmined by the same filter as
in the propositional case. Essentially this cortdiom was described, under a different
light, by Harper 1975 (page 234) and more exp{idithrper 1976 (section 6).

For Section 4.1. A Map from Conditional Probability to AGM revision
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We verify the claims made in the text about the rfinrep HL conditional probability
functions to AGM revision operations.

For HL functions, the left projectiop, of p(LD)] from a is a proper Kolmogorov one-
place probability function wheneva is consistent (section 2.5), so under that
condition we can apply well-known properties of thee-place functions without
detailed justification, as well as the HL axiomsrtiselves.

To show thaK = B(p) is a belief set, suppoge ] Cn(K); we need to check that] K.
By compactnessy [0 Cn((Ix;: i < n} for somexq,.., X, [0 B(p), so eachp(x,T) = 1,
p(Cx;,T) = 1 and thugp(y,T) = 1 so thaty 0 B(p). To show thaB(p) is consistent we
need then only note thp((],T) = 0.

Let p: L>-[0,1] be any HL function. We need to check thataksociated functioft
L - 2" satisfies each of the AGM postulates i through (KB) with respect t& =
B(p). Two general remarks before the details:

 The AGM postulates for revision were first formeldtin Gardenfors 1984
and a convenient overview may be found in Pepp83,20hose presentation
we follow. We note in passing that the classic aotoin Alchourron,
Gardenfors and Makinson 1985 focused on contracéind its axiomatization
of revision contains a confusion: it omits postelléf[B) below, and treats the
definition of revision from contraction via the Hbar identity as if it were a
postulate.

* We are not verifying satisfaction with respect toaabitrary belief setk, but
with respect to thepecificbelief set depending on the choicepphamely K
= B(p) = {x: p(x,T) = 1}. This specification is needed for [(B) and (K%4) —
though not for the other postulates, in whi€tdoes not appear in unrevised
form.

(K): Kta = Cn(KCA). Verification Same as the above f&(p) = Cn(B(p)), but
replacingT by a.

(KR): a OO K[A. Verification We need(a,a) = 1, immediate.from axiom (VF2).

(KEB): Ka O Cn(K[{a}). Verification Supposey J LHS, so thafp(y,a) = 1. We
need to show that [0 Cn(KI{a}) = Cn(B(p)l{a}) = Cn{{x: p(x,T) = 1}[1{a}), so it
suffices to show thatally [0 {x: p(x,T) = 1}, i.e. thatp(-ally,T) = 1. Nowp(-all,T)
= p(-all(aly),T) = p(=a,T)+p(ally.T). But p(ally,T) = p(aT)p(y.a) = p(aT) since
p(y,a) = 1. Thusp(-ally,T) = p(-a,T)+p(a,T) = p(T,T) = 1 as desired.

(KM4): Cn(KO{a}) O KCa whenevera is consistent withkK. Verification Suppose/
0 Cn(KO{a}) and a is consistent withiK; we need to show(y,a) = 1. By the first
supposition;ally O Cn(Cx;: i < n} for somex;,.., X, O K = B(p) with eachp(x;,T) = 1,
so thatp(Cx,T) = 1 and thusp(-all,T) = 1. Hencep(a,T) = p(@d-ally),T) =
p(ally,T). But also we have(ally,T) = p(a,T)P(y,a). Putting these togethep(a,T) =
p(a,T)[P(y,a). But by supposition;a [0 K = B(p) sop(-a,T) # 1 sop(a,T) # 0, so by
arithmeticp(y,a) = 1 as desired.
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(KB): KA is consistent whenevea is consistent.Verification Supposea is
consistent; we nequ([J,a) = 0, which is immediate.

(K®B): If a=bthenKCa = K[h. Verification Suppose = b; we needo(x,a) = 1 iff
p(x,b) = 1, again immediate.

(K07): Kalb) O Cn((KCR){b}). Verification Suppose O LHS, so thap(x,allb)
= 1. It suffices to show thatb(x [0 K&, i.e. thatp(-blx,a) = 1. Whena is
inconsistent, this is immediate, so suppose d@hatconsistent. From the supposition,
p(=bllx, allb) = 1. Now p(blx,a) = p(b[{-bX),a) = p(b,a)p(-blx,alb) = p(b,a)1 =
p(b,a), so sinca is consistent we hay#bl[+x, a) = 0 sop(-b[X, a) = 1 as desired.

(KB): Cn((KA){b}) O K{alb) whenevelb is consistent witkK[&a. Verificatiorn
Suppose thag O LHS andb is consistent withkK[a; we need to show tha(y,alb) =

1. We have already verified [0 KA, so the second supposition gives us the
consistency od. We now proceed along lines similar to the veaifion of (KC'4). By

the first suppositionybly O K&, i.e. p(=blly,a) = 1. Hence since is consistent,
p(b,a) = p(bli(-blly),a) = p(bly,a). But alsop(blly,a) = p(b,a)[p(y,allb). Putting these
togetherp(b,a) = p(b,a)[p(y,allb). But by the second supposition agaif, [1 K[a so
p(=b,a) # 1 and thup(b,a) # 0, so by arithmetip(y,alb) = 1 as desired.

For Section 4.2. Properties of the Map: Surjectivéut not Injective
Failure of injectivity

For the failure of injectivity, it suffices to fintivo distinct HL functiong # p’ with [},
=, i.e. with[(a) = {x: p(x,a) = 1} = {x: p'(x,@) = 1} = [}(a) for alla T L, i.e. with
p(x,a) = 1 iff p'(x,@a) = 1 for all a,x O L. For simplicity we do this with Boolean
algebras rather than propositional languages. @akdinite Boolean algebra witin=

2 atoms, and two distinct probability distributidifs to these atoms with each atom
getting a non-zero probability; extend them to pfeee probability functions (for
simplicity using the same names) on the entirelabgeNoting that every non-zero
element of the algebra receives a non-zero prabahitder each of these functions,
we can define two-place functiopg’: L%~ [0,1] by the ratio rule for non-zero right
arguments and puttingx,0) = p'(x,0) = 1. These are HL probability functions, in fact
they are Carnap functions. Then forak we havep(x,a) = 1 iff p(allx) = p(a) i.e. iff
a< xand likewise fop', and s@(x,a) = 1 iff p'(x,a) = 1 as desired.

Surjectivity

Suppose that the language is finite, andlet- 2 satisfy the AGM postulates with
respect to a consistent $€t Define p(LI) by the rule;p(x,a) = 1 for allx O L in the
limiting case thata is inconsistent, while in the principal case thais consistent
p(x,a) is the proportion ofK[&)-worlds that arex-worlds. We need to show that ()
satisfies the HL axioms, (Z)= [}, and (3)K = B(p).

For (1) it is convenient to check the HL axiomstire form given to them by
Hosiasson-Lindenbaum 1940 (see appendix to se2t)nas follows.
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(HL1) p(x,a) = 1 whenevex [1 Cn(a). Verification If a is inconsistent then we have
p(x,a) = 1 by the definition for that case, so we may sggpibhata is consistent. By
AGM, a [0 K[&a so ifx [0 Cn(a) we havex [0 Cn(K[A) = KCa. Thus all K[&)-worlds
arex-worlds, i.e. the proportion oK(&)-worlds that arex-worlds is 1, s@(x,a) = 1
as required.

(HL2) p(xCy,a) = p(x,a)+p(y,a) whenevera is consistent but-(xy) [0 Cn(a).
Verification Suppose is consistent and (x(ly) [0 Cn(a). By the first supposition, we
need to consider proportions, and by the secongribygortion of K[&)-worlds that
are kly)-worlds is the sum of the proportions #f§)-worlds that are, separateby,
worlds ory-worlds, and we are done.

(HL3) p(xty,a) = p(x,a)p(y,allx). Verification If a is inconsistent then so & and
LHS = 1 = RHS. Supposa is consistent. la[X is inconsistent then LHS 0 while
RHS= 011 = 0 and again we are donealix is consistent then LHS is the proportion
of (K[A)-worlds that arex(ly)-worlds, while RHS is the proportion oki(a)-worlds
that arex-worlds multiplied by the proportion oK(alx)-worlds that are-worlds. If
X is inconsistent withkK[a then both LHS and RHS equal 0, so we may suppada t
is consistent witiK[Ca. Then by AGM axioms (KF) and (K8) the K[al[X)-worlds
are just the K[A)-worlds that arex-worlds. Hence RHS is the proportion &[§)-
worlds that arex-worlds multiplied by the proportion dfiosethat arey-worlds, which
equals the proportion oK(&)-worlds that arex(Jy)-worlds, equalling the LHS and
we are done.

(HL4) p(x,a) = p(x,b) wheneveia = b. Verification If a is inconsistent then sols so
LHS = 1=RHS. Ifais consistent, then &= b thea-worlds are just thb-worlds, and
the proportion of-worlds that arex-worlds is the same as the proportiorbeforlds
that arex-worlds.

To show that (2)1= [}, consider first the principal case tlaais consistent, where we
need only note that by the definitionGfwe havex O Lja iff p(x,a) = 1 while, by the
definition of p, also p(x,a) = 1 iff every KC&)-world is anx-world, i.e. iff x 0
Cn(K[h) = K[&. In the limiting case that is inconsistentp(x,a) = 1 for everyx and

by the AGM postulatess [1 K[a for everyx, so again we are done. Finally, to check
(3) thatK = B(p) we need only show that [0 K iff p(x,T) = 1. But sinceK is
consistent, the AGM postulates tell us tat KT, and the equivalenq#x,a) = 1 iff

x [0 K[Aa just established may be applied substitutirigr a.

We conjecture that surjectivity fails in the intmicase. Evidently its present proof
breaks down there, since one cannot meaningfukdalsf proportions of infinite
sets, thus blocking the definition p[,l) above. Nor is it possible to repair the proof
by replacing proportionality by some probabilitystlibution that gives each world a
non-zero value. For if the set of formulae is cabi¢, there are continuum many
worlds and as is well known, there is no probapiiistribution on a non-countable
set that gives a non-zero value to each element.

For Section 5.3. Proto-probability Functions for Qualitative Inference
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The system Q

For further information on systems O and Q see paftHawthorne and Makinson
2007.

Disjunctive interpolation

As remarked in the text, the principle of disjuaetinterpolation is closely related to
a rule discussed by Koopman 1940, 1940a. Calledrraltive presumption’, it states
that whenever botp(x,alb), p(x,all=b) < p(y,c) thenp(x,a) < p(y,c). To be precise, if
we assume that the ordsris complete (as we do, although Koopman does not),
alternative presumption is equivalent to the rightf of disjunctive interpolation.
Verification To obtain Koopman: by completeness<pkitherp(x,alb) < p(x,all-b)

or conversely; in e.g. the former case we haxdallb)[(al+ b)) < p(x,all=b) and by
right extensionality and transitivity ot we are done. In the converse direction,
supposep(x,a) < p(x,b) and-b O Cn(a), we want to show the right hand part of
disjunctive interpolation, i.e. tha(x,allb) < p(x,b). We need only note tha(x,b) =
p(x,(alb)[b) and, given the last supposition, tipét,a) = p(x,(alb)=b), then apply
Koopman with a little help from left extensionalitgking §,c) as &b).

Verification that Q is proto-probablistically sound

We check that when we take any proto-probabilityction p(LIY andt O D, and
define a relation by putting |~ X iff p(x,@) 2 t, then | satisfies all the rules of Q.
For (O1) we neegh(a,a) = t, which is immediate from (P1). For (O2), we nebdtt
whenp(x,a) =2 t andy 00 Cn(x) thenp(y,a) = t, which is immediate from (P2). For
(03), we need that wher{x,a) = t anda = b thenp(x,b) = t, which is immediate from
(P3). For (O4), we need that whpf{x(ly,a) > t thenp(y,alx) = t, which is immediate
from (P4). For (O5) alias XOR, we need that wipgna) = t, p(x,b) =t and-b [0
Cn(a), thenp(x,alb) > t. Since the order oD is complete, eithep(x,a) < p(x,b) or
conversely, consider e.g. the former. Then usirg lgft half of (P5),p(x,a) <
p(x,alb) and we are done by transitivity af For (O6) alias WAND, we need that
whenp(x,a) =t andp(y,ally) =t thenp(xy,a) = t. If t = Op then this is immediate,
and ift # Op it is immediate from (P6). It remains to obtaie thon-Horn rule (NR) of
negation rationality\We need to show that wherb O Cn(a) andp(x,alb) > t then
eitherp(x,a) = t or p(x,b) = t. Since the order oB is complete, eithep(x,a) < p(x,b)
or conversely, consider e.g. the former. Then uslegright half of (P5)p(x,alb) <
p(x,b) giving p(x,b) =t as desired.

Generalizing an example

We can generalize the example given in the text mfoto-probability function that is
not a van Fraassen function. Fix any consistemidéitetc and putp(x,a) = 1 whenx [J
Cn(all), elsep(x,a) = 0. Thenp(LD) satisfied (P1) through (P6), but choosings any
formula independent afit fails (vF2) as before.
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