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Abstract 
 
We explore ways in which purely qualitative belief change in the AGM tradition can 
throw light on options in the treatment of conditional probability. First, by helping see 
why we sometimes need to go beyond the ratio rule defining conditional from one-
place probability. Second, by clarifying criteria for choosing between various non-
equivalent accounts of the two-place functions. Third, by suggesting novel forms of 
conditional probability, notably screened and hyper-revisionary. Finally, we show 
how qualitative uncertain inference suggests another, very broad, class of ‘proto-
probability’ functions. 
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1. Why Go Beyond the Ratio Rule? 

 
Kolmogorov’s postulates for one-place probability functions are simple, natural and 
easy to work with, and the ratio definition of conditional probability is convenient to 
use (see appendix). They have become standard. So why go beyond them? 
 
The reasons advanced in the literature are of two main kinds: a metaphysical 
complaint and a pragmatic appeal for greater expressiveness. We outline them in this 
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section, suggesting that while the metaphysical grounds do not stand up to scrutiny, 
there is a real need for greater expressive capacity. In the following section, we show 
how a comparison with the situation in qualitative belief revision makes the need all 
the more evident. 
 
1.1. Metaphysical vs Pragmatic Considerations 
 
It is commonly felt (see appendix) that all probability is at bottom conditional 
anyway, and we should bring this out from the very beginning of our formal 
treatment. From a subjective perspective: a probability judgement is always made 
given a whole lot of background information, and so is conditional on that 
information. From a frequency perspective: probability is some sort of limiting 
frequency of a type of item in a set, and if we enlarge or diminish the set, the 
frequency will in general change.  
 
However, the argument has its limitations. On a substantive level, it may involve an 
infinite regress. This is most easily seen in the field-of-sets mode. Suppose we do take 
probability as a two-place function p: F2→[0,1] where F is a field of subsets of a set 
S. This still depends on the choice of S. Making it into a three-place function p: 
F3→[0,1] will not help, as that still depends on S, taking us one step further in an 
infinite regress. The only way to eliminate all such dependence is take the domain to 
be the universal class. But practising probabilists never do this, and if done, it might 
as well be done from the beginning with one-place functions.  
 
Historically, the argument is reminiscent of an early way of looking at classical first-
order logic, according to which universal quantifications ∀xϕ(x) are at bottom always 
conditionals, since their range depends on the choice of domain of discourse. On this 
view, the dependency should be made explicit from the beginning by always 
quantifying over the entire universe, writing the restricted generalizations as 
∀x[Dx→ϕ(x)] where D is the intended domain. Such a view had some currency for a 
while despite the difficulties of talking about a universal set (so the universe was 
thought of as a class rather than a set). But we have become accustomed to working 
with the simpler mode of representing universal quantification without running into 
difficulty, and the philosophical worries have simply withered away.  
 
The historical precedent carries a methodological lesson. Even if all quantification or 
probability can be said to be in some sense conditional, this does not imply that the 
conditionality should be brought into the formalism of the theory itself. In particular, 
when certain conditions are held fixed throughout an investigation, it may be more 
convenient to take them into account only at the stage of applying the theory to 
specific problems. 
 
Taking all this into consideration, it would seem that the metaphysical reasons for 
going beyond the ratio rule and taking conditional probability as primitive are less 
than compelling. Nevertheless, a pragmatic need remains. When conditional 
probability is defined by the ratio rule, it has limited expressive capacity. We would 
like to allow propositions that have been accorded zero probability to serve as 
conditions for the probability of other propositions. This is impossible when p(x|a) is 
put as p(a∧x)/p(a), for it is undefined when p(a) = 0.  
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The most famous example of this expressive gap is due to Borel. Suppose a point is 
selected at random from the surface of the earth. What is the probability that it lies in 
the Western hemisphere, given that it lies on the equator? The condition of lying on 
the equator has probability 0 under the random selection, but we would be inclined to 
regard the question as meaningful and even as having 1/2 for its answer. Other 
examples are given by e.g. van Frassen 1976. 
 
This complaint is more modest than the metaphysical one, pointing to a gap rather 
than alleging a defect. But it is much more productive. There is no escaping its basic 
point: it would be helpful to have a more general conception that covers what we will 
be calling the critical zone – the case where the condition a is consistent but of zero 
probability – and we should try to formulate it.  
 
There are, of course, quite trivial ways of making the ratio definition cover the critical 
zone. One, due to Carnap, is to declare that the zone is empty: whenever p(x) = 0 then 
x is inconsistent. This is known as the regularity condition. It has the immediate effect 
that the ratio definition of p(x|a) as p(a∧x)/p(a) covers all instances of the right 
argument a except when a is inconsistent. For inconsistent a, one can then either leave 
p(x|a) undefined, or take it to have value 1 for all values of the left argument x. 
 
However, as remarked e.g. by Spohn 1986, this is more like a way of avoiding the 
problem than solving it. It abolishes by fiat the distinction between logical 
impossibility and total improbability. Moreover, as noted by Harper 1975 (page 229), 
it leads to an internal inelegance. Let p be a proper one-place function satisfying 
Carnap’s regularity condition, and consider the two-place function p(⋅|⋅) determined 
by the ratio definition. Now take a contingent proposition a with 1 ≠ p(a) ≠ 0, and 
form the left projection pa(⋅) alias p(⋅|a) of the two-place function. By the definition of 
left projections (see appendix) we have pa(x) = p(x|a) so substituting ¬a for x, we 
have pa(¬a) = p(¬a|a) = p(¬a∧a)/p(a) = 0/p(a) = 0 since p(a) > 0. Thus pa(¬a) = 0 
even though ¬a is consistent, violating the regularity condition as applied to pa. In 
other words, even when p satisfies the regularity condition, the left projection of its 
conditionalization under the ratio definition will not do so – which is a discord, to say 
the least. 
 
Another trivial way of covering the critical zone is to put p(x|a) = 1 for every value of 
x when p(a) = 0. This might be called the ratio/unit definition. But while this renders 
the function always-defined, and is very convenient in many contexts, it does not fill 
the expressive gap satisfactorily. For under the rule, when a is in the critical zone the 
left projection pa(⋅) from right value a of the two-place function is the constant 
function with value 1, i.e. the improper one-place probability function. Although this 
cannot be described as wrong, it is not very helpful. When a is consistent but p(a) = 0, 
hopefully we should be able to conditionalize to something more informative than the 
unit function; the two-place function should in some sense be essentially conditional.  
 
In mathematical practice one can sometimes ‘work around’ the problem. The idea is 
that when a is in the critical zone, we should take p(x|a) to be the limit of the values of 
p(x|a′) for a suitable infinite sequence of non-critical approximations a′ to a. But this 
procedure is possible only for suitable domains (notably, fields based directly or 
indirectly on the real numbers) satisfying appropriate conditions. So while it serves 



 4 

well for some examples (such as the hemisphere/equator one mentioned earlier), it is 
not a general solution.  
 
1.2. Some Notational Niceties 
 
In the following sections, we will compare various options for axiomatizing 
conditional probability in the light of qualitative belief revision. When doing so, we 
follow certain notational conventions for clarity. In particular, we distinguish p(x|a) 
from p(x,a), writing: 

• p(x|a) with a bar when it is understood as a two-place operation defined from a 
one-place one by the ratio rule, i.e. by putting p(x|a) = p(a∧x)/p(a) when p(a) 
> 0, possibly with the extension that puts p(x|a) = 1 when p(a) = 0 (in which 
case we call it the ratio/unit rule).   

• p(x,a) with a comma when taking p as an undefined (arbitrary or primitive) 
two-place operation defined over all or part of L2. 

 
Care will always be taken to specify the arity (number of places) of a function under 
consideration, either by mentioning it explicitly, or by using place-markers as in p(⋅), 
p(⋅|⋅), p(⋅,⋅).  
 
Throughout, Cn is the operation of classical consequence; we also write ≈ for the 
relation of classical equivalence. 
 
 

2. Exploring the Critical Zone 
 
In this section we weigh the significance of the critical zone. We begin by showing 
how an analogous zone already arises on the qualitative level for AGM belief change, 
and how this helps bring out the conceptual options underlying different systems for 
two-place conditional probability. We then review those systems, presenting them in a 
modular way that makes manifest the rationales for apparently technical choices.    
 
2.1. A Leaf from the AGM Book  
 
It is instructive to compare the situation for probability change with that for 
qualitative belief change in the AGM tradition initiated in Alchourrón, Gärdenfors 
and Makinson 1985.  
 
There, expansion is one thing, revision another. Let K be any belief set, i.e. a set of 
propositions closed under the operation Cn of classical consequence, i.e. K = Cn(K). 
The expansion of K by a is defined simply by putting K+a = Cn(K∪{ a}). However 
revision is defined by putting K∗a = Cn((K−¬a)∪{ a}), where − is a suitable 
contraction operation forming from K a subset that is consistent with a (when a is 
itself consistent) and satisfying certain regularity conditions.  
 
We thus have two different kinds of change side by side. Again, they differ in the 
critical zone which, in this qualitative context, is the case where we modify the belief 
set K by a proposition a that is itself consistent but inconsistent with K. In this critical 
zone, expansion creates blow-out to the set of all propositions of the language, while 
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revision forces contraction of the belief set. Outside the critical zone, the two 
operations coincide. This basic difference should not be obscured by talk of expansion 
being a special case of revision, which is a sloppy way of saying that the values of the 
two operations are the same outside the critical zone. Neither operation is a special 
case of the other.  
 
This basic conceptual difference reflects itself in the different formal properties of 
expansion and revision. There are principles that hold for expansion but not for 
revision, and conversely. In particular: 
 

• Expansion never diminishes the initial belief set, i.e. K ⊆ K+a. This is 
sometimes known as the principle of belief preservation. In contrast, revision 
will eliminate material from the belief set whenever the input a is in the 
critical zone. 

 
•  When a is inconsistent with K, expansion gives us blow-out: both a,¬a ∈ 

K+a = Cn(K+a) = L (the whole language). In contrast for revision, whenever a 
is itself consistent, so is K∗a. This property of revision is known as the 
principle of (input) consistency preservation. 

 
The pattern is replicated in the probabilistic context.  There too we are looking at two 
different kinds of operation coinciding outside but differing inside the critical zone – 
which in this context, we recall, is the case where a is consistent but p(a) = 0. One is 
expansionary, the other is revisionary. 
 

• The expansionary operation is given by the ratio/unit definition. It satisfies a 
probabilistic analogue of qualitative belief preservation: p(x|a) = 1 whenever 
p(x) = p(x|T) = 1. Expressed with left projections, pa(x) = 1 whenever pT(x) = 1. 
In other words, conditionalizing never reduces the corresponding belief set: 
writing  B(p) for {x: p(x) = 1} we always have B(p) ⊆ B(pa) = {x: pa(x) = 1} = 
{ x: p(x|a) = 1} (see the appendix for a verification). No juice is lost. In 
contrast, a revisionary operation would allow for diminution of the associated 
belief set.  

 
• More specifically, when p(a) = 0, the expansionary operation blows-out to the 

unit function (irrespective of a’s own consistency): in that case pa(x) = p(x|a) = 
1 for all x, so that B(pa) = L (see appendix or a full verification). In contrast, a 
fully revisionary conditional probability function would never give us the unit 
function when the condition a is itself consistent.   

 
These two kinds of conditionalization should not be thought of as competing for the 
position of ‘the right one’. Like expansion and revision in the qualitative context, they 
can work side by side, as different kinds of conditionalization. But how can the 
revisionary conception best be expressed?  
 
There are two main approaches to the problem. One is to define a family of revision 
operations that take one-place functions to one-place functions. That is the path taken 
by Gärdenfors in a pioneering paper of 1986 (integrated into his book of 1988). The 
other approach is to define a family of two-place probability functions. That is the 
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path taken in varying manners by Hosiasson-Lindenbaum 1940, Rényi 1955, 1970, 
1970a, Popper 1959 and others in their wake.  
 
Although different in appearance, the two approaches are intimately related, as hinted 
by Gärdenfors 1988 and observed explicitly by Lindström and Rabinowicz 1989. 
Here, we consider only the approach using two-place probability functions. Our 
central question is: of the differing axiom systems for two-place probability, is there 
one that is preferable to the others, and on what grounds?  
 
2.2. Bird’s-Eye View of Available Systems 
 
The usual presentation of axiom systems for two-place probability functions can be 
quite confusing. The systems themselves are not always formulated in an intuitively 
evident manner. They can also be difficult to compare due to differing choices of right 
domain – sometimes the whole of L, sometimes the consistent propositions in L, 
sometimes an arbitrary subset of L lying between {x: p(x,T) > 0} and L itself. To 
facilitate comparison and focus on essentials, we formulate all systems as functions 
defined on the whole of L2. We also present the systems in a modular way, that is, 
with a common basis and differing in what is added to it.  
 
The leading idea is to exploit Rényi’s insight that for ‘most’ values of the right 
argument of the two-place function, the left projections should be proper one-place 
Kolmogorov functions, while in the remaining cases it should be the unit function. 
We obtain modularity by making a different specification of what counts as ‘most’ for 
each system.  
 
We begin with the basic van Fraassen system, which was formulated (in the field of 
sets mode) by van Fraassen 1976 and 1995. Its axioms concern all propositions, rather 
than special subsets of them. They are the axioms of right extensionality, left 
projection, and product respectively, for two-place functions p: L2 → [0,1].   

(vF1)  p(x,a) = p(x,a′)  whenever a ≈ a′  

(vF2)    pa is a one-place Kolmogorov probability function with pa(a) = 1 

(vF3) p(x∧y,a) = p(x,a)⋅p(y,a∧x) for all formulae a, x, y 
 
Note that (vF2), as formulated here, says that pa is a one-place Kolmogorov function, 
but it does not say whether it is proper or improper (the unit function). Indeed, the 
axioms are consistent with pa being the unit function for every a ∈ L.  
 
Despite their modesty, the van Fraassen axioms have surprisingly many useful 
consequences. The following were already noticed between van Fraassen 1976, 1995, 
Arló Costa 2001, Arló Costa and Parikh 2005. For the convenience of the reader, we 
recall in the appendix the brief verifications.   

• Left extensionality: p(x,a) = p(x′,a)  whenever x ≈ x′.  

• When y ∈ Cn(x) then p(x,a) ≤ p(y,a).  

• When p(⋅) is defined as p(⋅,T), then we have the ratio rule (though not its unit 
extension to the critical zone, i.e. the ratio/unit rule).  
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• When a is a contradiction, then pa is the unit function.  

• The set ∆ of all a ∈ L such that pa is the unit function is an ideal. That is, it is 
closed downwards (whenever a ∈ Cn(b) and a ∈ ∆ then b ∈ ∆) and also 
closed under disjunction (whenever a,b ∈ ∆ then a∨b ∈ ∆).  

• pa is the unit function iff p(a,b) = 0 for all b such that pb is a proper 
Kolmogorov function. 

 
Van Fraassen 1976, 1995 called the a ∈ L such that pa is a proper Kolmogorov 
function normal, and the a such that pa is the unit function abnormal – of course, 
modulo the function p(⋅,⋅). In that terminology, the set of all abnormal formulae form 
a non-empty ideal containing the contradictions, and that a formula a is abnormal iff 
p(a,b) = 0 for all normal b. Apart from that, they do not tell us anything about which 
formulae are normal, which abnormal. 
 
Popper’s system goes some way to filling the gap. It may be obtained by adding a 
single axiom, stating that pa is normal whenever p(a,T) > 0. 
 

(Positive): when p(a,T) > 0 then pa is a proper Kolmogorov function. 
 
More economically but less transparently, Popper’s system may also be obtained by 
instead adding the statement that p(x,b) ≠ 1 for some x,b (see appendix), i.e. that pb(⋅) 
is not the unit function for some formula b, i.e. that p(⋅,⋅) is not the unit two-place 
function.  
 
This still leaves unspecified the status of pa when a is in the critical zone, i.e. 
consistent but with p(a,T) = 0. The other systems fill this gap in three different ways. 
Carnap’s system does so trivially, by declaring that the zone is empty:  
 

(Carnap) When a is consistent then p(a,T) > 0. 
 
This is equivalent to what we would get by keeping one-place functions as primitive, 
declaring that only contradictions can get the value 0, and using the familiar ratio 
definition to generate two-place functions,  
 
The Unit system fills the gap almost as trivially, by adding instead an axiom saying 
that any left projection from a point in the critical zone has constant value 1: 
 

(Unit)  When a is consistent but p(a,T) = 0, then pa is the unit function. 
 
This is equivalent to what we would get by keeping one-place functions as primitive 
and using the ratio/unit definition to generate two-place ones. 

 
Hosiasson-Lindenbaum’s system (briefly HL) regulates the critical zone by treating its 
elements just like consistent propositions outside the zone. It adds to the Popper 
axioms: 
 

(HL) When a is consistent but p(a,T) = 0, then pa is a proper Kolmogorov 
probability function. 
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Thus, in terms of the leading idea mentioned above, ‘most propositions’ means, 
respectively: 
 

• The van Fraassen system: an unspecified subset (possibly empty) of the 
consistent propositions, 

 
• The Popper system: all propositions that are above the critical zone or in an 

unspecified subset (possibly empty) of it,  
 

• The Unit system: for all propositions above the critical zone but no others, 
 

• The Hosiasson-Lindenbaum system: for all propositions above or in the 
critical zone, 

 
• Carnap’s system: we can say any of the last three, since the critical zone is 

declared empty. 
 
It is easy to check that these axiom systems are equivalent to their usual presentations 
(see appendix), giving us the sets Carnap, Unit , HL , Popper, van Fraassen of 
functions. The modular arrangement makes it clear at a glance, from their very 
formulation, what the relations between the systems are. Specifically, we have 
Carnap = Unit∩HL  ⊂ Unit , HL ⊂ Unit∪HL  ⊂ Popper ⊂ Popper∪{ 1(⋅⋅⋅⋅,⋅⋅⋅⋅)} = van 
Fraassen.  
 
The first four relations were established by Leblanc and Roeper (1989 theorems 4 and 
15, table 5, figure 15; also 1999 chapter 3 section 2), with however rather laborious 
verifications from the usual formulations of the systems, and without mentioning the 
historical role of Hosiasson-Lindenbaum as a key contributor. With the present 
modular formulation, the inter-relations become trivial, except for the inclusion van 
Fraassen ⊆ Popper∪{ 1(⋅⋅⋅⋅,⋅⋅⋅⋅)} and the proper part of the inclusion Unit∪HL  ⊂ 
Popper. The former is checked in the appendix. For the latter, we need a ‘mixed’ 
function, failing axioms (Unit) and (HL) but satisfying the Popper axioms. Such a 
function was already supplied by Leblanc and Roeper 1989 in the form of a rather 
enigmatic 64-element table; in the appendix we provide the same example with an 
intuitive rule-based formulation. The relations between the classes are pictured in the 
Hasse diagram of Figure 1.  
 

Figure 1. Hasse Diagram for Classes of Two-Place Probability Functions 
 

  •   van Fraassen = Popper∪∪∪∪{1(⋅⋅⋅⋅,⋅⋅⋅⋅)} 
 

  •   Popper 
 

  •   Unit∪HL  
 

  Unit    •           •   HL  (Hosiasson-Lindenbaum) 
 

  •   Carnap = Unit∩HL  
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The reader may be surprised that we have not mentioned the axiomatic system of 
Rényi 1955, also in his later books 1970, 1970a. This is not neglect: his work is 
indeed capital, providing the leading idea on which most subsequent presentations 
(including the present one) are based. Rather, Rényi’s system takes a form rather 
different from those above. In effect, he presents a scheme for a range of 
axiomatizations, with the right domain of the function serving as a parameter. For a 
suitable choice of this parameter (and a little massage) we may obtain the 
axiomatization of Popper, and likewise of Hosiasson-Lindenbaum. Thus strictly 
speaking (and taking into account the chronology), Popper’s axioms could well be 
called the Rényi/Popper postulates. These historical matters are reviewed more fully 
in the appendix. 
 

3. Choosing between systems 
 

Are there any good reasons for preferring one of these systems to another? From our 
discussion so far, there are only two serious contenders going beyond the ratio/unit 
account, namely the systems of Hosiasson-Lindenbaum and of Popper, underlined in 
the diagram. In this section we discuss possible criteria for preferring one to the other, 
coming to the conclusion that the choice is not a matter of correctness, but of how 
revisionary we want our revisionary conditional probability to be. We then give an 
example of how the difference between the two can sometimes make a difference to 
an enterprise using conditional probability.  
 
3.1. Hosiasson-Lindenbaum vs Popper 
 
The Hosiasson-Lindenbaum system is not just revisionary – it is radically so, 
satisfying without reserve the probabilistic counterpart of consistency preservation. 
That is, for every proposition a, if it is consistent then pa is a proper Kolmogorov 
function. The only values of the right argument that project to the unit function are the 
inconsistent ones.  
 
On the other hand Popper’s system is ‘variably revisionary’: it leaves unspecified the 
extent to which a function satisfying the axioms is expansionary, and how far it is 
revisionary. As one extremal case it covers functions p(⋅,⋅) that are purely 
expansionary, i.e. pa blows out to the unit function for every a in the critical zone as 
well as for inconsistent a. These are the functions satisfying the Unit axiom (U) 
above. At the other extreme it covers the Hosiasson-Lindenbaum functions, where pa 
never blows out in the critical zone. In between, it covers many ‘mixed’ functions, 
where for certain a,b in the critical zone pb is the unit function but pa is a proper 
Kolmogorov function.  Intuitively, it is in the spirit of Leblanc 1989 who asked 
rhetorically: “Can’t there be some statement of L that is ‘utterly unbelievable’, so 
unbelievable indeed that – should you believe it – you’d believe anything, and yet is 
not truth-functionally false?”    
 
It would be unjustifiably doctrinal to regard one of these policies as right and the 
other wrong. They are two more options to be added to the traditional one of using the 
ratio or ratio/unit rule. One option may be appropriate in certain applications, another 
elsewhere. It is not a matter of choosing once and for all between candidates, but of 
knowing which candidate to call on for what employment.  
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It can also be said that at bottom the difference between the Popper and Hosiasson-
Lindenbaum options does not stem from different conceptions of probability, but from 
different choices of the underlying consequence relation. This can be explained 
formally as follows.         
 
We have already noticed that for any two-place function satisfying the Van Fraassen 
axioms, and thus a fortiori any Popper function p(⋅,⋅), the set ∆ of all a ∈ L such that 
pa is the unit function is a non-empty ideal. That is, it contains all contradictions, 
whenever a ∈ Cn(b) and a ∈ ∆ then b ∈ ∆, and whenever a,b ∈ ∆ then a∨b ∈ ∆. 
Hence the set ∇ = {a: ¬a ∈ ∆} is a filter, i.e. whenever b ∈ Cn(a) and a ∈ ∇ then b ∈ 
∇, and whenever a,b ∈ ∇ then a∧b ∈ ∇). From this in turn it follows that if we define 
a supraclassical consequence operation Cn′ by putting Cn′(A) = Cn(A∪∇) we have: ⊥ 
∈ Cn′(a) iff ⊥ ∈ Cn({ a} ∪∇) iff ¬a ∈ Cn(∇) = ∇ iff a ∈ ∆ iff pa is the unit function. 
That is, pa is the unit function iff a is inconsistent modulo Cn′. Moreover, it is easy to 
check that modulo Cn′, the function p(⋅,⋅) continues to satisfy all the van Fraassen 
axioms, given that it satisfied them modulo classical Cn, and so  p(⋅,⋅) is a Hosiasson-
Lindenbaum function modulo Cn′.  
 
In brief: any Popper function (modulo classical Cn) is a Hosiasson-Lindenbaum 
function modulo a suitably defined supraclassical consequence operation Cn′, with the 
abnormal elements of the critical zone becoming Cn′-inconsistent.  
 
Thus the gap between the broader and narrower classes of function is less impressive 
than might have been imagined. Which should we work with? Given that the tighter 
constraints of HL functions make them easier to handle, it would appear good practice 
to do so in applications that admit those constraints. Indeed, the following policy 
suggests itself: (1) When the application does not require any attention to the critical 
zone, stay with one-place functions as primitive, using the ratio or ratio/unit definition 
of conditional probability. Otherwise (2) take two-place probability as primitive with 
the Hosiasson-Lindenbaum axioms if the application admits doing so, otherwise (3) 
the Popper axioms     
 
3.2 Does it Ever Make a Difference? 
 
So, does it ever make a substantive difference which kind of essentially conditional 
probability we use? In some cases it it appears to do so. An example is the theory of 
‘cores’ as set out by Arló Costa and Parikh 2005 using Popper functions, building on 
ideas of van Fraassen 1995 and Arló Costa 2001. 
 
Cores were introduced to give a probabilistic account of the intuitive distinction 
between a broader class of ‘plain’ beliefs and a narrower one of ‘full’ beliefs, in such 
a way that both sets are closed under classical consequence (and hence under 
conjunction).  
 
Translating from the field-of-sets mode used by the authors mentioned, a core for a 
Popper function p: L2→ [0,1] is a formula c such that (1) c is normal, that is, the left 
projection pc of p from the right value c is a proper Kolmogorov function, and (2) for 
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any consistent formula a logically implying c and any formula b inconsistent with c, 
p(b,a∨b) = 0.  
 
Plain beliefs modulo p are then identified with those formulae logically implied by at 
least one core, while full beliefs are those implied by every core. The authors show 
that in the finite case for any Popper function p: L2→ [0,1] there is a unique strongest 
core c0 and a unique weakest one c1; so that in that case plain beliefs are those 
formulae logically implied by c0, while full beliefs are those implied by c1. Indeed, in 
the field-of-sets mode we have the same whenever the underlying set is countable and 
we assume countable additivity. 
  
However, for plain beliefs so defined, there is a difficulty. In the finite case they turn 
out to be just the formulae x with p(x,T) = 1. In the field-of-sets mode, and assuming 
countable additivity, this also holds whenever the underlying set is countable. This is 
given as the ‘coincidence lemma’ of Arló Costa 2001 page 578, and is also an 
immediate consequence of Lemma 3.1 of Arló Costa and Parikh 2005. Thus in these 
contexts, the construal of plain belief in terms of cores gives us nothing new, no 
matter how we choose our Popper function. Nevertheless, as Parikh has urged 
(personal communication), when we are working in the uncountable case, or in the 
countable one but without countable additivity, we may not have the same collapse.   
 
It does not seem to have been noticed in the literature that for full beliefs as defined 
via cores, there is another difficulty. If we work with Hosiasson-Lindenbaum 
functions rather than the broader class of all Popper functions, it turns out that in 
every case (finite, countable, uncountable) the full beliefs so construed are just the 
tautologies – which is hardly what we want. To show this, we need only verify that T 
is itself a core. Using the definition above, it suffices to check that p(¬T,T) = 0 (which 
is easy) and that whenever a is consistent while b is inconsistent then p(b,a∨b) = 0. 
But by the inconsistency of b we have p(b,a∨b) = p(b,a); and since p is a Hosiasson-
Lindenbaum function, its left projection pa fromconsistent a is a proper Kolmogorov 
function, so by the inconsistency of b again, 0 = pa(b) = p(b,a).   
 
Thus the usefulness of cores for defining a formal notion of full belief is not robust 
under these two axiomatizations of two-place probability. Some might take this as a 
point against the Hosiasson-Lindenbaum system; the author takes it as a point against 
the edibility of cores. 
 
     

4. Reverse Direction: Belief Revision in the Light of Conditional Probability 
 
We have been using AGM belief revision to explain why we should take seriously a 
revisionary reading of two-place probability functions, and to throw light on the 
options available for them. Insight can also be gained by looking in the other 
direction. There is a natural map from two-place probability functions satisfying the 
Hosiasson-Lindenbaum (HL) postulates into (in fact onto) the family of AGM belief 
revision operations modulo classical consequence. This section is rather more 
technical than the others; some readers may prefer to skip to the more exciting section 
perspectives of section 5. 
 
4.1. A Map from Conditional Probability to AGM Beli ef Revision  
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Lindström and Rabinowicz 1989 constructed a map from the class of all Gärdenfors 
probability-revision operations into the class of AGM belief revision operations. The 
construction below essentially translates it, with some simplifications and an explicit 
verification of surjectivity, into a map from the class of Hosiasson-Lindenbaum 
probability functions onto the AGM operations.  
 
We treat AGM belief revision functions as one-place operations ∗: L→2L, with 
associated current belief sets K. Given any HL function p: L2→[0,1] as defined in 
section 2.2 or equivalently its appendix, we construct the associated function ∗: L→2L 
and the set K = B(p), as follows.  

• The operation ∗p: L→2L is defined by putting ∗p(a) = {x: p(x,a) = 1}. 

• The set B(p), also called the top of p, is defined by putting B(p) = ∗p(T) ={ x: 
p(x,T) = 1}.  

 
Then we can show (see appendix) that for every HL function p: L2→[0,1]: 

• B(p) is a consistent belief set. 

• The operation ∗p: L→2L satisfies the full set of AGM postulates (K∗1) through 
(K∗8) with respect to B(p).  

 
4.2. Properties of the Map: Surjective but not Injective 
 
The passage from p to ∗p is not injective: a counterexample is given in the appendix. 
On the other hand, it is surjective for consistent belief sets and under the condition of 
finiteness (i.e. that the propositional language has only finitely many mutually non-
equivalent formulae). That is: in such a language, for every consistent belief set K and 
every revision operation ∗: L→2L satisfying the AGM postulates with respect to K, 
there is a HL function p: L2→[0,1] with ∗ = ∗p and K = B(p).  
 
The construction is quite straightforward. Given ∗ and consistent K for such a 
language, we define p: L2→[0,1] as follows: 

• In the limiting case that a is inconsistent, put p(x,a) = 1 for all x ∈ L  

• In the principal case that a is consistent, put p(x,a) to be the proportion of 
(K∗a)-worlds that are x-worlds.  

 
Here, a world is a maximal consistent set of formulae, and an X-world, for X ⊆ L, is a 
world Y with X ⊆ Y. It is straightforward to verify (see appendix) that p satisfies the 
HL postulates, ∗ = ∗p, and K = B(p) as desired.  
 
Thus, we have a natural surjective though non-injective, map from the family of all 
HL conditional probability functions to the family of the AGM revision operations on 
consistent belief sets. This map helps us see the AGM postulates as reflections of the 
HL ones. To this extent, the AGM postulates may be said to go back to 1940! 
 
The map and proof may be generalized to cover the Popper functions; we sketch what 
is involved. In the above construction, we have been taking AGM revision functions 
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as formulated using classical consequence in the background. In fact, as was already 
made clear in Alchourrón, Gärdenfors and Makinson 1985, the same theory of belief 
revision carries through when formulated using arbitrary supraclassical consequence 
operations satisfying the Tarski closure conditions and disjunction in the premises. 
So, for a given function p: L2→[0,1] satisfying the Popper postulates modulo classical 
Cn, we first see it as a Hosiasson-Lindenbaum function modulo a suitable 
supraclassical Cn′, in the manner described in section 3.1, checking also that this Cn′ 
satisfies the above conditions. We then construct the same map as above, but with Cn′ 
understood everywhere in place of Cn, and verify in the same manner as before. 
 

5. Alternative forms of Conditionalization and Revision 
 
Existing work on qualitative belief revision can suggest or provide perspective on 
novel forms of conditional probability. In this section we discuss two examples: 
screened and hyper-revisionary conditionalization. We then explain how recent work 
on qualitative but probabilistically supported inference leads to an interesting notion 
of proto-probability functions.  
 
5.1. Screened Conditional Probability 
 
Screened revision is a variant form of AGM belief revision. Its basic idea is to see the 
operation as made up of two steps: a pre-processing step possibly followed by 
application of an AGM revision. The pre-processor decides the question of whether to 
revise, and this is done by checking whether the proposed input is consistent with a 
central part of the belief set under consideration, i.e. a privileged subset. If the answer 
is negative, the belief set remains unchanged. If it is positive, we apply an AGM 
revision in a manner that protects the privileged material. Clearly, such a composite 
process will not satisfy all the postulates of AGM revision: to begin with, the 
postulate of success, a ∈ K∗a, may fail. 
 
What would a probabilistic analogue of this look like? Roughly speaking, using the 
language of Leblanc cited earlier, when a is too unbelievable to take seriously as a 
condition, we put the probability of x on condition a to be just the unconditioned 
probability of x. In other words, for values of a where for Hosiasson-Lindenbaum or 
Popper the left projection pa would be the unit function, we now require that pa = pT.  
 
This forces modification of the Van Fraassen axioms. In particular, the axiom (vF2) 
of left projection must be weakened: we no longer always have pa(a) = 1 since when a 
is inconsistent pa(a) = pT(a) = p(a,T) = 0. In another respect, (vF2) can be 
strengthened: we can require that the left projection from any point is always a proper 
Kolmogorov function, as we no longer have any use for the unit function. The product 
axiom (vF3) must also be weakened. To show this, consider any inconsistent a. 
Unrestricted use of the product axiom would give us that for all x: pT(x) = pa(x) = 
p(x,a) = p(x∧x,a) = p(x,a)⋅p(x,a∧x) = p(x,a)⋅p(x,a) = pa(x)⋅pa(x) = pT(x)⋅pT(x); so that 
for any x, pT(x) is either 0 or 1 – which is quite undesirable behaviour.  
 
The question of formulating adequate axiom systems for screened versions of the 
Popper and Hosiasson-Lindenbaum systems is open. These problems may well be 
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worth investigating, for although screened conditional probability behaves in an 
unfamiliar way, it is a coherent, intuitively motivated, and possibly useful concept.  
 
5.2. Hyper-revisionary Probability Functions 
 
As is well known, for any van Fraassen function p(⋅,⋅) and a ∈ L, if p(a,T) > 0 then 
p(x,a) is determined by a natural relativization of the ratio rule: p(x,a) = 
p(a∧x,T)/p(a,T). Indeed, this equality is almost immediate: the product axiom gives us 
p(a∧x,T) = p(a,T)⋅p(x,a∧T) = p(a,T)⋅p(x,a) by right extensionality, permitting division 
when p(a,T) > 0.  
 
As remarked by Jonny Blamey (personal communication), it may be suggested that 
this is too conservative, even when we give elements in the critical zone a radically 
revisionary treatment in the manner of Hosiasson-Lindenbaum. For if a has a very 
low positive probability – say, to fix ideas, 0 < p(a,T) < 0.01 – then a surprise 
occurrence of a might sometimes lead us to question whether the function p(⋅,⋅) was 
really right to give p(a,T) such a small value. We should perhaps move to a function 
q(⋅,⋅) which makes the truth of a less unexpected, i.e. puts q(a,T) well above p(a,T); 
and for such a q the value of q(x,a) may be quite different from that of 
p(a∧x,T)/p(a,T).  
 
This interesting proposal has a number of repercussions, some of which may be seen 
as merits, others as drawbacks.  
 
Philosophically, it drives a wedge between two different ways of ‘adopting’ a 
condition a. On the one hand, we may accept it because its truth has been revealed to 
us; on the other hand, we may entertain it to explore its consequences. The argument 
above suggests grounds for abandoning p(⋅,⋅) when confronted with the truth of a 
proposition a for which p gives a very low value, but it does not suggest doing so 
when we merely entertain the truth of a to determine what effect it has on our 
probabilities. In this way, the proposal has the merit of putting the spotlight on a 
difference that tends to be hidden by the usual treatments of conditional probability.   
 
Pragmatically, there can be no universally fixed cut-off point, like 0.01, at which we 
should revise rather than apply the relativized ratio rule. Where to draw the line would 
be a matter of context, purposes and subject matter, balanced in an informal 
judgement. This may be a source of frustration. 
 
Formally, given the above short derivation of the relativized ratio rule from the 
product and left extensionality axioms, at least one of the two would have to be given 
up, or at least restricted in a suitable way. This is quite a loss. 
 
Finally, it is not immediately clear how the new function q(⋅,⋅) might be constrained 
by appropriate conditions. This could be seen as a disappointment, or as a challenge.   
 
What would the qualitative analogue of such hyper-revisionary conditionalization 
look like? It would be to allow that even when input a is logically consistent with 
belief set K, we should not always take K∗a to be Cn(K∪{ a}). As well as adding in a, 
we should perhaps be contracting K, for despite the logical consistency of the two, a 
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latter may be so implausible in the eyes of K that the exposure of its truth may lead us 
to an ‘agonizing reappraisal’ of the latter.  
 
This, of course, is counter to one of the basic postulates of AGM belief revision, 
which puts K∗a = Cn(K∪{ a}) in every case that a is consistent with K. In brief, AGM 
does not admit any conflict less than consistency as forcing contraction, just as the 
standard forms of conditional probability do not allow any improbability other than 
zero to force us out of the ratio rule.  
 
Perhaps there is room for systems of revision, and of probabilistic conditionalization, 
in which the background logic is not logical consequence but some form of uncertain 
inference. How to build on such an idea without circularity or obscurity is another 
question. On the probabilistic level, it would appear that such an investigation would 
have to make contact with the theory of ‘error statistics’ as developed by Fisher, 
Neyman and Pearson, which analyses grounds for preferring one statistical hypothesis 
to another when faced with evidence that is highly improbable given the latter but not 
the former. However, we do not attempt to explore this line of thought further in the 
present paper.   
 
5.3. Proto-probability Functions for Qualitative Inference 
 
In 1996, Hawthorne investigated rules of uncertain inference while, while qualitative, 
may be given a probabilistic justification, formulating an axiom system called Q. All 
of its axioms are in a natural sense probabilistically sound, although the converse has 
not yet been settled. The question arises: do we need the full force of the axioms of 
probability in order to justify the rules of Q, or can it be done with weaker constraints 
on the ‘probability’ functions? In this section we observe that considerable weakening 
is possible. We need only certain modest order-theoretic conditions from among those 
derivable in the system of van Fraassen, the weakest of those presented in section 2.2. 
 
First, we recall Hawthorne’s axioms. They concern consequence relations |~ (in 
words: snake) between formulae of classical propositional logic. There are six Horn 
rules O1–O6 defining a system O, and one ‘almost Horn’ rule NR whose addition 
gives Q. As always, Cn is classical consequence and ≈ is classical equivalence:  
 

O1. a |~ a     (reflexivity ) 

O2. When a |~ x and y ∈ Cn(x), then a |~ y (RW: right weakening) 

O3. When a |~ x  and a ≈ b, then b |~ x (LCE: left classical equivalence) 

O4. When a |~ x∧y, then a∧x |~ y  (VCM: very cautious monotony) 

O5. When a |~ x, b |~ x and ¬b ∈ Cn(a), then a∨b |~ x  (XOR: exclusive ∨+) 

O6. When a |~ x and a∧¬y |~ y, then a |~ x∧y  (WAND: weak ∧+). 

NR. When a∨b |~ x and ¬b ∈ Cn(a), then either a |~ x or b |~ x. 
 
As Hawthorne showed, these conditions are probabilistically sound in the sense that 
for any probability function p(⋅,⋅) satisfying Popper’s postulates and ‘threshold’ t ∈ 
[0,1], if we define a relation by putting a |~pt x iff p(x,a) ≥ t, then |~pt satisfies all the 
rules of Q.  
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Our question is: how much probability is really needed for the job? We show that it 
can be carried out with any function into an arbitrary linearly ordered set with greatest 
and least elements, satisfying certain very weak conditions in which no arithmetic 
operations appear.  
 
Let D be any non-empty set equipped with a relation ≤ that is transitive and complete 
with a greatest element 1D and a least element 0D. A proto-probability function into D 
is any  function p: L2→D satisfying the following six conditions:  

P1. p(a,a) = 1D  

P2. p(x,a) ≤ p(y,a) whenever y ∈ Cn(x) 

P3. p(x,a) = p(x,b) whenever a ≈ b  

P4. p(x∧y,a) ≤ p(y,a∧x) 

P5. p(x,a) ≤ p(x,a∨b) ≤ p(x,b) whenever p(x,a) ≤ p(x,b) and ¬b ∈ Cn(a)  

P6. p(x,a) = p(x∧y,a) whenever p(y,a∧¬y) ≠ 0D.  
 
We call condition (P5) the principle of disjunctive interpolation. It is closely related to 
a principle of ‘alternative presumption’ of Koopman 1940, 1940a (details in the 
appendix).  
 
Then, if we take any proto-probability function p(⋅,⋅) and t ∈ D, and define a relation 
by putting a |~pt x iff p(x,a) ≥ t, then |~pt satisfies all the rules of Q. Indeed, each 
condition (Oi) follows directly from its counterpart (Pi), with (NG) also following 
from (P5). The verifications are trivial, bit given the novelty of the notion of proto-
probability, we give them in full in the appendix.  
 
It is also easy to check that the axioms for proto-probability functions follow from 
those of van Fraassen, a fortiori from the stronger ones of Popper, Hosiasson-
Lindenbaum, Carnap, and the Unit system. In fact, they are considerably weaker. 
Informally, it is clear that the left projection and product axioms of van Fraassen do 
not hold for all proto-probability functions, even when their top and bottom elements 
are chosen as the numbers 1,0, since our conditions for the latter make no use of either 
addition (which is implicit in the left projection axiom) or multiplication (explicit in 
the product axiom).  
 
For a specific example of a proto-probability function that is not a van Fraassen one, 
take p: L2 → [0,1] to be the characteristic function of the classical consequence 
relation, i.e. put p(x,a) = 1 when x ∈ Cn(a), otherwise p(x,a) = 0. Clearly, this satisfies 
conditions P1 through P6, but it fails (vF2) since p(x∨¬x, T) = 1 while p(x,T) = 0 = 
p(¬x,T) for contingent formulae x, so that pT is not a Kolmogorov function. The 
example can be generalized (see appendix). 
 
Thus, the proto-probability functions are defined by purely order-theoretic conditions 
that are strictly weaker than the axioms of any of the usual systems for conditional 
probability, but are strong enough to support the rules defining Hawthorne’s system Q 
of probabilistic inference. In this way, the theory of qualitative uncertain inference, 
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like that of qualitative belief change, provides new perspectives on conditional 
probability. 
 
 

Appendix 
 
This appendix runs parallel to the main text. It contains most of the formal work, 
verifications, references and historical remarks supporting the main text. 
  
For Section 1: Why Go Beyond the Ratio Rule? 
 
The Kolmogorov postulates 
 
There are several modes for presenting the Kolmogorov postulates for one-place 
probability functions, according to what we take as their domain. It may be a field of 
sets (most common in mathematics and applications), or equivalently a Boolean 
algebra (the preferred way of algebraists), or the set of all formulae of a propositional 
language (whose quotient structure under classical equivalence will be a free Boolean 
algebra). In this paper we work in the propositional mode, with the following 
formulation (Makinson 2005) of the postulates.  
 
A (one-place) proper Kolmogorov function p: L→[0,1] is any function defined on the 
set L of formulae of a language closed under the Boolean connectives, into the real 
numbers from 0 to 1, such that: 

(K1)  p(x) = 1 for some formula x  
(K2) p(x) ≤ p(y) whenever y ∈ Cn(x) 
(K3) p(x∨y) = p(x)+p(y) whenever ¬y ∈ Cn(x). 

 
Cn is classical consequence; we also write ≈ for classical equivalence. Thus postulate 
(K1) tells us that 1 is in that range of p; (K2) says that p(x) ≤ p(y) whenever x 
classically implies y; (K3), called the rule of finite additivity, tells us that p(x∨y) = 
p(x)+p(y) whenever x is inconsistent with y. It is sometimes extended so as to 
constrain the probability of countable unions (most easily expressed in the field of 
sets mode).  
 
As remarked in the text (and observed by several authors, notably Harper 1975 and 
subsequently Gärdenfors 1988, Leblanc and Roeper 1989), in comparative contexts it 
is convenient to regard the unit function (i.e. the function p that puts p(x) = 1 for every 
x ∈ L) as also being a Kolmogorov function, and we will follow this convention. It 
can be formalized by the simple expedient of defining a Kolmogorov function as one 
that is either proper Kolmogorov function (i.e. satisfies the above postulates) or is the 
unit function.Equivalently, one could weaken axiom (K3) by putting it under the 
proviso that p is not the unit function. We refer to the unit function as the improper 
Kolmogorov probability function.  
 
The ratio rule 
 
The ratio rule for conditional probability uses an arbitrary Kolmogorov function p: 
L→[0,1] to define a two-place function, conventionally written as p(x|a) and read as 
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‘the probability of x given a’, defined on Lx{ a ∈ L: p(a) > 0} by the rule:  p(x|a) = 
p(a∧x)/p(a) when p(a) > 0 and otherwise undefined.  
 
Left projections 
 
We recall the standard concept of the left projection fa: X→Y of a two-place function 
f: XxA→Y from point a ∈ A, defined by putting fa(x) = f(x,a) for all x ∈ X. 
 
 
For Section 1.1. Metaphysical vs Pragmatic Considerations 
 
Metaphysical considerations 
 
Such metaphysical views have been expressed by a number of probabilists, notably 
Rényi 1955 and 1970, de Finetti 1974 and by some philosophers, e.g. Hájek 2003.  
 
Rényi 1955 (page 286) puts it briefly: “In fact, the probability of an event depends 
essentially on the circumstances under which the event possibly occurs, and it is a 
commonplace to say that in reality every probability is conditional”. The same idea 
recurs at greater length in his 1970 (page 35).   
 
De Finetti 1974 (page 134) similarly remarks: “Every evaluation of probability is 
conditional; not only on the mentality or psychology of the individual involved, at the 
time in question, but also, and especially, on the state of information in which he finds 
himself at that moment.”  
 
More recently, Hájek 2003 writes: “...given an unconditional probability, there is 
always a corresponding conditional probability lurking in the background. Your 
assignment of 1/2 to the coin landing heads superficially seems unconditional; but 
really it is conditional on tacit assumptions about the coin, the toss, the immediate 
environment, and so on. In fact, it is conditional on your total evidence.”  
 
Carnap’s regularity condition 
 
Carnap’s formulation of the additional ‘regularity’ condition may be found in his 
1950 section 53 axiom C53-3 and also 1971 chapter 2.7 page 101.  
 
We note in passing that the concept of a ‘counterfactual probability function’ 
discussed by Boutilier 1995 (building on Stalnaker 1970) also assumes that the critical 
zone is empty. That concept, defined in the finite case, is a curious mixture of 
quantitative and qualitative ingredients. It puts p(x,a), called the counterfactual 
probability of x given a, to be the proportion of the best a-states of the model that are 
x-states. The emptiness of the critical zone is assumed to ensure that the denominator 
is non-zero for consistent formulae a. 
 
Getting around the critical zone with limits 
 
For a brief account of the approach by taking limits, see the Wikipedia entry under the 
heading ‘Regular conditional probability’. This use of the term ‘regular’ is quite 
different from that of Carnap. 
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For Section 1.2. Some Notational Niceties 
 
Two-place functions could alternatively be distinguished from one-place ones by 
different type-faces, e.g. lower case for one and upper case for the other. However 
that convention meshes poorly with the standard notation for left projection, which we 
also need to use extensively. 
 
For Section 2.1. A Leaf from the AGM Book  
 
How important is the critical zone? 
 
Our view of the importance of the critical zone is in contrast with that of many writers 
who minimize it. For example McGee 1994: “The problem we have been examining, 
how to revise one’s system of beliefs upon obtaining new evidence that had prior 
probability 0, is not a problem that has any great practical significance.” 
 
Conditional probability in the light of counterfactual conditionals 
 
An argument for going beyond the ratio definition of two-place probability may also 
be made in terms of counterfactual conditionals rather than belief revision. Indeed, 
this is way in which it is usually done in philosophical literature going back to 
Stalnaker 1970. However, in the author’s view, the comparison with belief revision 
affords a clearer view, and also lends itself to the construction of very simple formal 
maps, as shown in section 5 and the corresponding part of the appendix.  
     
Verifications of properties of B(p) 
 
We verify the claims made in bullet points about belief sets for probability functions. 
Let the belief set B(p) corresponding to one-place function p be defined by putting 
B(p) = {x: p(x) = 1}. This is also sometimes called the top of the function. Write B+a 
for the qualitative expansion of B by a, i.e. B+a = Cn(B∪{ a}). With pa(⋅) understood 
as the left projection from a of the conditionalization p(⋅|⋅) defined from p(⋅) by the 
ratio/unit rule, we want show: (1) in all cases, B(p) ⊆ B(p)+a ⊆ B(pa) and (2) in the 
limiting case that p(a) = 0 we have belief explosion: B(p)+a = L = B(pa), where L is 
the set of all propositions of the language. 
 
For (1), the first inclusion is immediate from the definition of expansion above. To 
check the second inclusion, note that since B(pa) is closed under consequence it 
suffices to show that a ∈ B(pa) and B(p) ⊆ B(pa). The former is immediate since when 
p(a) > 0 then pa(a) = 1 by the ratio definition and the Kolmogorov postulates for one-
place probability, and pa(a) is also 1 when p(a) = 0, by the unit part of the ratio/unit 
definition. For the latter, it suffices to show that whenever p(x) = 1 then pa(x) = 1. 
This is immediate when p(a) = 0. When p(a) > 0 we have pa(x) = p(a∧x)/p(a) = 
p(a)/p(a) = 1 since the hypothesis p(x) = 1 implies that p(a∧x) = p(a). For (2), it 
suffices to show further that when p(a) = 0 we have B(p)+a = L. But when the 
hypothesis holds then p(¬a) = 1, so ¬a ∈ B(p) and thus B(p)+a ⊇ Cn(¬a,a) = L. 
 
For Section 2.2. Bird’s-eye view of available systems  
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Verification of consequences of the van Fraassen axioms 
 
Left extensionality: p(x,a) = p(x′,a)  whenever x ≈ x′. Verification: By left projection, 
pa is either a proper Kolmogorov function or the unit function. In the former case, 
p(x,a) = pa(x) = pa(x′) = p(x′,a) using the hypothesis. In the latter case, p(x,a) = pa(x) = 
1 = pa(x′) = p(x′,a) irrespective of the hypothesis.  
 
When y ∈ Cn(x) then p(x,a) ≤ p(y,a). Verification: If y ∈ Cn(x) then x ≈ y∧x so by left 
extensionality and product, p(x,a) = p(y∧x,a) = p(y,a)⋅p(x,a∧y) ≤ p(y,a).  
 
When p(⋅) is defined as p(⋅,T), then we have the ratio rule. Verification: Suitably 
instantiating the product axiom, p(a∧x,T) = p(a,T)⋅p(x,a∧T) = p(a,T)⋅p(x,a) using right 
extensionality, so if p(a,T) > 0 we have p(x,a) = p(a∧x,T)/p(a,T) = p(a∧x)/p(a). 
 
When a is a contradiction, then pa is the unit function. Verification: pa(a) = p(a,a) = 1 
≤ p(x,a) = pa(x), using left projection and an inequality already established.  
 
The set ∆ of all a ∈ L such that pa is the unit function is an ideal. Verification: To 
show that ∆ is closed downwards, suppose a ∈ ∆ and a ∈ Cn(b). Then 1 =  p(b∧x,a) = 
p(b,a)⋅p(x,a∧b) = 1⋅p(x,a∧b) =⋅p(x,b) = pb(x), using the first supposition, left 
projection, first supposition again, second supposition respectively. To show that ∆ is 
closed under disjunction, suppose pa, pb are both the unit function. To show that pa∨b 
is also the unit function it suffices, by the left projection axiom to show that it is not a 
proper Kolmogorov function. Suppose it is; we get a contradiction. From the van 
Fraassen axioms we have p(⊥,a∨b) = p(⊥∧a,a∨b) = p(a,a∨b)⋅p(⊥,a∧(a∨b)) = 
p(a,a∨b)⋅p(⊥,a) = p(a,a∨b)⋅1 = p(a,a∨b) using the supposition that pa is the unit 
function. Likewise p(⊥,a∨b) = p(b,a∨b). By the supposition that pa∨b is a proper 
Kolmogorov function we have p(⊥,a∨b) = 0 so p(a,a∨b) = 0 = p(b,a∨b). By the same 
supposition, p(a∨b,a∨b) ≤  p(a,a∨b)+p(b,a∨b) = 0+0 = 0, contradicting the left 
projection axiom.   

Finally, we check that a is abnormal iff p(a,b) = 0 for all normal b. Verification: From 
right to left, suppose p(a,b) = 0 for all normal b, but a is not abnormal. Then a is 
normal, so p(a,a) = 0, contradicting the left projection axiom. From left to right, 
suppose a is abnormal and b is normal. Then a∧b is abnormal as already established, 
so 0 = p(⊥,b) = p(⊥∧a,b) = p(a,b)⋅p(⊥,a∧b) = p(a,b)⋅1 = p(a,b) as desired.   
 
Verification of the alternative axiomatization of the Popper system 
 
Assume first the van Fraassen axioms plus (Positive); we need to show that p(x,b) ≠ 1 
for some x,b. By left projection, p(T,T) = 1 > 0 so by (Positive) pT is proper and thus 
p(⊥,T) = 0 ≠ 1 as desired. Now assume the van Fraassen axioms plus p(x,b) ≠ 1 for 
some x,b. Suppose p(a,T) > 0; we need to show that pa is proper, for which it suffices 
to show that it is not the unit function. First note that p(⊥,T) = p(⊥∧b,T) = 
p(b,T)⋅p(⊥,T∧b) = p(b,T)⋅p(⊥,b); but since p(x,b) ≠ 1 it follows that pb is proper so 
p(⊥,b) = 0 and thus p(⊥,T) = 0. But also p(⊥,T) = p(⊥∧a,T) = p(a,T)⋅p(⊥,a), so since 
p(a,T) > 0 we have p(⊥,a) = 0 so that pa is not the unit function, as desired. 
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Example of a ‘mixed’ function 
 
Leblanc and Roeper 1989 gave an example of a two-place function satisfying the 
Popper postulates, whose treatment of formulae with probability zero is a mix of the 
expansionary and revisionary policies. They presented it rather enigmatically as an 
8⋅8 table (their Table 5). We provide it with a more transparent rule-based 
presentation, which for convenience we express as a field of sets.  
 
Take the field F of all subsets of the three-element set S = {α,β,γ}. For motivation, 
think of α,β,γ as of increasing levels of importance beginning from α, which has no 
importance at all. Put p(x,a) = 1 unless there is some item of positive importance in a 
and the item of greatest importance in a is not in x. Formally, we define p: S2→[0,1], 
in fact into {0,1}as follows: 
 

1. If γ ∈ a then p(x,a) = 1 if γ ∈ x, otherwise p(x,a) = 0 
2. If γ ∉ a but β ∈ a then p(x,a) = 1 if β ∈ x, otherwise p(x,a) = 0 
3. If γ ∉ a and β ∉ a then p(x,a) = 1. 

 
This function is a mix of the two kinds of conditional probability: p({ β},S) = 0 = 
p({ α},S) applying the first clause, but p(∅,{β}) = 0 applying the second while 
p(∅,{α}) = 1 by the third. On the other hand, it is straightforward to check that it 
satisfies the Popper axioms. 
 
Historical development of conditional probability 
 
We review the historical steps in the construction of axioms for two-place probability 
functions, working backwards from Popper 1959. For ease of comparison, we 
consider them all in the propositional mode, and treat each as defined on the whole of 
L2, but comment on particularities of the original formulations each as we go.  
 
Popper’s original postulates for two-place probability functions, contained in an 
appendix of Popper 1959 (recalled e.g. in Leblanc and Roeper 1989 and more 
accessibly Koons 2009) were in the propositional mode. They reflected a desire for 
the autonomy of probability theory from logic, abstract algebra and set theory and so 
avoided any use of concepts from those areas. But if we are happy to use concepts of 
classical logic in our presentation then, as shown by subsequent writers, they may be 
given more perspicuously, as in the following formulation of Hawthorne 1996, which 
require, for p: L2→[0,1], that: 

 
(P0)  p(x,a) ≠ 1 for some formulae a, x  
(P1) p(x,a) = p(x,b)  whenever a ≈ b 
(P2)  p(x,a) = 1 whenever x ∈ Cn(a) 
(P3) either p(x∨y,a) = p(x,a)+p(y,a) whenever ¬(x∧y) ∈ Cn(a), or pa is the 
unit function 
(P4) p(x∧y,a) = p(y,a)⋅p(x,y∧a) 

 
Of course, if we are working in the context of fields of sets, (P1) becomes vacuous. 
Warning: The term ‘Popper function’ is sometimes used rather loosely, to refer to 
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almost any primitive two-place probability function defined over the critical zone. For 
example, Lindström and Rabinowicz 1989 use the term to refer to the narrower class 
of Hosiasson-Lindenbaum functions, defined below. 
 
Our modular presentation takes from Rényi 1955, 1970, 1970a his leading idea that 
for ‘most’ values of a, the left projection from a will be a proper Kolmogorov 
function giving a the value 1, and so is very similar in gestalt. But in its details, 
Rényi’s system is rather different from any of those we have considered. Formulated 
in the field-of-sets mode, it treats the right domain as a parameter, allowing it to be 
chosen as any subset of the left domain that is consistent with the axioms. These 
axioms are just the product rule and the principle that pa is a proper one-place 
Kolmogorov function with pa(a) = 1, both formulated under the restriction that all 
values of the right argument takes a value in the restricted right domain. For values of 
the right argument outside that subset, the probability functions are left undefined. We 
are thus given a scheme for a family of axiom sets, one for each choice of right 
domain.  
 
This yields the Popper axioms if we constrain the right domain to include {a: p(a,S) > 
0, where S is the set on which the field is based, and carry out the following editing: 
(a) put p(x,a) = 1 for all a with p(a,S) = 0, (b) ensure consistency by allowing in the 
left projection axiom that pa may be improper (as in the axiom (vF2) of section 2.2), 
(c) for the one-place Kolmogorov functions mentioned in the left projection axiom, 
weaken Rényi’s assumption of countable to finite additivity, and finally (d) translate 
from the field-of-sets mode to the propositional one.  
 
The system of Hosiasson-Lindenbaum 1940 concerned for what she called 
‘confirmation’ functions, writing them as c(x,a) rather than p(x,a) and working in the 
propositional mode. This ground-breaking work has been comparatively neglected, 
despite its accessible and respected place of publication. In particular, the paper is not 
mentioned in Rényi 1955, 1970, or 1970a, nor in the wide-ranging discussion of 
Harper 1975 or the comprehensive study of Roeper and Leblanc 1999. Popper 1959 
does mention Hosiasson-Lindenbaum in passing, but with respect to other questions 
and without citing her 1940 paper. This contrasts with the explicit acknowledgement 
(note 12 in new appendix iv) of the influence of Rényi 1955 on his thinking.  
 
Hosiasson-Lindenbaum excluded inconsistent propositions from the right domain. 
Restoring them, we get the following axioms:  

(HL1)  p(x,a) = 1 whenever x ∈ Cn(a) 

(HL2)  p(x∨y,a) = p(x,a)+p(y,a) whenever ¬(x∧y) ∈ Cn(a), provided a is 
consistent  

(HL3) p(x∧y,a) = p(x,a)⋅p(y,a∧x) for all formulae a, b, x, y 

 (HL4) p(x,a) = p(x,b) whenever a ≈ b.  
 
Axiom (HL2) thus broadens the conditions under which the left projection of a two-
place function satisfies additivity and is thus a proper Kolmogorov function, from the 
narrower condition that p(a,T) > 0 to the wider one that a is consistent. The system 
may be obtained fron Rényi’s scheme by setting the right domain at the set of all non-
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empty sets of S and editing by first putting p(x,∅) = 1 and then as for Popper’s 
system. 
 
In what respect can it be said that Rényi’s formulation was an advance on that of 
Hosiasson-Lindenbaum? For working mathematicians and statisticians, its use of the 
field-of-sets mode made application to practical problems more transparent. But at a 
deeper level, the step forward was conceptual – the realization that a rather arbitrary-
looking axiom system becomes natural if we build it around the idea that for ‘most’ 
values of the right argument, the left projection will be a proper one-place probability 
function. As Rényi put it: “a conditional probability space is nothing else than a set of 
ordinary probability spaces which are connected with each other by [the product 
axiom]” (Rényi 1955 pp 289-290).  
 
Mini-note: We reverse a correction made by Hailperin 1991 (page 75) to the effect 
that since Hosiasson-Lindenbaum’s formulation is in the propositional mode, it needs 
a left companion to (HL4) stating that p(x,a) = p(y,a) whenever x ≈ y. In fact, this 
follows from the postulates as given. In the limiting case that a is inconsistent we 
have p(x,a) = 1 = p(y,a) by (HL1), so suppose a is consistent and x ≈ y. Then ¬(x∧¬y) 
∈ Cn(a), so by the additivity axiom (HL2) we have p(x∨¬y,a) = p(x,a)+p(¬y,a). But 
the supposition also gives us LHS = 1 by (HL1), so p(x,a)+p(¬y,a) = 1. Moreover, 
(HL1) and (HL2) imply that p(¬y,a) = 1 − p(y,a), and so by arithmetic p(x,a) = p(y,a). 
Essentially this point was already made by Tarski with regard to the earlier 
axiomatization of Mazurkiewicz 1932 (discussed below), and was acknowledged in 
footnote 1 of that paper.  
 
Hosiasson-Lindenbaum 1940 states that her axioms for two-place probability are 
‘analogous’ to still earlier ones of Mazurkiewicz 1932. In fact, they constitute a major 
simplification and clarification of his quite complex system, which requires the left 
domain to contain individual propositions, while the right one contains consistent sets 
of propositions closed under classical consequence – the two kinds of proposition 
drawn, moreover, from intersecting and not very clearly defined languages. In his 
only example, Mazurkiewicz considers a game: the left argument of p(x,A) can be 
filled by a proposition describing a state of play, while the right one can be occupied 
by a closed set of propositions containing the rules of the game, the current state of 
play, and any mathematical apparatus needed for deductions. 
 
In turn, Mazurkiewicz states that he is taking as his starting point the axioms of 
Bohlmann 1909. However, Bohlmann’s postulates are for one-place probability in a 
mode of unanalysed items called events and occurrences, which he supplements with 
an ‘axiom’ defining conditional probability by the ratio rule.  
 
For some late nineteenth-century uses of conditional probability (without any attempt 
at axiomatization) see Hailperin 1988.  
 
Thus our trail into the history of axiomatizations of two-place probability that cover 
the critical zone appears to end with Mazurkiewicz 1932 as first serious attempt, 
Hosiasson-Lindenbaum 1940 as the first really successful one, and Rényi 1955 for 
providing a clear gestalt.   
 
For Section 3.1. Hosiasson-Lindenbaum vs Popper 
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We briefly review some interesting, but in the end inconclusive reasons that could be 
given for regarding one or other of the Hosiasson-Lindenbaum and Popper accounts 
as intrinsically preferable to the other. 
 
An unconvincing argument for Hosiasson-Lindenbaum: fineness of grain 
 
It might be said that since classical Cn makes finer discriminations than a 
supraclassical Cn′, probability theory with Cn as background consequence is more 
fine-grained than with Cn′, giving an advantage to Hosiasson-Lindenbaum over 
Popper. But this is not very convincing. In the propositional mode, we can use Cn′ in 
the description of our probability functions but still maintain Cn for other purposes: 
we can have our cake and eat it. In the field-of-sets or algebraic mode, passage to the 
quotient structure determined by a suitable filter would indeed lose information, but 
we are not obliged to effect the passage. We can work with Popper functions in the 
original structure, simply knowing that we could, if desired, do so in the quotient 
structure.      
 
A misdirected argument for Popper: strengthening conditions 
 
As well as passing from an unconditional to a conditional function, we often need to 
strengthen the condition of an already conditional one. It could be useful to be able to 
express this an operation taking a two-place function p(⋅,⋅) to another two-place 
function p∧b(⋅,⋅) by the rule p∧b(x,a) = p(x,a∧b). But this operation breaks the 
boundaries of Hosiasson-Lindenbaum functions. It may happen that while a is 
consistent, a∧b is not, in which case for any function p(⋅,⋅) satisfying the Hosiasson-
Lindenbaum axioms, (p∧b)a is the unit function despite the consistency of a, so that 
p∧b does not satisfy axiom (HL).  
 
However, Popper functions face a similar problem. Consider any Popper function 
p(⋅,⋅) , and let a be an inconsistent proposition. Then p∧a(a,T) = p(a,a) = 1 > 0, while 
for all values of x we have (p∧a)a(x) = p∧a(x,a) = p(x,a) = 1 since a is inconsistent, so 
that (p∧a)a is the unit function. These two facts contradict the distinctive Popper axiom 
(Positive).  
 
The only way to keep our class of two-place functions closed under the ‘conjoined 
condition’ operation is to drop (Positive) and retreat to the van Fraassen system. Thus 
the convenience of being able to strengthen conditions could be seen as a point in 
favour of the usefulness of that very basic system. 
   
Changing the underlying consequence operation 
 
If one is working in the mode of fields-of-sets or Boolean algebras as carriers for the 
probability functions, then one can similarly express Popper functions as Hosiasson-
Lindenbaum ones by passing to the quotient algebra determined by the same filter as 
in the propositional case. Essentially this construction was described, under a different 
light, by Harper 1975 (page 234) and more explicitly Harper 1976 (section 6). 
 
For Section 4.1. A Map from Conditional Probability to AGM revision 
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We verify the claims made in the text about the map from HL conditional probability 
functions to AGM revision operations.  
 
For HL functions, the left projection pa of p(⋅,⋅) from a is a proper Kolmogorov one-
place probability function whenever a is consistent (section 2.5), so under that 
condition we can apply well-known properties of the one-place functions without 
detailed justification, as well as the HL axioms themselves. 
 
To show that K = B(p) is a belief set, suppose y ∈ Cn(K); we need to check that y ∈ K. 
By compactness, y ∈ Cn(∧xi: i ≤ n} for some x1,.., xn ∈ B(p), so each p(xi,T) = 1, 
p(∧xi,T) = 1 and thus p(y,T) = 1 so that y ∈ B(p). To show that B(p) is consistent we 
need then only note that p(⊥,T) = 0.  
 
Let p: L2→[0,1] be any HL function. We need to check that the associated function ∗: 
L→2L satisfies each of the AGM postulates (K∗1) through (K∗8) with respect to K = 
B(p). Two general remarks before the details: 

• The AGM postulates for revision were first formulated in Gärdenfors 1984 
and a convenient overview may be found in Peppas 2007, whose presentation 
we follow. We note in passing that the classic account in Alchourrón, 
Gärdenfors and Makinson 1985 focused on contraction, and its axiomatization 
of revision contains a confusion: it omits postulate (K∗3) below, and treats the 
definition of revision from contraction via the Harper identity as if it were a 
postulate.  

• We are not verifying satisfaction with respect to an arbitrary belief set K, but 
with respect to the specific belief set depending on the choice of p, namely  K 
= B(p) = {x: p(x,T) = 1}. This specification is needed for (K∗3) and (K∗4) – 
though not for the other postulates, in which K does not appear in unrevised 
form.     

 
(K∗1): K∗a = Cn(K∗a). Verification: Same as the above for B(p) = Cn(B(p)), but 
replacing T by a.  

(K∗2): a ∈ K∗a. Verification: We need p(a,a) = 1, immediate.from axiom (vF2). 

(K∗3):  K∗a ⊆ Cn(K∪{ a}). Verification: Suppose y ∈ LHS, so that p(y,a) = 1. We 
need to show that y ∈ Cn(K∪{ a}) = Cn(B(p)∪{ a}) = Cn({ x: p(x,T) = 1}∪{ a}), so it 
suffices to show that ¬a∨y ∈ {x: p(x,T) = 1}, i.e. that p(¬a∨y,T) = 1. Now p(¬a∨y,T) 
= p(¬a∨(a∧y),T) = p(¬a,T)+p(a∧y,T). But p(a∧y,T) = p(a,T)⋅p(y,a) = p(a,T) since 
p(y,a) = 1. Thus p(¬a∨y,T) = p(¬a,T)+p(a,T) = p(T,T) = 1 as desired.  

(K∗4):  Cn(K∪{ a}) ⊆ K∗a whenever a is consistent with K. Verification: Suppose y 
∈ Cn(K∪{ a}) and a is consistent with K; we need to show p(y,a) = 1. By the first 
supposition, ¬a∨y ∈ Cn(∧xi: i ≤ n} for some x1,.., xn ∈ K = B(p) with each p(xi,T) = 1, 
so that p(∧xi,T) = 1 and thus p(¬a∨y,T) = 1. Hence p(a,T) = p(a∧(¬a∨y),T) = 
p(a∧y,T). But also we have p(a∧y,T) = p(a,T)⋅p(y,a). Putting these together, p(a,T) = 
p(a,T)⋅p(y,a). But by supposition, ¬a ∉ K = B(p) so p(¬a,T) ≠ 1 so p(a,T) ≠ 0, so by 
arithmetic p(y,a) = 1 as desired. 



 26 

(K∗5): K∗a is consistent whenever a is consistent. Verification: Suppose a is 
consistent; we need p(⊥,a) = 0, which is immediate. 

(K∗6):  If a ≈ b then K∗a ≈ K∗b. Verification: Suppose a ≈ b; we need p(x,a) = 1 iff 
p(x,b) = 1, again immediate. 

(K∗7):  K∗(a∧b) ⊆  Cn((K∗a)∪{ b}). Verification: Suppose x ∈ LHS, so that p(x,a∧b) 
= 1. It suffices to show that ¬b∨x ∈ K∗a, i.e. that p(¬b∨x,a) = 1. When a is 
inconsistent, this is immediate, so suppose that a is consistent. From the supposition, 
p(¬b∨x, a∧b) = 1. Now  p(b∧x,a) = p(b∧(¬b∨x),a) = p(b,a)⋅p(¬b∨x,a∧b) = p(b,a)⋅1 = 
p(b,a), so since a is consistent we have p(b∧¬x, a) = 0 so p(¬b∨x, a) = 1 as desired.  

(K∗8):  Cn((K∗a)∪{ b}) ⊆ K∗(a∧b) whenever b is consistent with K∗a. Verification: 
Suppose that y ∈ LHS and b is consistent with K∗a; we need to show that p(y,a∧b) = 
1. We have already verified a ∈ K∗a, so the second supposition gives us the 
consistency of a. We now proceed along lines similar to the verification of (K∗4). By 
the first supposition, ¬b∨y ∈ K∗a, i.e. p(¬b∨y,a) = 1. Hence since a is consistent, 
p(b,a) = p(b∧(¬b∨y),a) = p(b∧y,a). But also p(b∧y,a) = p(b,a)⋅p(y,a∧b). Putting these 
together, p(b,a) = p(b,a)⋅p(y,a∧b). But by the second supposition again, ¬b ∉ K∗a  so 
p(¬b,a) ≠ 1 and thus p(b,a) ≠ 0, so by arithmetic p(y,a∧b) = 1 as desired. 
 
For Section 4.2. Properties of the Map: Surjective but not Injective 
 
Failure of injectivity 
 
For the failure of injectivity, it suffices to find two distinct HL functions p ≠ p′ with ∗p 
= ∗p′, i.e. with ∗p(a) = {x: p(x,a) = 1} = {x: p′(x,a) = 1} = ∗p′(a) for all a ∈ L, i.e. with 
p(x,a) = 1 iff p′(x,a) = 1 for all a,x ∈ L. For simplicity we do this with Boolean 
algebras rather than propositional languages. Take any finite Boolean algebra with n ≥ 
2 atoms, and two distinct probability distributions f,f′ to these atoms with each atom 
getting a non-zero probability; extend them to one-place probability functions (for 
simplicity using the same names) on the entire algebra. Noting that every non-zero 
element of the algebra receives a non-zero probability under each of these functions, 
we can define two-place functions p,p′: L2→[0,1] by the ratio rule for non-zero right 
arguments and putting p(x,0) = p′(x,0) = 1. These are HL probability functions, in fact 
they are Carnap functions. Then for all a,x we have p(x,a) = 1 iff p(a∧x) = p(a) i.e. iff 
a ≤ x and likewise for p′, and so p(x,a) = 1 iff p′(x,a) = 1 as desired.  
 
Surjectivity 
 
Suppose that the language is finite, and let ∗:L→2L satisfy the AGM postulates with 
respect to a consistent set K. Define p(⋅,⋅) by the rule: p(x,a) = 1 for all x ∈ L in the 
limiting case that a is inconsistent, while in the principal case that a is consistent 
p(x,a) is the proportion of (K∗a)-worlds that are x-worlds. We need to show that (1) p 
satisfies the HL axioms, (2) ∗ = ∗p, and (3) K = B(p). 
 
For (1) it is convenient to check the HL axioms in the form given to them by 
Hosiasson-Lindenbaum 1940 (see appendix to section 2.2), as follows.  
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(HL1) p(x,a) = 1 whenever x ∈ Cn(a). Verification: If a is inconsistent then we have 
p(x,a) = 1 by the definition for that case, so we may suppose that a is consistent. By 
AGM, a ∈ K∗a so if x ∈ Cn(a) we have x ∈ Cn(K∗a) = K∗a. Thus all (K∗a)-worlds 
are x-worlds, i.e. the proportion of (K∗a)-worlds that are x-worlds is 1, so p(x,a) = 1 
as required. 

 
(HL2)  p(x∨y,a) = p(x,a)+p(y,a) whenever a is consistent but ¬(x∧y) ∈ Cn(a). 
Verification: Suppose a is consistent and ¬(x∧y) ∈ Cn(a). By the first supposition, we 
need to consider proportions, and by the second the proportion of (K∗a)-worlds that 
are (x∨y)-worlds is the sum of the proportions of (K∗a)-worlds that are, separately, x-
worlds or y-worlds, and we are done. 
 
(HL3) p(x∧y,a) = p(x,a)⋅p(y,a∧x). Verification: If a is inconsistent then so is a∧x and 
LHS = 1 = RHS. Suppose a is consistent. If a∧x is inconsistent then LHS = 0 while 
RHS = 0⋅1 = 0 and again we are done. If a∧x is consistent then LHS is the proportion 
of (K∗a)-worlds that are (x∧y)-worlds, while RHS is the proportion of (K∗a)-worlds 
that are x-worlds multiplied by the proportion of (K∗a∧x)-worlds that are y-worlds. If 
x is inconsistent with K∗a then both LHS and RHS equal 0, so we may suppose that x 
is consistent with K∗a. Then by AGM axioms (K∗7) and (K∗8) the (K∗a∧x)-worlds 
are just the (K∗a)-worlds that are x-worlds. Hence RHS is the proportion of (K∗a)-
worlds that are x-worlds multiplied by the proportion of those that are y-worlds, which 
equals the proportion of (K∗a)-worlds that are (x∧y)-worlds, equalling the LHS and 
we are done. 
  
(HL4) p(x,a) = p(x,b) whenever a ≈ b. Verification: If a is inconsistent then so is b, so 
LHS = 1 = RHS. If a is consistent, then if a ≈ b the a-worlds are just the b-worlds, and 
the proportion of a-worlds that are x-worlds is the same as the proportion of b-worlds 
that are x-worlds. 
 
To show that (2) ∗ = ∗p, consider first the principal case that a is consistent, where we 
need only note that by the definition of ∗p we have x ∈ ∗pa iff  p(x,a) = 1 while, by the 
definition of p, also p(x,a) = 1 iff every (K∗a)-world is an x-world, i.e. iff x ∈ 
Cn(K∗a) = K∗a. In the limiting case that a is inconsistent, p(x,a) = 1 for every x and 
by the AGM postulates, x ∈ K∗a for every x, so again we are done. Finally, to check 
(3) that K = B(p) we need only show that x ∈ K iff p(x,T) = 1. But since K is 
consistent, the AGM postulates tell us that K = K∗T, and the equivalence p(x,a) = 1 iff 
x ∈ K∗a just established may be applied substituting T for a.  
 
We conjecture that surjectivity fails in the infinite case. Evidently its present proof 
breaks down there, since one cannot meaningfully speak of proportions of infinite 
sets, thus blocking the definition of p(⋅,⋅) above. Nor is it possible to repair the proof 
by replacing proportionality by some probability distribution that gives each world a 
non-zero value. For if the set of formulae is countable, there are continuum many 
worlds and as is well known, there is no probability distribution on a non-countable 
set that gives a non-zero value to each element.  
 
For Section 5.3. Proto-probability Functions for Qualitative Inference 
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The system Q 
 
For further information on systems O and Q see part I of Hawthorne and Makinson 
2007. 
 
Disjunctive interpolation 
 
As remarked in the text, the principle of disjunctive interpolation is closely related to 
a rule discussed by Koopman 1940, 1940a. Called ‘alternative presumption’, it states 
that whenever both p(x,a∧b), p(x,a∧¬b) ≤ p(y,c) then p(x,a) ≤ p(y,c). To be precise, if 
we assume that the order ≤ is complete (as we do, although Koopman does not), 
alternative presumption is equivalent to the right half of disjunctive interpolation. 
Verification. To obtain Koopman: by completeness of ≤, either p(x,a∧b) ≤ p(x,a∧¬b) 
or conversely; in e.g. the former case we have p(x,(a∧b)∨(a∧¬b)) ≤ p(x,a∧¬b) and by 
right extensionality and transitivity of ≤ we are done. In the converse direction, 
suppose p(x,a) ≤ p(x,b) and ¬b ∈ Cn(a), we want to show the right hand part of 
disjunctive interpolation, i.e. that p(x,a∨b) ≤ p(x,b). We need only note that p(x,b) ≈ 
p(x,(a∨b)∧b) and, given the last supposition, that p(x,a) ≈ p(x,(a∨b)∧¬b), then apply 
Koopman with a little help from left extensionality, taking (y,c) as (x,b).   
 
Verification that Q is proto-probablistically sound 
 
We check that when we take any proto-probability function p(⋅,⋅) and t ∈ D, and 
define a relation by putting a |~pt x iff p(x,a) ≥ t, then |~pt satisfies all the rules of Q. 
For (O1) we need p(a,a) ≥ t, which is immediate from (P1). For (O2), we need that 
when p(x,a) ≥ t and y ∈ Cn(x) then p(y,a) ≥ t, which is immediate from (P2). For 
(O3), we need that when p(x,a) ≥ t and a ≈ b then p(x,b) ≥ t, which is immediate from 
(P3). For (O4), we need that when p(x∧y,a) ≥ t then p(y,a∧x) ≥ t, which is immediate 
from (P4). For (O5) alias XOR, we need that when p(x,a) ≥ t, p(x,b) ≥ t and ¬b ∈ 
Cn(a), then p(x,a∨b) ≥ t. Since the order on D is complete, either p(x,a) ≤ p(x,b) or 
conversely, consider e.g. the former. Then using the left half of (P5), p(x,a) ≤ 
p(x,a∨b) and we are done by transitivity of ≤. For (O6) alias WAND, we need that 
when p(x,a) ≥ t and p(y,a∧¬y) ≥ t then p(x∧y,a) ≥ t. If t = 0D then this is immediate, 
and if t ≠ 0D it is immediate from (P6). It remains to obtain the non-Horn rule (NR) of 
negation rationality. We need to show that when ¬b ∈ Cn(a) and p(x,a∨b) ≥ t then 
either p(x,a) ≥ t or p(x,b) ≥ t. Since the order on D is complete, either p(x,a) ≤ p(x,b) 
or conversely, consider e.g. the former. Then using the right half of (P5), p(x,a∨b) ≤ 
p(x,b) giving p(x,b) ≥ t as desired.  
 
Generalizing an example 
 
We can generalize the example given in the text of a proto-probability function that is 
not a van Fraassen function. Fix any consistent formula c and put p(x,a) = 1 when x ∈ 
Cn(a∧c), else p(x,a) = 0. Then p(⋅,⋅) satisfied (P1) through (P6), but choosing x as any 
formula independent of c it fails (vF2) as before.  
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