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Abstract

The technique of minimizing information (infomin) has been commonly

employed as a general method for both choosing and updating a subjective

probability function. We argue that, in a wide class of cases, the use of

infomin methods fails to cohere with our standard conception of rational

degrees of belief. We introduce the notion of a deceptive updating method,

and argue that non-deceptiveness is a necessary condition for rational co-

herence. Infomin has been criticized on the grounds that there are no

higher order probabilities that ‘support’ it, but the appeal to higher or-

der probabilities is a substantial assumption that some might reject. The

elementary arguments from deceptiveness do not rely on this assumption.

While deceptiveness implies lack of higher order support, the converse

does not, in general, hold, which indicates that deceptiveness is a more

objectionable property. We o↵er a new proof of the claim that infomin up-

dating of any strictly-positive prior with respect to conditional-probability

constraints is deceptive. In the case of expected-value constraints, infomin

updating of the uniform prior is deceptive for some random variables, but

not for others. We establish both a necessary condition and a su�cient

condition (which extends the scope of the phenomenon beyond cases pre-

viously considered) for deceptiveness in this setting. Along the way, we

clarify the relation which obtains between the strong notion of higher or-

der support, in which the higher order probability is defined over the full

space of first order probabilities, and the apparently weaker notion, in

which it is defined over some smaller parameter space. We show that un-

der certain natural assumptions, the two are equivalent. Finally, we o↵er

an interpretation of Jaynes, according to which his own appeal to infomin

methods avoids the incoherencies discussed in this paper.

1. Introduction

Let Pr be a subjective probability function defined over a finite Boolean algebra,
B. An updating method U is a rule which tells an agent how to modify Pr so as

1



to satisfy a given condition or constraint. We express constraints in terms of the
value of a parameter �, and we consider families of constraints {C�}�2⇤, where
⇤ is the set of possible values of �. For each � 2 ⇤, the result of applying U

under the constraint C� is an updated probability U(Pr;C�), which satisfies this
constraint. We shall denote the updated probability by ‘Pr�’ whenever U and Pr

can be inferred from the context. It is assumed throughout that if Pr satisfies
the constaint C�, then the updating causes no change, i.e., Pr� = Pr. For
the time being, we may view an updating method as an abstract mathematical
entity. Below we will make explicit the assumptions that are required in order
to grant to an updating method normative significance.

With no loss of generality, we assume that B is the algebra of all subsets of ⌦,
where ⌦ is some finite set. If A ✓ ⌦, then we write ‘A’ for the complement of
A and ‘|A|’ for the cardinality of A.

The following list provides a few examples of the sorts of constraints to which
updating methods are typically applied (constraints are expressed using the
schematic letter ‘P ’ to refer to probabilities defined over B):

(i) For an event A 2 B, such that 0 < Pr(A) < 1, the truth-value of A is
given, i.e., the agent is informed whether A or its complement is the case.
The constraints are P (A) = �, where � 2 {0, 1}.

The accepted method for updating under such constraints is conditionalization.
Let A1 = A and A

0 = A, then Pr� = Pr( |A

�). This is the simplest and least
problematic of all updating methods.1

(ii) For an event A 2 B, such that 0 < Pr(A) < 1, the probability of A is
given (this is a straightforward generalization of (i)). The constraints are
P (A) = �, where � 2 [0, 1].

A well-known method of updating under such constraints is Je↵rey condition-
alization. For all B 2 B:

Pr�(B) =
X

!2B\A

Pr(!|A)�+
X

!2B\A

Pr(!|A)(1� �)

Je↵rey conditionalization also applies to the more general case of updating under
constraints of the form P (Ai) = �i, for i = 1, . . . ,m, where {Ai}i is a partition
of ⌦ and the �i’s are non-negative reals whose sum is 1.

(iii) For a random variable X over B, the expected value of X is given. The

1While our framing of the issue represents the truth of an event in B as a constraint and
conditionalization as a particular updating method, this may not correctly reflect Jaynes’s
view of the matter (see §7).
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constraints are E(X) = �, where:

E(X) =
X

!2⌦

P (!)X(!)

and where � ranges over some interval determined by X.

(iv) The constraints are P (B|A) = �, where � 2 [0, 1]. Here A and B are fixed
events, and Pr(A) > 0.

We shall refer to constraints of the form (iii) as expected-value constraints,
and constraints of the form (iv) as conditional-probability constraints. All of
the above mentioned constraints are special cases of linear constraints, that
is, constraints which can be expressed as one or more linear equations in the
expected values of certain random variables. For example, a constraint of the
form P (B|A) = � can be expressed:

��EP (X) + EP (Y ) = 0

where X and Y are the characteristic functions of A and A \ B, respectively.
In general, � can be a vector (�1, . . . ,�n), where the �i’s appear as coe�cients
in the equation.2

In the last fifty years or so, a great deal of attention has been paid to the
general problem of how to update under linear constraints. By far, the most
widely considered method is the technique of minimizing information, or what
we shall call ‘infomin’.

The first to apply infomin methods to the assignment of subjective probabilities
was Jaynes, who in (1957) advocated the principle of maximum entropy as
a general rule by which to determine the uniquely rational prior probability
satisfying a system of expected-value constraints.3 The principle recommends
that one choose, among all the probabilities satisfying the constraint, that which
minimizes the Shannon information4 (or, equivalently, maximizes the Shannon
entropy):

S(P ) =
X

!2⌦

P (!) logP (!)

Since in the absence of any constraints, the uniform probability minimizes in-
formation, later authors construed Jaynes’s principle as providing a method

2Since all linear constraints are linear equations in the expected value of random variables,
we should make it clear that by ‘expected-value’ constraints, we mean the special case, where
the constraint is of the form E(X) = �.

3Historically, the use of maximum entropy methods in physics dates back to the work
of Maxwell and Boltzmann, and is most famously exemplified in the statistical mechanical
derivation of the probability distribution of the velocities of the particles in a gas at thermal
equilibrium. However, it was only in Jaynes (1957) that the technique was first put forward
as a method for selecting a subjective prior probability.

4Shannon (1948).
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for updating the uniform prior given new information in the form of a con-
straint. The technique was later generalized to an updating method that can
applied to non-uniform priors, by appeal to a measure of relative-information
(or information gain) first introduced in Kullback & Leibler (1951). The gen-
eral prescription in this case is to choose the probability function satisfying the
constraint, which minimizes the Kullback-Leibler (KL) divergence:

DKL(Pr, P ) =
X

!2⌦

P (!) log

✓
P (!)

Pr(!)

◆
,

where Pr is the agent’s prior. Infomin updating is a general method which can
be applied to arbitrary linear constraints. When applied to constraints of the
form (ii), it reduces to Je↵rey conditionalization (and a fortiori when applied to
constraints of the form (i), to Bayesian conditionalization). The use of infomin
updating in the context of both expected-value constraints and conditional-
probability constraints has come under attack from Bayesians, who have pointed
out that it is incompatible with the methodology of applying Bayesian condition-
alization to higher order probabilities (Friedman & Shimony (1971), Shimony
(1973), Seidenfeld (1987)).

The criticisms of Shimony et al. have traditionally been expressed in terms of
a conflict between infomin methodologies and Bayesianism.5 We have chosen
to avoid this characterization, on the grounds that Bayesianism itself is not a
precisely defined view,6 and so, the question of whether and to what extent
infomin comports with “Bayesianism” is largely a matter of semantics.7 On the

5“. . . [T]he anomaly that has been presented is almost a demonstration that PME [read:
infomin] is inconsistent with Bayesian probability theory.” (Shimony 1985, p.41)

6See, e.g., Good (1972)
7A Bayesian position can perhaps be minimally characterized as one which subscribes to

a methodology that appeals to prior probabilities, which are then updated via conditionaliza-
tion, but the details of the view then depend upon how rich a field of events these probabilities
are defined over. The foundational aspiration, which lay at the bottom of Carnap’s project,
of deriving all probabilities from a single, all-encompassing prior, has been shown to be un-
tenable in a way which points to the essential limitations of any theory of inductive inference
based solely on the updating of prior probabilities. This point, which was first established in
Putnam (1963) and further developed in Gaifman & Snir (1982), is often underappreciated.
A prior probability is a mathematically defined function, which can itself be used to construct
a hypothesis with respect to which the prior behaves badly. The construction of such con-
founding hypotheses uses a diagonalization technique analogous to that used in the proof of
Gödel’s incompleteness results. In Putnam (1963), a prior of the type considered by Carnap is
used to define a satisfiable universal hypothesis such that given any finite data that confirms
the hypothesis, the conditional probability for the next case is  1/2. The problem is not
that of conditionalizing on events of probability 0 (such conditionalization can be handled in
models based on a two-argument conditional probability function). It is rather that, due to
epistemic limitations, we cannot construct a probability that behaves as desired with respect
to all hypotheses that might arise in the course of an inquiry. Suppose that what appears
as an initial segment of a random sequence displays previously unnoticed correlations, on the
basis of which, one would like to assign probability 0.8 to some universal hypothesis whose
prior probability (given one’s background knowledge) is 0. This abrupt change cannot be
viewed as an act of conditionalization – no matter whether one uses a one-place or two-place

4



other hand, what it means for an updating method to be “supported” within a
framework of higher order probabilities can be given a precise characterization.
Before we proceed to do so, a few remarks are in order concerning higher order
probabilities.

First order probabilities are probabilities defined over the Boolean algebra B.
A higher order probability is a probability over first order probabilities. Such
a probability assigns values to certain higher order events, construed as sets of
first order probabilities. If B has n atoms, then every first order probability
determines and is determined by a point, p = (p1, . . . , pn) 2 Rn, where pi is
the probability of the i

th atom. The space of first order probabilities can thus
be identified with the (n � 1) dimensional simplex � consisting of all points p

with non-negative coordinates whose sum is 1. A higher order probability is
any probability function that assigns values to some subsets of �.

Higher order probabilities can be interpreted in various ways. The standard
interpretation is as a subjective probability over some parameter space, where
the parameter determines the objective chances of events in B. This sort of in-
terpretation is exemplified in such straightforward statistical examples as toss-
ing a coin with unknown bias, or drawing at random from an urn containing
several kinds of objects in unknown proportions. Alternatively, higher order
probabilities can be interpreted as subjective probabilities over other subjective
probabilities. As was first pointed out in Savage (1954), a (non-trivial) higher
order probability and the first order probabilities over which it is defined can-
not represent the degrees of belief of a single agent at a given time, but there
remain other possibilities. For example, a higher order probability can be in-
terpreted as an agent’s subjective probability over his own beliefs at some later
time (at which he occupies an improved epistemic state); or they can represent
the agent’s beliefs concerning the subjective probabilities of an expert agent
(Gaifman 1986). However this might be, the crucial feature of a higher order
probability is that the agent’s subjective probabilities over B should be obtained
by integration of the first order values with respect to the higher order measure.

It is often natural to define higher order probabilities not on � itself, but on
some other more restricted space. For example, given a family of constraints
{C�}�2⇤, one may consider a higher order probability µ over a �-field of subsets
of ⇤.8 In this case, µ(⇥) is the probability that the constraint satisfied by P

belongs to the set {C�}�2⇥.

If an agent possesses higher order probabilities over ⇤, then clearly the agent’s
current probabilities should match his expected posterior probabilities, i.e., for

function – unless the probability was designed to take account of this possibility. When the
prior probability function can itself be used to state hypotheses, this is, in principle, not al-
ways possible. The limitation is a “probabilistic kin” of the limitations concerning provability
and truth that are due to the incompleteness results. See Gaifman (1983) pp. 338-342, and
Gaifman (2004) pp. 115-6 for concrete examples.

8In this paper probabilities are, by definition, countably additive.
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all A 2 B:

(1.1) Pr(A) =

Z

⇤
Pr�(A) dµ(�)

Also, from the higher order point of view, an agent’s updating method should
not be vacuous, that is, the higher order probability assigned to the event that
the updated probability di↵ers from Pr should be non-zero:

(1.2) µ({� : Pr� 6= Pr}) > 0

For a given probability Pr, we will say that µ supports the updating method
U , and that U is supported by µ, if (1.1) and (1.2) hold.

The criticism of infomin developed in Friedman & Shimony (1971) was based
on the observation that for certain families of expected-value constraints, any
higher order probability µ that satisfies (1.1), violates (1.2). In other words,
the updating lacks higher order support. This result was extended in Shimony
(1973) so as to apply to all cases of expected-value constraints in which the
random variable takes at least three distinct values.

The application of infomin updating to conditional-probability constraints was
first considered by van Fraassen in his (1981) and its follow-up. In that paper,
van Fraassen construes a scene from the film Private Benjamin as an updating
problem, in which an agent (Private Benjamin) has a prior probability Pr,
such that Pr(A) = 1/2 and Pr(B|A) = 1/2. Private Benjamin then receives
new information requiring that she update her probabilities so as to satisfy the
constraint P (B|A) = 2/3. Applying the infomin method to this problem, van
Fraassen noticed the “glaring feature” that the probability of A decreased as
a result of the update. Moreover, the updated probability of A is strictly less
than its initial value of 1/2, whenever the constraint prescribes a conditional
probability other than Pr(B|A). In an appendix to Seidenfeld (1987), this
phenomenon was shown to be a general one: in any application of infomin
updating to conditional-probability constraints, if the updating leads to any
change in the agent’s prior probabilities, then the updated probability assigns to
A a value strictly smaller than Pr(A). From this fact it follows immediately that
the updating lacks higher order support, which allows for the line of criticism
initiated by Friedman and Shimony to be extended to conditional-probability
constraints.

In spite of these objections, a number of systematic attempts have been made
to derive the infomin methodology from principles of rationality belonging to
the framework of subjective probabilities. One attempt of this kind is in Shore
& Johnson (1980), in which infomin updating with respect to expected-value
constraints is derived from general axioms alleged to apply to any rational up-
dating method. A more recent attempt, presented in Paris & Vencovská (1997),
proposes a proof that infomin yields the rationally mandated prior probability
satisfying given linear constraints (the latter are specifically meant to include
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conditional-probability constraints).9

The above-mentioned arguments against infomin, which rely on its lack of higher
order support, presuppose that an updating method should fit within a frame-
work of higher order probabilities. These objections could thus be avoided by
rejection this presupposition. Indeed, the assumption that an agent possesses
a higher order probability is a quite substantial one, implying, for instance,
that the agent has subjective probabilities over such events as that “the (first
order) probability yields an expected value of X in the range (↵,�).” In their
(1971) paper, Friedman and Shimony acknowledged this point and suggested
that a promising way of responding to their criticism would be to simply re-
ject the framework of higher order probabilities.10 Jaynes, in his brief reply to
Friedman and Shimony, seemed to endorse this response.11

A main goal of this paper is to avoid any recourse to higher order probabilities
by finding fault with infomin updating on more elementary grounds. To this
end, we focus on the property first discovered in the context of van Fraassen’s
Judy Benjamin problem, which we call deceptiveness:

Definition 1.1. An updating method U is deceptive for a given probability Pr

and for a family of constraints {C�}�2⇤, if there exists an event A 2 B, such
that for all � 2 ⇤, either Pr�(A) < Pr(A) or Pr� = Pr.

Deceptiveness is a very simple property, defined without any appeal to higher
order probabilities. As we shall argue, it implies that the use of the method
for updating subjective probabilities is incoherent. It also (trivially) implies
that the method lacks higher order support. As we will see, however, the re-
verse implication does not hold. Hence, as a property of an updating method,
deceptiveness is considerably worse than lack of higher order support.

Though our arguments make no appeal to higher order probabilities, they do
presuppose a certain minimal reflective capacity on the part of the agent. In
particular, the agent must be able to recognize that the updating method is

9An informal presentation of the argument is given in Paris (1998)
10“[Another response] is to deny that the probabilities F (d̂"|b) are capable of being well-

defined, even though each d̂" is well-defined. A defense along these lines seems promising to
us. However, to make it convincing one would need criteria for deciding when a proposition
can and when it cannot be assigned a reasonable degree of belief on given evidence, which
in turn presupposes a deep and systematic analysis of the concept of reasonable degree of
belief.” (p. 384). Here, d̂" is a certain higher order event, and F (d̂"|b) its probability, given
the background knowledge b.

11“[Friedman and Shimony] suggest that a possible way of resolving all this is to deny that

the probability of d̂" can be well-defined. Of course it cannot be; however, to understand
the situation we need no ‘deep and systematic analysis of the concept of reasonable degree of
belief.’ We need only raise our standards of exposition to the same level that is required in
any other application of probability theory; i.e., we must define our propositions and sample
space with enough precision to make a determinate mathematical problem.”(Jaynes 1983, p.
41)
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deceptive, and he must acknowledge (in some qualitative sense) the possibility
of acquiring new information which will require a change in his current beliefs.

A similar criticism to that which is based on deceptiveness can be addressed to
certain applications of infomin in the context of choosing rather than updating
a prior. A failure to properly account for this distinction has, in the past, led
to misplaced criticisms. However, even when infomin is utilized for the purpose
of choosing a prior, the constraints to which it is applied cannot be arbitrary.
If, for example, we choose a prior under the constraint E(X) = �, the random
variable X must have special significance relative to the agent’s background
knowledge, if the selected prior is to be coherently interpreted as the agent’s
degrees of belief.

We return briefly to the issue of higher order support in section 4, where we
clarify, in an abstract general setting, the relation which obtains between a
full-fledged probability defined over the simplex � and a more restricted proba-
bility defined over ⇤, induced by the first. We show that under certain natural
continuity assumptions, which hold for all updating methods considered in the
literature, a higher order support defined on ⇤ can be “lifted” into a support
over �, in which all the measure is concentrated on a homeomorphic copy of ⇤
inside �. This shows that the condition of full higher order support on � is not
stronger than the condition of higher order support on ⇤.

The new technical results of the paper (discussed in sections 5 and 6) are the
following: In the case of conditional-probabilty constraints, we provide an al-
ternative proof of the deceptiveness result first established by Seidenfeld, which
gives new insight into the underlying ‘cause’ of the phenomenon. Our proof,
which relies on general features of the way in which information is measured,
applies not only to infomin updating, but to other information-based methods
as well.

With regard to expected-value constraints, we establish both a necessary condi-
tion and a su�cient condition (on the random variable X) for the deceptiveness
of infomin updating of the uniform prior. The su�ciency condition extends the
scope of the phenomenon beyond those cases previously considered. The neces-
sity condition, combined with the general result of Shimony (1973), implies that
there are many cases in which the updating is not deceptive but still lacks higher
order support (a fact whose significance was noted above). There remains a gap
between the su�cient and the necessary conditions.

The last section of the paper is devoted to a brief discussion of Jaynes’s own
intepretation of the infomin methodology. This is an intricate subject, the
di�culty of which is not least of all due to Jaynes’s brusque and sometimes
dismissive style. Still, we think that Jaynes’s position has interesting founda-
tional implications, and, if properly construed, manages to avoid the incoherence
arguments developed in this paper.
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2. Deceptiveness and updating a subjective probability

Mathematically, an updating method is a function that chooses, for a given
probability function and a constraint, another probability function that satis-
fies the constraint. The implementation of the method involves a diachronic
step: the agent who is informed of the constraint replaces the initial (subjec-
tive) probability by the updated one. The extent to which such a shift can be
mandated by rational norms has been a subject of philosophical debate. This
is a foundational issue deserving a separate treatment, but some clarifications
are due concerning the presuppositions of the updating step.

The question of why a given constraint should be enforced, i.e., why the prob-
ability should be modified so as to satisfy C�, is a question that has di↵erent
answers depending on the nature of the case. Suppose Pr is the agent’s prob-
ability function defined over the possible outcomes of a random drawing from
an urn containing objects of various kinds in unknown proportions. Any in-
formation about these proportions is a constraint that should be enforced. In
this setting, the proportions play the role of the “true” or objective probabil-
ities. Had the agent known them, they would constitute his degrees of belief.
Arguably, the very notion of subjective probabilities requires an appeal to some
such model.12 It appears quite compelling that if the objective probability is
known to satisfy C�, then the agent should switch to a probability that satisfies
that constraint provided that no other relevant information has been added.

In other cases, the constraint can represent the opinion of an expert, or some
authority to whom the agent defers. The Private Benjamin scenario mentioned
in the introduction is such a case. The constraint can also issue from the agent
himself, as in the example suggested by Je↵rey (1965, c. 11) of an agent who
decides, after perceiving a color in dim light, that the probability that the color
is blue is 0.7.

The updating implicitly presupposes that no other relevant information has been
obtained. In practice, learning that a certain constraint holds always involves
the acquisition of some additional information; e.g., one learns of the constraint
via e-mail, hence one learns that such and such an e-mail was sent. At some
point, such additional items must be held to be irrelevant, otherwise there will
be an infinite regress. It is also assumed that nothing has happened that might
provide the agent with a good reason to abandon the updating method. Such
ceteris paribus clauses accompany any practical application of a theory. To allay
any worries on this front, we may regard the updating as a default rule: the
agent should update unless he can provide a good reason why the constraint
should not be satisfied. How he should update is, of course, a separate question

12The definition of subjective probabilities in terms of utilities or preferences relies on very
strong axioms, whose justification requires an appeal to fair lotteries, that is, to the urn model.
This is true of Savage’s system, not to speak of the axioms presupposed by Ramsey. We suspect
that one cannot advance beyond partially ordered qualitative probabilities, without the fair
lottery assumption.
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(it is with this latter question that the present paper is concerned).

Let us consider again the deceptiveness property defined above. We assume
throughout a fixed updating method U , an initial probability Pr, and a con-
straint family {C�}�2⇤. It is convenient to introduce the following related prop-
erty of events.

Definition 2.1. An always decreasing event A is an event such that, for all
� 2 ⇤, either Pr� = Pr or Pr�(A) < Pr(A). An always increasing event is
defined similarly.

Obviously, A is always decreasing i↵ A is always increasing. An updating
method is deceptive, with respect to the constraint family {C�}�2⇤, if there
exists an always decreasing event (or, equivalently, there exists an always in-
creasing event).

Thus far, deceptiveness has been viewed as a mathematical property of an up-
dating method. To see that there is something incoherent about employing a
deceptive method (so that the term “deceptive” is justified), consider a rational
agent, Ann, whose current subjective probability function is Pr, who employs
a deceptive method U .

Suppose that A is always decreasing. This is a mathematical feature of U , and
we may assume that Ann is already aware of this fact (if not, we can show
her the proof). Now, � is a parameter that does not depend on what Ann
believes or chooses to do. In fact, we may assume that its value has already
been determined and is written on a piece of paper, so that all Ann has to do is
to take a look. Prior to her doing so, Ann already knows that no matter what
value is written on the paper, either her posterior degree of belief in A will be
< Pr(A) or there will be no change in her subjective probabilities. Let ⇤< be
the set of all � for which the first of these alternatives obtains, i.e.:

⇤< = {� 2 ⇤ : Pr� 6= Pr}

If Ann thinks that the possibility that � 2 ⇤< is not to be ignored, then her
current degree of belief in A must be < Pr(A). Hence, Pr is not her subjective
probability function. On the other hand, if Ann thinks that the possibility can
be ignored, then there is no point in her looking at the paper, since she is already
certain that the information it contains will require no revision of her current
beliefs. To make this more concrete, assume that Ann is asked to pay something
for the piece of paper. If she is willing to pay any small enough amount, then
her current degree of belief in A must be < Pr(A). If, on the other hand, Ann
refuses to pay anything for the paper, it must be that she is already certain that
the information it contains will not require any updating of her beliefs. In this
case ‘updating’ is a deceptive name.
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This incoherence can be also cashed out in terms of betting odds.13 Ann is aware
that her current commitments oblige her to accept the following two bets:

1. A bet staking $1 on A at odds (1� Pr(A))/Pr(A) : 1.

2. A bet, whose odds are determined by the presently unknown parameter �,
staking $(1�Pr(A))/Pr(A) against A at odds Pr�(A)/(1�Pr�(A)) : 1.

Ann knows that in accepting these two bets, she cannot, under any circum-
stances, earn a positive return, but she will lose money if � 2 ⇤� and A does
not occur.

The same reasoning can be applied to the updating of an imprecise prior (mod-
eled as a set of ‘admissible’ probability functions), provided that for every ad-
missible prior, A is always decreasing under U . This is because, for each prior in
the set, Ann can never win and she might lose. Here, we assume that the same
prior that is used to evaluate the first bet is also used to evaluate the second.14

This assumption cannot be made, and hence the argument does not go through,
in the case of indeterminate probabilities.15

Note that the argument requires only a minimal meta-reflective capacity on the
part of the agent. We have only assumed that Ann is capable of both recognizing
that her updating method is deceptive and of acknowledging the possibility that
� 2 ⇤<. There is no need to assume that this latter acknowledgement is an
expression of any more detailed estimate on Ann’s part of how likely it is that
the updating will be non-trivial.

Conceivably, Ann could refuse to allow herself to reflect at all on the e↵ects
of her coming to know �, shutting her mind to all such considerations and
stubbornly adhering to both her current probabilities and her commitment to
U . While such systematic myopia can perhaps figure within a useful practical
methodology, we cannot pretend that, in such a case, the probabilities represent
an agent’s degrees of belief. One’s actual beliefs are not so insulated from the
e↵ects of minimal self-reflection.

The betting argument given above is known as a diachronic dutch book argu-
ment. Some philosophers have objected to such arguments, claiming that ra-
tionality only places coherence constraints on an agent’s beliefs at a given time
(the objections were first made in the context of Bayesian conditionalization,
but they apply equally well to other diachronic updating methods). Though we

13We are not endorsing the position that subjective probabilities should be defined in terms
of betting odds or within a framework based on utilities or preferences. Nevertheless, we do
hold that very simple betting situations can help to sharpen our basic intuitions concerning
probabilistic reasoning. They can perhaps also be used in the elicitation of subjective proba-
bilities. The same applies to called-o↵ bets and their relation to conditional probabilities.

14The argument also applies if the constraint itself is ‘imprecise’, i.e., if instead of a single
�, the information consists of a set of �’s, giving rise to an imprecise posterior.

15For the distinction between imprecise and indeterminate probabilities, see Levi (1985)
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took up the issue briefly at the beginning of the section, it may be worthwhile
to elaborate the point. Arguments against appeals to diachronic dutch books
generally derive from worries that additional relevant information is somehow
smuggled in. Such worries can be dispelled by treating the updating method
as a default rule: refusal to update carries with it the burden of proof; one
should justify the refusal, by pointing to some relevant information acquired
which goes beyond the constraint itself. One cannot rationally refuse to apply
the rule simply because a certain amount of time has passed. We can therefore
redefine the second bet as a default bet: the agent will win or lose according to
the odds determined by �, unless there is adequate justification for not updating
according to the method. “Adequate justification” is of course a vague notion,
but so are all clauses of the ceteris paribus type that mediate between a theory
and its applications. For our purposes, it su�ces to acknowledge that in all
cases there is a rational obligation to justify one’s deviations from the rule.

While a diachronic setup is presupposed by the very subject of this paper, we
note that ‘updating’ can be given a purely synchronic interpretation in terms
of betting odds, by using called-o↵ bets. These bets were first suggested by de
Finetti as a way of giving operational significance to conditional probabilities.16

In that case, the synchronic rule is as follows: If the inequality P (A|D)  ↵ is
true of the agent’s degrees of belief, the agent should accept a bet against A with
odds ↵ : 1�↵, conditional onD (that is, the bet is called-o↵ ifD does not occur).
The generalization of this rule from the case of Bayesian conditionalization to
an arbitrary updating method can be stated as follows:

(†) Suppose that an agent, who is about to be informed of the value of �, has
degrees of beliefs given by the probability function Pr. Then, if ⇤1 ✓ ⇤,
and if, for all � 2 ⇤1, Pr�(A)  ↵, the agent should accept a bet against
A with odds ↵ : 1� ↵, conditional on the event ‘� 2 ⇤1’.

Any finite system of bets satisfying (†) should be accepted by the agent. Now
suppose, as before, that A is always decreasing. Let ⇤< = {� : Pr� 6= Pr} and
⇤0 = ⇤�⇤<. Then Pr� < Pr(A) for all � 2 ⇤<. Assume first that there is an
" > 0, such that for all � 2 ⇤<, Pr�(A)  Pr(A) � ". Then we can construct
a synchronic dutch book, which simulates the diachronic one, consisting of the
following three bets:

1. An unconditional bet on A, at odds (1� Pr(A))/Pr(A) : 1.

2. A bet against A at odds Pr(A)/(1� (Pr(A)) : 1, conditional on � 2 ⇤0.

3. A bet against A at odds (Pr(A)� ")/(1� (Pr(A)� "))) : 1, conditional
on � 2 ⇤<.

16See de Finetti (1974).
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Ann stakes $1 on the first bet, and $ (1 � Pr(A))/Pr(A) on each of the other
two. Then, if � 2 ⇤0, the first two bets return nothing, and bet (3) is called-o↵;
and if � 2 ⇤<, bet (2) is called-o↵, and (just as in the diachronic case) Ann has
nothing to gain and she loses money if A does not occur.

If, on the other hand, the values {Pr�(A)}�2⇤� are not bounded strictly below
Pr(A), let "n = 1/(n + 1), n = 0, 1, 2 . . ., and consider a partition of ⇤< into
subsets ⇤n, n = 1, 2, . . ., where:

⇤n = {� : Pr(A)� "n�1 < Pr�(A)  Pr(A)� "n}

Let Betn be the bet against A at odds (Pr(A) � "n)/(1 � (Pr(A) � "n)) : 1,
conditional on � 2 ⇤n. A synchronic dutch book can now be constructed,
provided that the following rather weak continuity assumption holds:

(‡) Let D1, . . . Dn, . . . be disjoint events and let Betn be a bet against A,
conditional on Dn, such that for all Betn the agent stakes the same fixed
amount where the odds are in some fixed interval [↵,�], 0 < ↵ < � < 1. If
for each k, the agent accepts Bet1, . . . , Betk, then the agent should accept
all the bets Bet1, . . . , Betn, . . ..

The synchronic dutch book now consists of bets (1) and (2) and the (countable)
system of bets, Betn, obtained by replacing in (3), ⇤< by ⇤n and " by "n.

The above incoherence arguments are relevant for assessing infomin because in a
broad class of cases infomin is deceptive. This follows from results presented in
sections 5 and 6. These results concern updating under two kinds of constraints:
(i) for a given random variable X, the family of expected-value constraints
{E(X) = �}�, and (ii) for any two events A and B, such that Pr(A) > 0, the
family of conditional-probability constraints {P (B|A) = �}�.

We indicated already that for conditional-probability constraints, {P (B|A) =
�}�, A is an always-decreasing event, hence infomin updating is always deceptive
(see §5). With regard to expected-value constraints the situation is a bit more
complex. Infomin updating of the uniform prior is not always deceptive, but in
a broad class of cases it is. The results in section 6 are as follows: If there is
no event A, such that the average value of X over A equals the average value
of X over ⌦, then the updating is non-deceptive. On the other hand, if there
is such an event A and if, moreover, the event is ‘central’ in the sense that
X(A) = X(⌦) \ [a0, b0], where ⇤ = [a, b] and a < a

0
 b

0
< b, then A is always

decreasing.

3. Choosing a Prior and Shiftiness

There is a simple mathematical fact relating infomin prior selection to infomin
updating: for any given constraint, the probability (satisfying the constraint)

13



that minimizes the Shannon information is equal to the probability that min-
imizes the information relative to the uniform prior, as measured by the KL
divergence.17 This equivalence has led some to suggest that infomin prior selec-
tion should be thought of as a special case of infomin updating. However, this
assimilation overlooks the important fact that in the context of prior selection
the uniform probability serves merely as technical device, utilized at a stage at
which the agent does not yet have a subjective probability function over B.18

Consider an agent Abe, who, like Ann, is about to receive information reporting
the true value of �. At this stage, there is no probability function representing
Abe’s credal state, but he is going to choose U(Pr0;C�) as his prior, where
Pr0 is the uniform distribution. Suppose that A is always decreasing under U
with respect to Pr0. Since we may assume that Abe is aware of this fact, he is
already in a position to infer that, regardless of the value of �, the prior he will
choose will satisfy the inequality Pr(A)  |A|/n, where n = |⌦|. Moreover, he
knows that this inequality will be strict unless Pr = Pr0. Note, however, that
in this case Abe’s knowing this fact does not lead to incoherence of the sort
described in the previous section, since there can be no conflict with his current
subjective probability, as the latter does not exist. As we will see, however,
Abe’s situation is not much better.

Suppose that the prior to be chosen is defined over events relating to a single
random drawing from a collection of objects of various kinds, and that the
constraint consists of partial information concerning the relative frequencies of
the kinds in the collection. 19 Specifically, imagine a bag containing a large
number of apples and pears of two kinds: expensive and inexpensive. Let A be
the event that the next drawn object will be an apple and let B be the event
that it will be an expensive apple. The constraint P (B|A) = � means that the
relative frequency of expensive apples among apples is �, because, under the
assumptions of our scenario, this is the true value of P (B|A) (or, if you like, it
is the ratio of objective chances).20 Now, suppose that A is always decreasing
under U with respect to Pr0 and the family of constraints {P (B|A) = �}�.
Abe thus finds himself in a situation where the mere knowledge that he will be
informed of the relative frequency of expensive apples among apples implies a
non-trivial bound on his probability that the next fruit drawn will be an apple.
In fact, on the basis of this knowledge alone he is led to prefer a bet on a pear
to a bet on an apple.

This remarkable outcome is so counterintuitive as to cast serious doubt on the
17The relationship between infomin prior selection and infomin updating is discussed in

Hobson & Cheng (1973).
18In this paper, we do not presuppose the view according to which an agent is always guided

by a probability distribution.
19Such a scenario is similar to that discussed in Paris (1998), where a doctor has to infer

probabilities concerning a patient (the “next drawn object”), on the basis of linear constraints
on the probability function, which are intended to reflect the doctor’s background knowledge.

20The assumptions of the scenario justify the non-problematic application of the urn model.
One can, if one wishes, add the further detail that the bag is shaken before the drawing.
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legitimacy of Abe’s method of choosing a prior. We stress that the problem is
not due to any intuition that P (B|A) should be independent of P (A) – perhaps
there should be some correlation between the two. Rather, the outcome is
bizarre because the mere knowledge that Abe will be informed of the value of
a certain objective parameter implies a substantial bound on how likely it is
that a particular event will occur. The very fact that Abe will shortly know
the ratio of expensive apples to apples makes it more plausible that the bag
contains fewer apples than pears!

There are indeed circumstances in which mere knowability can have substantial
implications. For instance, that a certain piece of information may be known
can show that it is not top secret, or that it can be cheaply bought, or that it
lacks significance (in some suitable sense of the term). Some such logic under-
lies the methodology of infomin. The updated probability is chosen so that, in
retrospect, it is minimally surprising that the value of � that determines the
constraint turned out to be what it was. A prior commitment to infomin thus
licenses the assumption that if new information should come to light, which re-
quires some change in one’s current probabilities, then the change will minimize
the significance of that information. Now, in Abe’s case, information relating
the ratio of expensive apples to apples is, roughly speaking, less significant the
smaller is the proportion of apples in the bag. Consequently, when Abe learns
that he will soon come to know of this ratio, in order to minimize the signif-
icance of this future knowledge, he concludes a priori that the bag contains
fewer apples than pears. This e↵ect is responsible for the always-decreasing
phenomenon of infomin updating on conditional probability constraints.21

Equally bizarre outcomes will occur in other cases of deceptive updating. In
particular, an analogous objection can be raised against certain uses of infomin
methods in the case of expected-value constraints (see §6). These phenomena
show that the rationale underlying infomin is badly suited to many common
scenarios of choosing or updating subjective probabilities.22

21To be sure, the finer details have to be worked out (see §5), because the deviation of P (A)
from 1/2 has its own price in terms of information.

22In his argument in support of infomin, Paris (1998) insists that the method only be
applied to constraints reflecting the whole of the agent’s knowledge. Are the counterintuitive
consequences described above due to a failure to meet this requirement? We do not think
so. The requirement that the constraints reflect the agent’s total knowledge is justified with
regard to explicit items in the scenario, but, as a general condition, it can never be fully met.
In every case we assume that certain information is acquired by the agent, without going into
the way it was acquired, or into the agent’s reason for trusting it. Otherwise we are in for an
infinite regress. Abe takes it for granted that the right value of P (B|A) is written on a piece of
paper. If pushed further he might say that the written number is the ratio of expensive apples
to apples in the bag (we take it for granted that the drawing is random, and hence that Abe is
justified in assuming that the conditional probability is that ratio). Now counting the apples
and computing the ratio might be easier if there are fewer apples, hence the availability of this
information suggest a smaller number of apples. This seems to be the rationale of infomin.
But should speculations about how this ratio was known to the person who wrote it enter
into the story, the story is endless.
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The problems are enhanced if we consider the possibility of an agent’s choosing
between information from one of two distinct constraint families. In the apples-
and-pears scenario let A

0 = A, that is, the event that the next drawn fruit is
a pear, and let B0 be the event that the next drawn fruit will be an expensive
pear. Now, suppose Abe is given the choice between learning the true value of
P (B|A), or the true value of P (B0

|A

0). If he opts for the first, then he knows
that he will assign a probability  0.5 to A (and that the inequality will be strict
unless his prior turns out to be uniform). If he opts for the option, he knows that
he will assign a probability � 0.5 to A. Thus, Abe finds himself in a situation in
which he can determine certain features of his prior, and consequently whether
he will prefer a bet on an apple to a bet on a pear, merely by choosing the kind
of information he will receive.

The possibility of manipulating the chosen prior in this way also exists in the
case of expected-value constraints. As we will see, for any event A, such that
2  |A|  n � 2, there exist two random variables X and Y , such that, under
infomin updating of the uniform prior, A is always decreasing with respect to
{E(X) = �}�, and always increasing with respect to {E(Y ) = }.

Call an updating method shifty if there are two families of conditional-probability
constraints, or two families of expected-value constraints, such that for some
event A, A is always decreasing with respect to one family and always increas-
ing with respect to the other. When a choice between these constraint families
is viewed as arbitrary, shiftiness prevents us from interpretating the updated
probabilities as the agent’s degrees of belief. Suppose, in the apples-and-pears
scenario, that the prior Abe chooses on the basis of the constraint P (B|A) = �

yields a probability of 0.45 for A. Can this express Abe’s degree of belief, given
that he knows with certainty that had he updated on information of the form
P (B0

|A

0) = , he would have assigned to A a probability � 0.5?

Situations may arise in which an agent must choose between one of two con-
straint families (say, the information costs money, or time, and resources are
limited), and where a random choice is to be preferred to no choice at all, or to
the adoption of the uniform prior. In such a situation, the agent’s choice will
most likely be determined by pragmatic considerations which will vary from one
context to another. If, for Abe’s purposes, the most significant information is
the ratio of expensive apples to apples, then this is the information he should
acquire. Still, while some values of the chosen prior may express Abe’s subjec-
tive probabilities, we should not pretend that this is true of the function as a
whole.23

Of course, choosing a prior by appeal to a shifty updating method can only be
criticized if the agent views the choice between the constraints as arbitrary. If,

23Classical statistics provides various prescriptions for choosing a statistical hypothesis, but
it is wrong to interpret the adopted hypothesis as a subjective probability function, and even
in the case of non-Bayesian methodologies, shiftiness, with the possibilities it provides for
ad-hoc manipulation, would be considered a serious defect.
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for example, in the case of expected-value constraints, one of the two random
variables is of particular significance with respect to an agent’s background
knowledge, then the mere fact that the method is shifty does not constitute an
objection (see §7).

4. Higher Order Support

A higher order support for an updating method is a probability µ defined over
⇤, which satisfies the following two conditions:

(1.1) Pr(A) =
R
⇤ Pr�(A) dµ(�), for all A 2 B,

(1.2) µ({� : Pr� 6= Pr}) > 0,

where it is a part of condition (1.2) that the set {� : Pr� 6= Pr} is measurable.
We then have the following theorem, whose proof is trivial.

Theorem 4.1. If an updating method is supported by some higher order prob-
ability, then it is not deceptive.

Proof. Assume for contradiction that A is an always decreasing event. Let
⇤0 = {� : Pr� = Pr}, and let ⇤1 = ⇤ � ⇤0. Then Pr�(A)  Pr(A) for all
� 2 ⇤, and Pr�(A) < Pr(A) for all � 2 ⇤1. By (1.2), µ(⇤1) > 0, hence, for
some " > 0, µ({� : Pr�(A) < Pr(A) � "}) > 0. But this implies that the
integral on the right-hand side of (1.1) is strictly less than Pr(A).

A full-fledged higher order probability is a probability, m, defined on the Borel
algebra of �, where � is the (n�1) dimensional simplex consisting of all points
representing first order probabilities, i.e., � = {p 2 [0, 1]n :

P
i pi = 1}. We

refer to the Borel subsets of � as higher order events. A higher order probability
m determines through integration a first order probability Pr over �. In other
words, if Pp is the probability represented by p, then for all A 2 B:

(4.1) Pr(A) =

Z

�
Pp(A) dm(p)

A constraint on the first order probability is represented as a higher order event,
� ✓ �, consisting of all points p such that Pp satisfies the constraint. Usually
constraints are Borel sets. Them-weighted average of the probabilities satisfying
the constraint � is obtained by means of the conditionalized measure m( |�),
i.e., for all A 2 B:

(4.2) Pr�(A) =
1

m(�)

Z

�
Pp(A) dm(�)
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This requires that m(�) > 0. If m(�) = 0 (as is often the case), the conditional-
ization can still be defined as a limit, provided � is su�ciently smooth and m is
a non-pathological measure which assigns values > 0 to open sets containing �.
For example, if � is the event {p : EPp(X) = �}, then � is the intersection of �
with a certain hyperplane. In this case, the conditional probability can usually
be defined by conditionalizing on events of the form {p : ��" < EPp(X) < �+"}

and taking the limit as " ! 0.

Given a family of constraints {C�}�2⇤, we now establish in an abstract general
setting how the space � is related to the parameter space ⇤. We will say that
p satisfies C�, if Pp does. We assume that (i) every C� is satisfied by some
p (the �’s for which C� is unsatisfiable should be dropped from ⇤); and (ii)
every p satisfies at most one constraint C�. Let �0 = {p 2 � : p satisfies
some C�,� 2 ⇤}. We do not assume that every p satisfies some constraint;
for instance, in the case of conditional-probability constraints {P (B|A) = �}�,
�0 = {p 2 � : Pp(A) > 0}. We assume that �0 is a Borel set. Its topology is,
by definition, the topology induced by �.

For p 2 �0, let ⇡(p) be the unique � 2 ⇤ such that p satisfies C�. Then the
function ⇡ : �0

! ⇤ is onto. We put on ⇤ the minimal topology for which
⇡ is continuous, i.e., a set ⇥ ✓ ⇤ is open i↵ ⇡

�1(⇥) is an open subset of �0.
Henceforth, we use ‘⇤’ to refer to this topological space.

By a probability on ⇤ we mean a probability defined over the Borel field of ⇤.
(Note that, in most cases, ⇤ ✓ Rk for some k, and the above topology is the
one induced by the Euclidean space. It is instructive, however, to develop the
framework in the context of a completely abstract parameter space ⇤).

Definition 4.1. A probability m over � induces the probability µ over ⇤ if (i)
m(�0) > 0; and (ii) µ(⇥) = m(⇡�1(⇥)|�0), for every Borel subset ⇥ ✓ ⇤.

It is su�cient to require that condition (ii) hold for all open subsets of ⇤.
Obviously every m such that m(�0) > 0 induces a unique µ over ⇤, and if
m

0 = m( |�0), then m

0(�0) = 1 and m

0 induces the same probability µ.

Definition 4.2. For a given family of constraints {C�}�2⇤, a probability m

over � supports the updating method U , if m(�0) > 0, and the probability
which m induced on ⇤, supports U .

Every updating method U can be associated with a function � which selects for
each � 2 ⇤ a point in the set ⇡�1(�), corresponding to the updated probability:

P�(�) = Pr� = U(Pr;C�)

We call the function � : ⇤ ! �0 the selection function. Obviously, � is an
embedding of ⇤ into �0 such that ⇡(�(�)) = � for all � 2 ⇤. Thus � is 1-1 and
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its inverse is the restriction of ⇡ to �(⇤). Since ⇡ is continuous, the inverse of
� is continuous (where the topology of �(⇤) is induced by �0).

Definition 4.3. An updating method is continuous if its corresponding selec-
tion function is continuous.

Roughly speaking, an updating is continuous if small changes in � result in
small changes in the updated probability. All the methods considered in the
literature are continuous. Indeed, continuity is essential for the application of
an updating method, when the parameter � is reported with some margin of
error.

If an updating method is continuous, then both � and its inverse are continuous.
Hence, � is a homeomorphism from ⇤ onto �(⇤). Given any probability µ over
⇤, we obtain by means of � a corresponding probability µ

0 on its homeomorphic
copy. We refer to µ

0 as the copy of µ, under the homeomorphism �. Now, define
the probability mµ over � by:

mµ(�) =df µ

0(� \ �(⇤))

where � ranges over the Borel subsets of �. It is easy to check that mµ induces
µ on ⇤. This establishes the following claim:

Theorem 4.2. For a continuous updating method, and a family of constraints
{C�}�2⇤, every probability µ on ⇤ is induced by a probabilitymµ on�, which is
concentrated on a subset of� that is a homeomorphic copy of ⇤. The restriction
of mµ to this homeomorphic copy is the copy of µ under the homeomorphism.

This shows that, for continuous updating methods, being supported by a higher
order probability over � is not stronger than being supported by a higher order
probability over ⇤. As an illustration, consider a continuous updating method
applied to the family of expected-value constraints {E(X) = �}�2⇤. Here ⇤
is a real closed interval, say [a, b]. Each � 2 [a, b] defines a hyperplane that
intersects �. The updating method chooses a point ⇡(�) in the intersection,
so that [a, b] is mapped to a homeomorphic curve inside �. Any probability µ

on [a, b] can be induced by a probability over � that assigns measure 1 to that
curve, and whose restriction to the curve is the copy of µ.

5. Updating on conditional-probability constraints

In this section we provide a proof of the following claim:

Theorem 5.1. (Seidenfeld 1987) Let A,B 2 B be such that A 6= ⌦ and B is
a non-empty proper subset of A. If Pr(A) > 0, A is always decreasing under
infomin updating of Pr with respect to the constraint family {P (B|A) = �}�.
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This claim was first established in Seidenfeld (1987).24 We present an alter-
native proof of the theorem, which gives new insight into the underlying cause
of the “always-decreasing” phenomenon for conditional-probability constraints.
Our proof, which relies on general features of the way in which information is
measured, applies not only to infomin, but to other information-based methods
as well.

We noted in section 3 that for conditional-probability constraints the reason
for the “always decreasing” phenomenon is that the total cost of altering the
conditional probability Pr( |A) is lessened if we decrease the probability of A.
To extract from this observation a general proof requires a more careful analysis
of the competing costs involved in the update. We now proceed to provide such
an analysis.

Assume that D is a relative information measure, i.e., a binary function that
maps every pair (P, P ⇤) of probability functions over B to a real numberD(P, P ⇤).
We will prove that certain general conditions on D, which are satisfied by
the KL divergence, imply that updating by minimizing D-information under
conditional-probability constraints is deceptive.

None of the updating methods discussed in the literature alter the values of 0-
events (i.e., events whose prior probability is 0). This is presupposed throughout
this paper. Hence, we can restrict the set of probabilities satisfying a constraint
to those which assign probability 0 to all 0-events. We can therefore take as
our universal set, the subset obtained by removing from ⌦ all ! for which
Pr(!) = 0. Thus, without loss of generality, we assume that Pr is strictly
positive, i.e., Pr(!) > 0 for all ! 2 ⌦ (of course, strict positivity is not required
of the updated probabilities).

We consider constraints of the form P (B|A) = �, where A and B are fixed
events. Obviously, we can assume that B ✓ A. We also assume that ; ⇢ B ⇢

A, for otherwise there is only one possible constraint (either P (B|A) = 1 or
P (B|A) = 0) which is trivially satisfied. We should also assume that A 6= ⌦,
for, otherwise, the constraints reduce to P (B) = �, in which case infomin yields
the non-deceptive Je↵rey conditionalization. Finally the updated probability
must satisfy P (A) > 0, in order for P (B|A) to be defined. Let �+ be the set
of all strictly positive probabilities (over the subsets of ⌦) and let �A be the
set of all probabilities that assign to A a non-zero value. Then, the following
assumptions are made, where Pr is the prior probability: (i) Pr 2 �+; (ii)
; ⇢ B ⇢ A ⇢ ⌦; and (iii) there is a unique probability which minimizes D

(relative to Pr) and this probability is in �A.

24p. 283, Corollary 1, Appendix B. We thank an anonymous referee of an earlier draft
of this paper for calling our attention to this fact. Our initial motivation for investigating
deceptiveness in the context of conditional probability constraints, was a remark made in
Grove & Halpern (1997).
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For every probability function P 2 �A, we write P |A for the conditional prob-
ability function P ( |A) restricted to the algebra of subsets of A.

Any probability P 2 �A is uniquely determined by P (A), P |A and P |A. There-
fore, for any P, P

⇤
2 �A, we can decompose the update from P to P

⇤ into three
successive steps: first, we change the probability of A from P (A) to P

⇤(A), leav-
ing unchanged the conditional probabilities P |A and P |A; next, we change P |A

to P

⇤
|A leaving P |A unchanged; and finally, we change P |A to P

⇤
|A. Fully

spelt out, the three steps are:

(1) P ! P

0, where P

0(A) = P

⇤(A), P 0
|A = P |A, P 0

|A = P |A.

(2) P

0
! P

00, where P

00(A) = P

0(A), P 00
|A = P

⇤
|A, P 00

|A = P

0
|A.

(3) P

00
! P

⇤

We shall formulate three conditions on D. The first two are about the informa-
tion costs for changes of type (1) and type (2) (obviously, (2) and (3) are changes
of the same type), and the third concerns the way in which these separate costs
combine to determine the total cost of the update from P to P

⇤.

Before proceeding, we note that if P ⇤(A) = 1, then P

0
|A is undefined. We do

not rule out this possibility, but interpret the update, in this case, by dropping
from (1) and (2) the equalities P 0

|A = P |A and P

00
|A = P

0
|A, and omitting (3).

Some of the following definitions will require obvious adjustments to account for
this possibility, but the proof will carry through. We leave these adjustments
to the reader.

The condition concerning changes of type (1) is referred to as unimodality. For
convenience we represent the change as a change from P to P

⇤ (i.e., we put
P

0 = P

⇤). The condition requires that the cost depend only on the values of
P (A) and P

⇤(A), that it is strictly decreasing as P ⇤(A) approaches P (A) from
either side, and that it is a di↵erentiable function of P ⇤(A).

Unimodality (UNI): Let D1 be the restriction of D to the set of all
(P, P ⇤) 2 �A ⇥�A, such that P |A = P

⇤
|A and P |A = P

⇤
|A. Then

D1 is independent of both P |A and P |A and is strictly decreasing
as P

⇤(A) approaches P (A) from the left, as well as from the right.
Moreover, D1 is a di↵erentiable function of P ⇤(A) in (0, 1):

(If P ⇤(A) = 0, then, by definition, the above set of pairs consist of all pairs
(P, P ⇤) 2 �+

⇥�A, such that P ⇤(A) = 1 and P |A = P

⇤
|A.)

Note that (UNI) implies that the derivative of D1 with respect to P

⇤(A) equals
0 at P (A).
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The condition concerning changes of type (2) is referred to as conditional mono-
tonicity. Again, for convenience, we represent the change as a change from P to
P

⇤ (i.e., we put P 0 = P and P

00 = P

⇤). The condition requires that the cost not
depend on P |A; and that, for P |A 6= P

⇤
|A, it is strictly increasing as a function

of P (A) and satisfies the di↵erentiability requirement specified below.

Conditional Monotonicity (CM) Let D2 be the restriction of D
to the set of all (P, P ⇤) 2 �A ⇥ �A such that P (A) = P

⇤(A) and
P |A = P

⇤
|A. Then D2 is independent of P |A. If P ⇤

|A 6= P |A, then
D2 is di↵erentiable with respect to P

⇤(A) in (0, 1), and its derivative
is bounded below by some positive number (which can depend on
P |A and P

⇤
|A).

The third and final condition relates the total cost D(P, P ⇤) to the three costs
D(P, P 0), D(P 0

, P

00), D(P 0
, P

⇤). Note that for D = DKL, the total cost is
simply the sum of the three costs:25

(ADD) D(P, P ⇤) = D(P, P 0) +D(P 0
, P

00) +D(P 0
, P

⇤)

The property (ADD) often appears in arguments in support ofDKL as a measure
of relative information, and it is closely linked with the use of log-ratios. It turns
out, however, that the following much weaker requirement is all that is required
in order to ensure deceptiveness (we assume the notation used in (1), (2), (3)):

Cost Combination (CCO): For any P 2 �0 there is a function
F (t, u, v, w) such that, for all P ⇤

2 �A:

D(P, P ⇤) = F (P ⇤(A), D(P, P 0), D(P 0
, P

00), D(P 00
, P

⇤)),

and the following hold:

(i) F is strictly increasing in each of u, v, w.

(ii) F has a total di↵erential.

(iii) @F (t, u, v, 0)/@t � 0.

(iv) for some c > 0, @F (t, u, v, 0)/@v > c.

For D = DKL, (CCO) holds trivially and it is also easy to check that (UNI) and
(CM) are satisfied.26 An example of an information measure satisfying (UNI)

25This is only true if the change from P to P ⇤ is carried out in the order given by (1), (2)
and (3). Additivity does not, in general, hold if the steps are carried out in a di↵erent order,
say, by first adjusting P |A and then P (A).

26For D = DKL we have (assuming for each of the cases the corresponding notations for (1)

and (2) used above): D1(P, P ⇤) = P ⇤(A) log
⇣

P⇤(A)
P (A)

⌘
+P ⇤(A) log

⇣
P⇤(A)

P (A)

⌘
and D2(P, P ⇤) =

P ⇤(A)
⇣P

!2A P ⇤(!) log
⇣

P⇤(!)
P (!)

⌘⌘
. The first implies (UNI) and the second implies (CM).
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and (CM) that does not satisfy (ADD), yet satisfies (CCO), is D†, obtained by
substituting the simple ratio for the log-ratio in DKL:

D

†(P, P ⇤) =

 
X

!2⌦

P

⇤(!)

✓
P

⇤(!)

P (!)

◆!
� 1

Hence, the following theorem implies that D†-infomin is deceptive.27

Theorem 5.2. Assume that D satisfies (UNI), (CM) and (CCO). Let Pr 2 �+

and let Pr� be the probability that minimizes D(Pr, P ) under the constraint
P (B|A) = �. Then, for all � 2 (0, 1), if Pr� 6= Pr, then Pr�(A) < Pr(A).

Proof. First note that Pr�|A = Pr|A; otherwise, condition (i) in (CCO) im-
plies that we can further reduce the cost by changing Pr�|A to Pr|A. Hence, the
probability Pr

⇤ that minimizes the total cost, minimizes the function F (P ⇤(A), D(P, P 0), D(P 0
, P

00), 0),
where P = Pr. That is, Pr

⇤ minimizes f(P ⇤(A), D(P, P 0), D(P 0
, P

00)), where
f(t, u, v) =df F (t, u, v, 0).

Now, if Pr

⇤(A) > Pr(A), then we can get a further reduction of cost, by
updating Pr to Pr

⇤⇤, where Pr

⇤⇤(A) = Pr(A), Pr

⇤⇤
|A = Pr

⇤
|A and Pr

⇤⇤
|A =

Pr

⇤
|A. This follows from the fact that f(t, u, v) is non-decreasing in t (since

@f/@t � 0) and is strictly increasing in u and v; by (UNI) there is a reduction
in cost of the first step (i.e., a reduction in u), and – by (CM) – a reduction in
cost of the second step (i.e., a reduction in v).

It remains to show that if � 6= Pr(B|A), then Pr

⇤(A) 6= Pr(A). Since the
conditional probabilities relative to A and to A are held fixed, the total cost is
a function of Pr

⇤(A). It is therefore su�cient to show that df/dt > 0 at the
point t = Pr(A). We have:

df

dt

=
@f

@t

+
@f

@u

@u

@t

+
@f

@v

@v

@t

By (iii) of (CCO) the first term is � 0; by (UNI) the second term is 0; and by
(iv) of (CCO) and (CM) the third term is > 0.

6. Infomin updating on expected-value constraints

Throughout this section, we take X to be a fixed random variable and the prior
probability to be uniform, unless otherwise indicated. The following theorem

27Seidenfeld’s proof of theorem 5.1, is altogether di↵erent from that developed in this section.
He first proves the result for the case where the prior is uniform. He then extends the result
to arbitrary rational-valued priors by refining ⌦, and noting that infomin is preserved under
such refinements. Finally, he obtains the general result by taking limits. As it turns out, this
method can also be applied to D†. We have not, in this work, investigated the relative scopes
of the two methods.

23



settles the question of higher order support for infomin updating under expected-
value constraints:

Theorem 6.1. (Shimony 1973) If the range ofX contains at least three distinct
values, there is no higher order probability that supports infomin updating under
the constraints {E(X) = �}�.

A weaker version of this theorem was proven in Friedman & Shimony (1971).28

Theorem 6.1 has served as the basis for many of the past criticisms of infomin
methods.29 As we have noted, however, arguments from lack of higher order
support are based on the substantial assumption of a higher order probability,
which is open to rejection, as acknoweldged by Friedman and Shimony (see
footnote 9). Arguments from deceptiveness, on the other hand, appeal only to
straightforward coherence conditions, which require no more than a minimal
capacity for self-reflection. The extent to which lack of higher order support
implies deceptiveness is therefore worth investigating. It turns out that for a
wide variety of random variables infomin is deceptive, but for many others it is
not.

We adopt the following notation: If E(X) = EP (X) is the expected value of X
for the probability P and if P (A) > 0, then we write ‘E(X|A)’ for the conditional
expected value of X, i.e. E(X|A) = 1/P (A)

P
!2A X(!). Obviously, if 0 <

P (A) < 1, then:

(1) E(X) = P (A) · E(X|A) + P (A) · E(X|A)

We put E0(X) = EP0(X), E0(X|A) = EP0(X|A), where P0 is the uniform
probability over ⌦.

We shall state a condition onX that is necessary for the deceptiveness of infomin
updating (of the uniform prior) and which shows that, for any ⌦ such that
|⌦| � 2, there are random variables for which the updating is not deceptive.
The condition is based on a necessary condition for an event A to be always
decreasing.

Some conditions on A are obviously necessary. If M and m are, respectively,
the maximum and minimum values of X, and if {! : X(!) = M} ✓ A, then,
trivially, A is not always decreasing since the constraint E(X) = M is satisfied
only if the probability assigns to {! : X(!) = M} (and hence to A) the value
1. Similarly, A is not always decreasing if {! : X(!) = m} ✓ A. A deeper

28The weaker version made the additional assumption that for some ! 2 ⌦, X(!) was equal
to the mean value of X. The “always decreasing” phenomena was utilized in the proof in a
roundabout way: it was shown that {!} is always-decreasing, but this fact was derived under
the presupposition of higher order support. Shimony’s proof in (1973) is altogether di↵erent
and it obviates the additional assumption.

29See, e.g., Shimony (1985) and Seidenfeld (1979).
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condition is required in order to establish the existence of random variables for
which no event is always decreasing.

Definition 6.1. A is a mean event if A 6= ; and E0(X|A) = E0(X).

Obviously, for ; ⇢ A ⇢ ⌦, (1) implies that A is a mean event i↵ A is a mean
event.

Theorem 6.2. If A is always decreasing, then A is a mean event.

Note that if A 6= ⌦, the theorem implies that if A is not a mean event, it is also
not always increasing; because, if A is a not a mean event, neither is A. Hence,
A is not always decreasing, which implies that A is not always increasing.

The proof of the theorem, given in Appendix A, shows that if |E0(X|A) �
E0(X)| > 0, then for some " > 0, Pr�(A) � P0(A), for all � between E0(X)
and E0(X|A) satisfying |�� E0(X)| < ".

As a corollary of the theorem we have:

Corollary. A necessary condition for the deceptiveness of infomin updating of
the uniform prior under expected-value constraints is the existence of a non-
trivial (i.e., 6= ⌦) mean event.

For any non-empty ⌦, it is easy to define random variables over ⌦ for which
there are no non-trivial mean events; for example, if ⌦ = {!i : 1  i  6}, put
X(!i) = i, for i = 1, . . . , 5, and X(!6) = 7. Infomin updating on the expected
value of such a random variable is not deceptive, though it lacks higher order
support.

We now state a su�cient condition for deceptiveness.

Definition 6.2. An interval event is a non-empty event of the form:

{! 2 ⌦ : a  X(!)  b}

Theorem 6.3. If A 6= ⌦ is a mean event and is also an interval event, then A

is always decreasing.

Hence, a su�cient condition for the deceptiveness of infomin updating is the
existence of a mean, interval event 6= ⌦.

The proof of theorem 6.3 is given in Appendix B. The following illustration,
which is a histogram of X, clarifies the heuristics underlying both theorems 6.2
and 6.3. The probabilities (which are plotted on the vertical axis) are of the
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form k/n, where n = |⌦| and k is the number of atoms for which X assumes
the given value. The interval event A is X�1([a, b]).

If � 6= E0(X), the constraint E(X) = � requires that we move the expected
value to the right (left), provided � > E0(X) (� < E0(X)). This shift is
subject to an obvious torque e↵ect, so that a change in the probability of an
atom leads to a greater change in the value of E(X), the farther away the atom
is from the “center” at E0(X). If E0(X|A) = E0(X), and the required shift
in expected value is su�ciently small, then the minimal information shift will
involve first moving some mass from A to some further removed atom in its
complement, where it can have a greater e↵ect, and then adjusting the mass
distributions inside A and A. If, however, E0(X|A) > E0(X), then su�ciently
small increases in E(X) can be more cheaply accomplished by moving the center
of gravity of A to the right and, possibly, increasing its weight. To show that
the costs balance in this way, we appeal to the strict convexity of the infomin
update of the uniform prior. A further promising line of investigation is to
consider whether the cost-balancing intuitions can be used to generalize the
results to priors which are non-uniform.

Note that theorem 6.3 is not valid if the assumption that A is an interval event
is omitted. This is because one can define a random variable X for which there
is a mean event A 6= ⌦ such that X

�1(M) ✓ A, in which case, the constraint
E(X) = M requires that A be assigned a probability of 1. Let A be an interior
event ifm < X(!) < M , for all ! 2 A. Then a possible strengthening of theorem
6.3 (which considerably narrows the gap between the necessary and su�cient
conditions, and is therefore worth investigating) is obtained by replacing the
assumption that A is an interval event with the assumption that it is an interior
event.

7. A Brief Apology for Jaynes

We have argued that in a wide variety of cases infomin should be rejected, on
the grounds that it is incoherent when used as a method for either updating
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or choosing a subjective probability function. We suggest that on a certain
charitable reading of Jaynes (one which focuses on his particular applications of
the method rather than his pronouncements concerning its a priori status) his
own appeal to infomin avoids the incoherencies which result from its unqualified
application. The crucial observation is that, on Jaynes’s account, infomin can
only be applied when the problem of choosing a probability satisfying the given
constraints is ‘well-posed’, or, in Jaynes’s words, when the constraints to which
the method is applied reflect ‘all the physical constraints actually operating in
the random experiment.’ As we will see, this requirement rules out the use of
infomin as a method for updating probabilities, and, in the context of prior
selection, limits its correct usage to those scenarios in which an agent possesses
substantial background knowledge concerning the stochastic mechanism at work
in the setup.

For Jaynes, the ‘constraints’ that figure in an infomin analysis are not merely
abstract conditions on an agent’s subjective probabilities. They are meant to re-
flect the agent’s knowledge concerning the actual stochastic process underlying
the scenario in which infomin is to be applied. The prior probability that is cho-
sen under these constraints represents the agent’s best guess as to the physical
probabilities that characterize this process. Interpreting the chosen probability
this way (as opposed to merely viewing it as an agent’s degrees of belief at a
given time) leads to a sharp distinction between the act of choosing a prior – a
choice that is always based on a physical hypothesis, within the background of
some physical theory – and that of updating a prior, which amounts to Bayesian
conditionalization on some event in B.30

On Jaynes’s view, once a prior has been selected by infomin, an agent’s prob-
abilties are updated by Bayesian conditionalization, until a point at which the
agent receives new information necessitating a change in his prior probabilities.
The agent then appeals to infomin to select a new prior probability, and a new
series of conditionalizations begins. Thus, on Jaynes’s account, the revision of
an agent’s subjective probabilities proceeds in fits and starts, with periods of
conditionalization punctuated by abrupt alterations of the prior.

An abrupt change of prior is the kind of change that takes place when an
agent receives new information which leads him to reject the hypothesis that
“. . . the information incorporated into the . . . analysis includes all the constraints
actually operating in the random experiment. . . ”31 When the evidence suggests
that this is not the case, the agent must start again from square one, selecting a
new prior via the principle of maximum entropy (i.e., infomin) under a di↵erent

30Jaynes clearly distinguishes between evidence reporting the truth of an event in B, and
constraints on the probability over B: “If a statement referring to a probability distribu-
tion. . . is testable (for example, if it specifies a mean value. . . for some random variable de-
fined on ⌦) . . . then it can be used as a constraint in [infomin]; but it cannot be used as a
conditioning statement in Bayes’ theorem because it is not a statement about any event in B

or any other space . . . .” (Jaynes 1983, p. 262)
31Jaynes (2003, p. 371).
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set of constraints than those which led to the choice of his previous prior.32

Obviously, this process of starting over cannot be decribed as “updating” in
any meaningful sense.33

Now, what exactly it means for a set of constraints to express ‘all the constraints
operating in a physical experiment’ is not entirely clear, but it is an essential
part of Jaynes’s view that, in practice, scientists are often in a position to make
such judgments. In other words, they are often in a position to assess whether
or not a given problem is well-posed. To provide a satisfactory account of what
it means for a problem to be well-posed is a di�cult task. For our present pur-
poses, however, it su�ces to note that a well-posed problem provides an agent
with su�cient information to determine its solution, and is also such that any
information not included in the problem statement can be ignored. Accord-
ing to Jaynes, then, infomin is a rule that tells us which prior probabilities we
ought to assign, given the assumption that the problem of choosing a probabil-
ity satisfying the given constraints is well-posed. Insofar as this assumption is
justified, we are justified in using the selected prior as the basis for subsequent
conditionalization. If new information gives us reason to reject this assumption,
the chosen prior is to be thrown out, and we must start from scratch.

As an illustrative example, consider the case of coin tossing with outcomes 0
and 1, and assume that Pr(0) = 1/3 and Pr(1) = 2/3, where Pr is an agent’s
prior. Let X be some random variable on the space {0, 1}. Then the prior
expectation of X is given by � = 1

3X(0) + 2
3X(1). Now, suppose that the coin

is tossed 100 times and let X

⇤ be a random variable (on the extended sample
space), such that for any sequence s of length 100, if m(s) = number of 0’s in
s, then:

X

⇤(s) =
1

100
[m(s)X(0) + (100�m(s))X(1)]

Suppose the evidence gives to the agent the observed value, �, of X⇤. Then the
only “update” available in Jaynes’s framework is that obtained by conditional-

32“. . . [S]uppose an experiment fails to confirm the maximum entropy prediction. . . Then,
since by hypothesis the [original] data were true if incomplete, we will conclude that the
physical mechanism of the experiment must contain some additional constraint which was
not taken into account in the maximum entropy calculation. . . In this way, [one] can discover
empirically that his information was incomplete. . . ”(Jaynes 2003, p. 370).

33It is quite clear that Jaynes never proposed that infomin techniques be used for the purpose
of updating prior probabilities. In fact, on the only occassion in which Jaynes makes explicit
reference to the KL divergence, he introduces it as an alternative to the �2 statistic, as a
measure of the ‘goodness of fit’ between a statistical hypothesis and the empirical measure
obtained from a data sample. This appeal to the KL divergence is clearly very di↵erent
from its use in updating probabilities, where it is taken as a measure of the distance between
statistical hypotheses themselves. The notion of ‘relative’ information is discussed by Jaynes,
but the relativization he envisioned was not with respect to a prior probability, but rather
to an underlying measure reflecting the physical symmetries in the problem. This measure
was introduced so as to ensure that the continuous form of the Shannon information would
be invariant under a change of variables (see Jaynes (1968), sec. 6-8). Since the problem of
invariance does not arise in the context of discrete spaces, the notion of relative information
does not appear at all in Jaynes’s discussion of the application of infomin methods to finite
random experiments, such as those considered here.
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izing on the event X⇤ = � (Note that, the tosses being construed as a Bernoulli
sequence, the probability of events relating to future tosses is una↵ected by this
evidence). If, however, |� � �| is not su�ciently small, the agent may deduce
that the real value of E(X) is not �, but � (assuming that 100 tosses is taken to
be a su�ciently large sample). In that case, he should discard Pr and select a
new prior by means of infomin applied to a di↵erent constraint than that which
was used to obtain Pr. In the simplest case the agent might choose a new prior
under the constraint E(X) = �, but, conceivably, the evidence might indicate
that there are other more complicated physical factors at work in the setup.

Note that this paper is based on an altogether di↵erent perspective on updating
than that of Jaynes. We assume that additional information can, in many cases,
lead to rationally justified alterations of one’s prior, and that conditionalization
can be viewed as the simplest of a broad spectrum of updating methods (this
point was elaborated somewhat at the beginning of section 2). We also think
that one’s choice of a prior can in many cases be justified wihtout presupposing
a physical hypothesis that determines the underlying stochastic mechanism of
the setup. In short, we assume a Bayesian view that is more comprehensive than
that which figures in Jaynes’s system. Nonetheless, we also think that, in light
of the sorts of limitations discussed in footnote 6, there is always the possibility
of new evidence pointing to hypotheses not previously envisaged, and that the
abrupt changes of prior which result from this information cannot be viewed
as the result of any act of “updating”. Thus, our position can be described
as falling somewhere “between” that of Jaynes and the extreme Bayesian, who
believes that human knowledge acquisition can in principle be reduced to a
sequence of conditionalizations applied to an “original prior”.

The requirement that infomin only be applied to well-posed problems also allows
Jaynes to avoid the di�culties discussed in §3. Recall, for example, that shifti-
ness occurs when an agent is faced with an arbitrary choice between di↵erent
constraint families, e.g., the expected value of one variable versus the expected
value of another. If the problem is well-posed, however, an agent’s background
knowledge will determine which of the constraints has physical significance.

To take a concrete example, consider the case of tossing a six-sided die. In
this case, ⌦ = {!1, . . . ,!6}. Let X(!i) = i, and let A = {!2, . . . ,!5}. If an
agent, Judy, is about to choose a prior based on the value of E(X), then she
knows already that she will assign to A a probability  2/3, because theorem
6.3 implies that A is always decreasing (A is obviously a mean interval event).
Now suppose that Judy can also choose a prior on the basis of the value of
E(Y ), where:

Y (!i) = X(!i) + 3 (mod 6)

Now, with respect to Y , A satisfies the conditions of theorem 6.3. Hence if
she chooses a prior under this information, she will end up assigning a prior
probability to A which is � 2/3. As we have noted, this situation is unacceptable
if the decision between E(X) and E(Y ) is arbitrary. On the other hand, if
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certain assumptions that Judy accepts endow one of the variables, say X, with
a particular physical significance, then there is nothing problematic about her
choosing a prior on the basis of the value of E(X). Such background knowledge
already implies that the probability of A is  2/3.34

This is an important and often overlooked fact concerning the applicability
of infomin methods. The agent, before employing the method, must already
possess a su�cient theoretical knowledge of the situation to support the choice of
the family of constraints, which are used in applying the method; such knowledge
can itself determine certain features of the prior.

As it turns out, this was a point upon which Jaynes himself was perfectly clear.
In responding to an objector, who asked rhetorically whether there is anything
in the physics of throwing dice to suggest the plausibility of the infomin prior,
Jaynes remarked:

. . . [T]he most obvious imperfection (of a die) is that di↵erent faces
have di↵erent numbers of spots. This a↵ects the center of gravity,
because the weight of ivory removed from a spot is obviously not (in
any die I have seen) compensated by the paint then applied. Now,
the numbers of spots on opposite faces add up to seven. Thus, the
center of gravity is moved towards the “3” face, away from “4”, by
a small distance x corresponding to the one spot discrepancy. The
e↵ect of this must be a slight probability di↵erence which is surely,
for very small x, proportional to x. . . But the (2-5) face direction
has a discrepancy of three spots, and the (1-6) of five. Therefore we
anticipate the ratios: (p4 � p3):(p5 � p2):(p6 � p1) = 1 : 3 : 5. But
this says . . . that the spot frequencies vary linearly with i. . . This is
the most obvious “physical constraint”...35

This passage makes it clear that in spite of the fact that Jaynes considered
the example of the die to be merely illustrative, he clearly had a very detailed
physical experiment in mind.36 Indeed, additional assumptions pertaining to
how the die was manufactured led Jaynes to further suppose that the prob-
ability distribution should have a convex form. All these considerations lead

34The problem of shiftiness bears a close conceptual connection to the well-known Bertrand
paradoxes associated with the principle of indi↵erence. In both cases, the problem is that
the agent has too much freedom to arbitrarily manipulate his prior, and in both cases the
di�culties are resolved by attributing to the agent further knowledge in the form of judgments
concerning what is and what is not relevant information. See (Keynes 1920, ch. 4)

35Jaynes (1983), p. 259
36Consider again the case of drawing at random from an urn containing several kinds of

objects in unknown proportions. Without knowing anything about the physical factors deter-
mining these proportions, the problem of choosing a probability is not well-posed. If, on the
other hand, we know that the urn was selected at random from a large collection of urns all
of which agree as to E(X), then it may be a well-posed problem to choose a probability (and
hence one would be justified in applying infomin) under the constraint E(X) = �.
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to the identification of E(X) as the parameter that captures the information
underlying the physical process, and this knowledge, in itself, implies that the
probability of A should be  2/3. As Jaynes puts it: “. . . [I]t is enough if we
can recognize. . . what are the systematic influences at work that represent the
‘physical constraints’. If by any means we can recognize these, infomin then
takes over and supplies the rest of the solution.”37

37Jaynes (1983), pp. 266-67
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Appendix A

We prove theorem 6.2: If an event A is always decreasing under infomin updating
of the uniform prior with respect to the family {E(X) = �}�, then A is a mean
event.

The infomin update of the uniform prior is the Maxwell-Boltzmann distribution:

Pr�(!) = Ce

�X(!)(2)

where C = (
P

!2⌦ e

�X(!))�1 is a normalizing factor, and � = �(�) is a constant
depending on �, which, as a function of �, is continuous, strictly monotone and
equals 0 for � = E0(X).

For each � 2 [m,M ], where M and m are the maximum and minimum of X,
respectively, let:

'�(u) = Ce

�u

We assume that � ranges over [m,M ]. Note that if � 6= E0(X) (i.e., � 6= 0), '�

is strictly convex. Thus, for all � 6= E0(X) and for any A 6= ;:

Pr�(A)

|A|

� '�(E0(X|A))(3)

Claim: Let y 2 [m,M ] be any number such that y 6= E0(X). Then there exists
" > 0, such that for every � 6= E0(X) which is on the same side of E0(X) as y,
if |�� E0(X)| < ", then:

'�(y) �
1

n

Proof. The Taylor expansion of e�u (about u = 0) is given by:

e

�u = 1 + �u+R�(u)

with remainder term:

R�(u) =
(�u)2e�c

2
(4)

where c is a constant between 0 and u. For all ! 2 ⌦, let x! = X(!). The
inequality holds just in case:

1 + �y +R�(y) �
1

Cn

=
1

n

X

!2⌦

(1 + �x! +R�(x!))

= 1 + �E0(X) +
1

n

X

!2⌦

R�(x!)
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In other words, the required inequality is:

�(y � E0(X)) �
1

n

 
X

!2⌦

R�(x!)

!
�R�(y)

By assumption, y � E0(X) 6= 0. Choose � on the same side of E0(X) as y.
Letting:

F (�) =df
1

n

 
X

!2A

R�(x!)

|�|

!
�

R�(y)

|�|

(5)

it follows that the inequality is satisfied just in case:

|y � E0(X)| � F (�)(6)

But from (4) and (5), for all y:

lim
�!0

F (�) = 0

Hence, (6) holds if |�� E0(X)| > 0 is su�ciently small.

The proof now proceeds as follows. Suppose that A is not a mean event. Then
E0(X|A) 6= E0(X). The claim implies that for some " > 0, if � is between
E0(X) and E0(X|A), and |�� E0(X)| < ", then:

'�(E0(X|A)) �
1

n

Hence, (3) implies that for all such �’s:

Pr�(A) �
|A|

n

Thus, A is not always decreasing.
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Appendix B

We assume the notation introduced in Appendix A. We prove theorem 6.3:
If A 6= ⌦ is a mean, interval event, then A is always decreasing under in-
fomin updating with respect to the uniform prior and the family of constraints
{E(X) = �}�.

Recall that a function f is strictly convex i↵, for all a < c, and all 0 < ↵ < 1:

↵f(a) + (1� ↵)f(c) > f(↵a+ (1� ↵)c)

The following elementary generalization is implied by strict convexity:

Claim: For a strictly convex f , if a < bi < c, i = 1, . . . , k, and 0 < ↵ < 1 is
such that ↵a+ (1� ↵)c = 1

k (b1 + . . .+ bk), then:

↵f(a) + (1� ↵)f(c) >
1

k

(f(b1) + . . .+ f(bk))

(Note that the condition defining strict convexity is obtained if k = 1.)

Proof. Let b

⇤ = 1/k
P

i bi. Thus, ↵ = (c � b

⇤)/(c � a) and (1 � ↵) = (b⇤ �

a)/(c� a). Then, for all y 2 (a, c):

f(y) <

✓
c� y

c� a

◆
f(a) +

✓
y � a

c� a

◆
f(c)

Hence:

1

k

kX

i=1

f(bi) <

1

k

kX

i=1

✓✓
c� bi

c� a

◆
f(a) +

✓
bi � a

c� a

◆
f(c)

◆

=

✓
c� b

⇤

c� a

◆
f(a) +

✓
b

⇤
� a

c� a

◆
f(c) = ↵f(a) + (1� ↵)f(c)

The proof now proceeds as follows: Let A = {!1, . . . ,!k} be a mean, interval
event, and let � 2 [m,M ] be any number 6= E0(X). We have to show that
Pr�(A) < |A|/n.

Consider the events:
A

� = {! 2 ⌦ : x! < min
!2A

x!}

A

+ = {! 2 ⌦ : x! > max
!2A

x!}

Since A is an interval event, A [ A

�
[ A

+ = ⌦, and since A is a mean event,
distinct from ⌦, both A

� and A

+ are non-empty. Put x

� = E0(X|A

�) and
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x

+ = E0(X|A

+). The numbers x

�
, x!1 , . . . , x!k , x

+ satisfy the conditions of
the claim with:

↵ =
|A

�
|

|A

�
|+ |A

+
|

Hence:

|A

�
|'�(x�) + |A

+
|'�(x+)

|A

�
|+ |A

+
|

>

1

k

X

!2A

'�(x!) =
Pr�(A)

|A|

(7)

Again appealing to the convexity of '�, we get:

Pr�(A)

|A|

=
Pr�(A�) + Pr�(A+)

|A

�
|+ |A

+
|

>

|A

�
|'�(x�) + |A

+
|'�(x+)

|A

�
|+ |A

+
|

(8)

From (7) and (8), we have:

Pr�(A)

|A|

<

Pr�(A)

|A|

from which it follows that Pr�(A) < |A|/n. Hence, A is always decreasing.
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