PHIL309P

Philosophy, Politics and Economics

Eric Pacuit
University of Maryland, College Park
pacuit.org
Politics cases maxan Nimpen Philosophy Game The May's Theorem Gaus Nash Condorcet's Paradox kneeted
Rational Choice Theory. ParetoHarsany
ArrowSocial Choice TheorySen
Rationality
Arrow's Theorem

Announcements

- Course website https://myelms.umd.edu/courses/1133211
- Reading
- Gaus, Ch. 5
- EP, Voting Methods (Stanford Encyclopedia of Philosophy)
- C. List, Social Choice Theory (Stanford Encyclopedia of Philosophy)
- M. Morreau, Arrow's Theorem (Stanford Encyclopedia of Philosophy)
- Online videos
- Quiz 5 (Thursday, 10am)
- Problem set 2 (3/29 by midnight)

Axiomatics

"When a set of axioms regarding social choice can all be simultaneously satisfied, there may be several possible procedures that work, among which we have to choose.
A. Sen. The Possibility of Social Choice. The American Economic Review, 89:3, pgs. 349-378, 1999 (reprint of his Nobel lecture).

Axiomatics

"When a set of axioms regarding social choice can all be simultaneously satisfied, there may be several possible procedures that work, among which we have to choose. In order to choose between different possibilities through the use of discriminating axioms, we have to introduce further axioms, until only and only one possible procedure remains.
A. Sen. The Possibility of Social Choice. The American Economic Review, 89:3, pgs. 349-378, 1999 (reprint of his Nobel lecture).

Axiomatics

"When a set of axioms regarding social choice can all be simultaneously satisfied, there may be several possible procedures that work, among which we have to choose. In order to choose between different possibilities through the use of discriminating axioms, we have to introduce further axioms, until only and only one possible procedure remains. This is something of an exercise in brinkmanship. We have to go on and on cutting alternative possibilities, moving-implicitly-towards an impossibility, but then stop just before all possibilities are eliminated, to wit, when one and only one options remains."
(pg. 354)
A. Sen. The Possibility of Social Choice. The American Economic Review, 89:3, pgs. 349-378, 1999 (reprint of his Nobel lecture).

The Social Choice Model

Notation

 was same wemo vanomemics Nash condional Choice' Theory ParetoHarsany Arrowsocial Cholice- N is a finite set of voters (assume that $N=\{1,2,3, \ldots, n\}$)
- X is a (typically finite) set of alternatives, or candidates
- A relation on X is a linear order if it is transitive, irreflexive, and complete (hence, acyclic)
- $L(X)$ is the set of all linear orders over the set X
- $O(X)$ is the set of all reflexive and transitive relations over the set X

Notation

 Nash Nastional Choice Theory ParetoHarsanyi ArrowSocial Choice TheorySen- A profile for the set of voters N is a sequence of (linear) orders over X, denoted $\mathbf{R}=\left(R_{1}, \ldots, R_{n}\right)$.
- $L(X)^{n}$ is the set of all profiles for n voters (similarly for $\left.O(X)^{n}\right)$
- For a profile $\mathbf{R}=\left(R_{1}, \ldots, R_{n}\right) \in O(X)^{n}$, let $\mathbf{N}_{\mathbf{R}}(A P B)=\left\{i \mid A P_{i} B\right\}$ be the set of voters that rank A above B (similarly for $\mathbf{N}_{\mathbf{R}}(A$ I $B)$ and $\mathbf{N}_{\mathbf{R}}(B P A)$)

Preference Aggregation Methods

 Arrow Rationality

Social Welfare Function: $F: \mathcal{D} \rightarrow L(X)$, where $\mathcal{D} \subseteq L(X)^{n}$

Preference Aggregation Methods

Social Welfare Function: $F: \mathcal{D} \rightarrow L(X)$, where $\mathcal{D} \subseteq L(X)^{n}$
Comments

- \mathcal{D} is the domain of the function: it is the set of all possible profiles
- Aggregation methods are decisive: every profile \mathbf{R} in the domain is associated with exactly one ordering over the candidates
- The range of the function is $L(X)$: the social ordering is assumed to be a linear order
- Tie-breaking rules are built into the definition of a preference aggregation function

Preference Aggregation Methods

 ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Ratity }}$

Social Welfare Function: $F: \mathcal{D} \rightarrow L(X)$, where $\mathcal{D} \subseteq L(X)^{n}$

Variants

- Social Choice Function: $F: \mathcal{D} \rightarrow \wp(X)$ - \emptyset, where $\mathcal{D} \subseteq L(X)^{n}$ and $\wp(X)$ is the set of all subsets of X.
- Allow Ties: $F: \mathcal{D} \rightarrow O(X)$ where $O(X)$ is the set of orderings (reflexive and transitive) over X
- Allow Indifference and Ties: $F: \mathcal{D} \rightarrow O(X)$ where $O(X)$ is the set of orderings (reflexive and transitive) over X and $\mathcal{D} \subseteq O(X)^{n}$

Examples

 was seme whorn conomics Arrow Social Choice
Rationality
Arows theocem
$\operatorname{Maj}(\mathbf{R})=>_{M}$ where $A>_{M} B$ iff $\left|\mathbf{N}_{\mathbf{R}}(A P B)\right|>\left|\mathbf{N}_{\mathbf{R}}(B P A)\right|$
(the problem is that $>_{M}$ may not be transitive (or complete))

Examples

 Mas seme temo N Nonomics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$
$\operatorname{Maj}(\mathbf{R})=>_{M}$ where $A>_{M} B$ iff $\left|\mathbf{N}_{\mathbf{R}}(A P B)\right|>\left|\mathbf{N}_{\mathbf{R}}(B P A)\right|$
(the problem is that $>_{M}$ may not be transitive (or complete))
$\operatorname{Borda}(\mathbf{R})=\geq_{B C}$ where $A \geq_{B C} B$ iff the Borda score of A is greater than the Borda score for B.
(the problem is that $\geq_{B C}$ may not be a linear order)

Characterizing Majority Rule

 wast rame huernows Nash Consorcets Rational Choice' Theory ParetoHarsanyi Arrow RationalityWhen there are only two candidates A and B, then all voting methods give the same results

Characterizing Majority Rule

 Nash fame theorn Economics Nash Condorcets Paragox Rational Choice Theory ParetoHarsany ArrowSocial ChoiceRationality

When there are only two candidates A and B, then all voting methods give the same results

Majority Rule: A is ranked above (below) B if more (fewer) voters rank A above B than B above A, otherwise A and B are tied.

Characterizing Majority Rule

When there are only two candidates A and B, then all voting methods give the same results

Majority Rule: A is ranked above (below) B if more (fewer) voters rank A above B than B above A, otherwise A and B are tied.

When there are only two options, can we argue that majority rule is the "best" procedure?
K. May. A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision. Econometrica, Vol. 20 (1952).

May's Theorem: Details

Let $N=\{1,2,3, \ldots, n\}$ be the set of n voters and $X=\{A, B\}$ the set of candidates.

Social Welfare Function: $F: O(X)^{n} \rightarrow O(X)$, where $O(X)$ is the set of orderings over X (there are only three possibilities: A P B, A I B, or B P A)

$$
F_{M a j}(\mathbf{R})=\left\{\begin{array}{ll}
A P & P
\end{array} \quad \text { if }\left|\mathbf{N}_{\mathbf{R}}\left(\begin{array}{ll}
A & P
\end{array}\right)\right|>\left|\mathbf{N}_{\mathbf{R}}\left(\begin{array}{lll}
B & P & A
\end{array}\right)\right|\right.
$$

May's Theorem: Details

Let $N=\{1,2,3, \ldots, n\}$ be the set of n voters and $X=\{A, B\}$ the set of candidates.

Social Welfare Function: $F:\{1,0,-1\}^{n} \rightarrow\{1,0,-1\}$,
where 1 means A P $B, 0$ means A I B, and -1 means $B P A$

$$
F_{M a j}(\mathbf{v})= \begin{cases}1 & \text { if }\left|\mathbf{N}_{\mathbf{v}}(1)\right|>\left|\mathbf{N}_{\mathbf{v}}(-1)\right| \\ 0 & \text { if }\left|\mathbf{N}_{\mathbf{v}}(1)\right|=\left|\mathbf{N}_{\mathbf{v}}(-1)\right| \\ -1 & \text { if }\left|\mathbf{N}_{\mathbf{v}}(-1)\right|>\left|\mathbf{N}_{\mathbf{v}}(1)\right|\end{cases}
$$

Warm-up Exercise

 Mas shemen inw Nastlenal choice theor jpateotersany Arrowsocial ChoiceRationality
Arrows theocem

Suppose that there are two voters and two candidates. How many social choice functions are there?

Warm-up Exercise

Suppose that there are two voters and two candidates. How many social choice functions are there? 19,683

- There are three possible rankings for 2 candidates.
- When there are two voters there are $3^{2}=9$ possible profiles:

$$
\{(1,1),(1,0),(1,-1),(0,1),(0,0),(0,-1),(-1,1),(-1,0),(-1,-1)\}
$$

- Since there are 9 profiles and 3 rankings, there are $3^{9}=19,683$ possible preference aggregation functions.

May's Theorem: Details

- Unanimity: unanimously supported alternatives must be the social outcome.
- Anonymity: all voters should be treated equally.
- Neutrality: all candidates should be treated equally.

May's Theorem: Details

 Mas semen wey Nash Consorcets ParasooxRational Choice Theory ParetoHarsany Arrow Rationality

- Unanimity: unanimously supported alternatives must be the social outcome.
If $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ with for all $i \in N, v_{i}=x$ then $F(\mathbf{v})=x$ (for $x \in\{1,0,-1\}$).
- Anonymity: all voters should be treated equally.
- Neutrality: all candidates should be treated equally.

May's Theorem: Details

- Unanimity: unanimously supported alternatives must be the social outcome.
If $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ with for all $i \in N, v_{i}=x$ then $F(\mathbf{v})=x$ (for $x \in\{1,0,-1\}$).
- Anonymity: all voters should be treated equally.
$F\left(v_{1}, \ldots, v_{n}\right)=F\left(v_{\pi(1)}, v_{\pi(2)}, \ldots, v_{\pi(n)}\right)$ where $v_{i} \in\{1,0,-1\}$ and π is a permutation of the voters.
- Neutrality: all candidates should be treated equally.

May's Theorem: Details

- Unanimity: unanimously supported alternatives must be the social outcome.
If $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ with for all $i \in N, v_{i}=x$ then $F(\mathbf{v})=x$ (for $x \in\{1,0,-1\}$).
- Anonymity: all voters should be treated equally.
$F\left(v_{1}, \ldots, v_{n}\right)=F\left(v_{\pi(1)}, v_{\pi(2)}, \ldots, v_{\pi(n)}\right)$ where $v_{i} \in\{1,0,-1\}$ and π is a permutation of the voters.
- Neutrality: all candidates should be treated equally.

$$
F(-\mathbf{v})=-F(\mathbf{v}) \text { where }-\mathbf{v}=\left(-v_{1}, \ldots,-v_{n}\right) .
$$

May's Theorem: Details

 Arrow Rationality

- Positive Responsiveness (Monotonicity): unidirectional shift in the voters' opinions should help the alternative toward which this shift occurs

If $F(\mathbf{v})=0$ or $F(\mathbf{v})=1$ and $\mathbf{v}<\mathbf{v}^{\prime}$, then $F\left(\mathbf{v}^{\prime}\right)=1$ where $\mathbf{v}<\mathbf{v}^{\prime}$ means for all $i \in N v_{i} \leq v_{i}^{\prime}$ and there is some $i \in N$ with $v_{i}<v_{i}^{\prime}$.

Warm-up Exercise

 Mas semen wey ArrowSocial Choice
Rationality
Arrows theorem
Suppose that there are two voters and two candidates. How many social choice functions are there that satisfy anonymity?

Anonymity: all voters should be treated equally.
$F\left(v_{1}, v_{2}, \ldots, v_{n}\right)=F\left(v_{\pi(1)}, v_{\pi(2)}, \ldots, v_{\pi(n)}\right)$ where π is a permutation of the voters.

Warm-up Exercise

Suppose that there are two voters and two candidates. How many social choice functions are there that satisfy anonymity?

Anonymity: all voters should be treated equally.
$F\left(v_{1}, v_{2}, \ldots, v_{n}\right)=F\left(v_{\pi(1)}, v_{\pi(2)}, \ldots, v_{\pi(n)}\right)$ where π is a permutation of the voters.

- Imposing anonymity reduces the number of preference aggregation functions.
- If F satisfies anonymity, then $F(1,0)=F(0,1), F(1,-1)=F(-1,1)$ and $F(-1,0)=F(0,-1)$.
- This means that there are essentially 6 elements of the domain. So, there are $3^{6}=729$ preference aggregation functions.

May's Theorem: Details

 wavs rame weicemeconomics NashRational Choice Theory ParetoHarsany Arrow Sociaionality

May's Theorem (1952) A social decision method F satisfies unanimity, neutrality, anonymity and positive responsiveness iff F is majority rule.

Proof Idea

 nes nemene wemeronomics Arrowsocia Choice

If $(1,0,-1)$ is assigned 1 or -1 then

Proof Idea

 Nas shemen wo conomics Arrow Socialionality

If $(1,0,-1)$ is assigned 1 or -1 then
\checkmark Anonymity implies $(-1,0,1)$ is assigned 1 or -1

Proof Idea

 Nash tonaracts fasabate Thory Paretorassony Arrow Rationality

If $(1,0,-1)$ is assigned 1 or -1 then
\checkmark Anonymity implies $(-1,0,1)$ is assigned 1 or -1
\checkmark Neutrality implies $(1,0,-1)$ is assigned -1 or 1 Contradiction.

Proof Idea

 nes nemene wemeconomics Arrowsocia Choice

If $(1,1,-1)$ is assigned 0 or -1 then

Proof Idea

 Nash tonarects eise thery Peretorarsany Arrow Rationality

If $(1,1,-1)$ is assigned 0 or -1 then
\checkmark Neutrality implies $(-1,-1,1)$ is assigned 0 or 1

Proof Idea

 mavs sheorem Geus Nash Condorceets Paradox ECO\OMOMS Nastional Choice Theory ParetoHarsanyi Arrowsocial ChoiceIf $(1,1,-1)$ is assigned 0 or -1 then
\checkmark Neutrality implies $(-1,-1,1)$ is assigned 0 or 1
\checkmark Anonymity implies $(1,-1,-1)$ is assigned 0 or 1

Proof Idea

If $(1,1,-1)$ is assigned 0 or -1 then
\checkmark Neutrality implies $(-1,-1,1)$ is assigned 0 or 1
\checkmark Anonymity implies $(1,-1,-1)$ is assigned 0 or 1
\checkmark Positive Responsiveness implies $(1,0,-1)$ is assigned 1

Proof Idea

 Nasheonal Choice Theory ParetoHarsany
Rational Arrow Rationality

If $(1,1,-1)$ is assigned 0 or -1 then
\checkmark Neutrality implies $(-1,-1,1)$ is assigned 0 or 1
\checkmark Anonymity implies $(1,-1,-1)$ is assigned 0 or 1
\checkmark Positive Responsiveness implies $(1,0,-1)$ is assigned 1
\checkmark Positive Responsiveness implies $(1,1,-1)$ is assigned 1 Contradiction.

Other characterizations

 mens Game theory ArrowSocial Choice TheorySen $\underset{\text { Arows theorem }}{\substack{\text { Rationality }}}$
G. Asan and R. Sanver. Another Characterization of the Majority Rule. Economics Letters, 75 (3), 409-413, 2002.
E. Maskin. Majority rule, social welfare functions and game forms. in Choice, Welfare and Development, The Clarendon Press, pgs. 100-109, 1995.
G. Woeginger. A new characterization of the majority rule. Economic Letters, 81, pgs. 89-94, 2003.

Can May's Theorem be generalized to more than 2 candidates?

Can May's Theorem be generalized to more than 2 candidates? No!

Arrow's Theorem

 Nasht conanarestern Chice Theory Pareto Harsanyi Arrow SociaionalityK. Arrow. Social Choice and Individual Values. John Wiley \& Sons, 1951.

Arrow's Theorem

 wans same weinw Economics

Arrow Social Choice
Rationality
arrows theocem
Let X be a finite set with at least three elements and N a finite set of n voters.

Social Welfare Function: $F: \mathcal{D} \rightarrow O(X)$ where $\mathcal{D} \subseteq O(X)^{n}$

Arrow's Theorem

 Mas seme temo Nash Condorcets Paradox ECO ParetoHarsany Arrowsocial CholiceLet X be a finite set with at least three elements and N a finite set of n voters.

Social Welfare Function: $F: \mathcal{D} \rightarrow O(X)$ where $\mathcal{D} \subseteq O(X)^{n}$
Reminders:

- $O(X)$ is the set of transitive and complete relations on X
- For $R \in O(X)$, let P_{R} denote the strict subrelation and I_{R} the indifference subrelation:
- $A P_{R} B$ iff $A R B$ and not $B R A$
- $A I_{R} B$ iff $A R B$ and $B R A$

Unanimity

 Nash condorcets Paradox LCO
Rational Choice Theory ParetoHarsanyi $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

$$
F: \mathcal{D} \rightarrow O(X)
$$

If each agent ranks A above B, then so does the social ranking.

Unanimity

 Nash Consorcetts Parabox ECO
Rational Choice Theory ArrowSocial Choice TheorySen
$F: \mathcal{D} \rightarrow O(X)$

If each agent ranks A above B, then so does the social ranking.

For all profiles $\mathbf{R}=\left(R_{1}, \ldots, R_{n}\right) \in \mathcal{D}$:
If for each $i \in N, A P_{i} B$ then $A P_{F(\mathbf{R})} B$

Universal Domain

 Nash conocretes parabox ECO Partional Choice Thery Pato Harsanyi Arrowsocial Chality
$F: \mathcal{D} \rightarrow O(X)$

Voter's are free to choose any preference they want.

Universal Domain

 ArrowSocial Choice TheorySen
$F: \mathcal{D} \rightarrow O(X)$

Voter's are free to choose any preference they want.

The domain of F is the set of all profiles, i.e., $\mathcal{D}=O(X)^{n}$.

Independence of Irrelevant Alternatives

 Nash Consorcets parasoox
Rational Choice Theory ParetoHarsany Arrow Social Chality
Rationality
$F: \mathcal{D} \rightarrow O(X)$

The social ranking (higher, lower, or indifferent) of two alternatives A and B depends only the relative rankings of A and B for each voter.

Independence of Irrelevant Alternatives

 Nash Condorcets Paragox ECO ParetoHarsany ArrowSocial Choice
Rationality
$F: \mathcal{D} \rightarrow O(X)$

The social ranking (higher, lower, or indifferent) of two alternatives A and B depends only the relative rankings of A and B for each voter.

For all profiles $\mathbf{R}=\left(R_{1}, \ldots, R_{n}\right)$ and $\mathbf{R}^{\prime}=\left(R_{1}^{\prime}, \ldots, R_{n}^{\prime}\right)$:

$$
\text { If } R_{i|A, B\rangle}=R_{i\langle A, B\rangle}^{\prime} \text { for all } i \in N \text {, then } F(\mathbf{R})_{\{A, B\rangle} \text { iff } F\left(\mathbf{R}^{\prime}\right)_{\{A, B\rangle} \text {. }
$$

where $R_{\{X, Y\}}=R \cap\{X, Y\} \times\{X, Y\}$

IIA For all profiles $\mathbf{R}=\left(R_{1}, \ldots, R_{n}\right)$ and $\mathbf{R}^{\prime}=\left(R_{1}^{\prime}, \ldots, R_{n}^{\prime}\right)$:

$$
\text { If } R_{i\langle A, B\rangle}=R_{i\langle A, B\rangle}^{\prime} \text { for all } i \in N \text {, then } F(\mathbf{R})_{\{A, B\rangle} \text { iff } F\left(\mathbf{R}^{\prime}\right)_{\{A, B\rangle} \text {. }
$$

IIA* For all profiles $\mathbf{R}=\left(R_{1}, \ldots, R_{n}\right)$ and $\mathbf{R}^{\prime}=\left(R_{1}^{\prime}, \ldots, R_{n}^{\prime}\right)$:
If $A R_{i} B$ iff $A R_{i}^{\prime} B$ for all $i \in N$, then $A F(\mathbf{R}) B$ iff $A F\left(\mathbf{R}^{\prime}\right) B$.

Dictatorship

 ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Rationaly }}$
$F: \mathcal{D} \rightarrow O(X)$

A voter $d \in N$ is a dictator if society strictly prefers A over B whenever d strictly prefers A over B.

Dictatorship

 uns nemene wo conomics Arrow Social Choice
Rationality
arrows theerem
$F: \mathcal{D} \rightarrow O(X)$

A voter $d \in N$ is a dictator if society strictly prefers A over B whenever d strictly prefers A over B.

There is a $d \in N$ such that for each profile $\mathbf{R}=\left(R_{1}, \ldots, R_{d}, \ldots, R_{n}\right)$, if $A P_{d} B$, then $A P_{F(\mathbf{R})} B$
M. Morreau. Arrow's Theorem. Stanford Encyclopedia of Philosophy, 2014.

Arrow's Theorem

 Nas shemen wo conomics Nash Consorcets faredoRational Choice
Theory ParetoHarsany Arrow Rationality

Theorem (Arrow, 1951). Suppose that there are at least three candidates and finitely many voters. Any social welfare function that satisfies universal domain, independence of irrelevant alternatives and unanimity is a dictatorship.

Arrow's Theorem

D. Campbell and J. Kelly. Impossibility Theorems in the Arrovian Framework. Handbook of Social Choice and Welfare Volume 1, pgs. 35-94, 2002.
W. Gaertner. A Primer in Social Choice Theory. Oxford University Press, 2006.
J. Geanakoplos. Three Brief Proofs of Arrow's Impossibility Theorem. Economic Theory, 26, 2005.
P. Suppes. The pre-history of Kenneth Arrow's social choice and individual values. Social Choice and Welfare, 25, pgs. 319-326, 2005.

Arrow's Theorem

 Mas semen wey NashRational Choice Theory
Pareto Harsanyi Arrow Rationality

Theorem (Arrow, 1951). Suppose that there are at least three candidates and finitely many voters. Any social welfare function that satisfies universal domain, independence of irrelevant alternatives and unanimity is a dictatorship.

Weakening IIA

 wessemen weme Economics Nash conan Choice Theory Pareto Harsanyi Arrowsocial hoiceRationality
Arrow sitereen

Given a profile and a set of candidates $S \subseteq X$, let $\left.\mathbf{R}\right|_{S}$ denote the restriction of the profile to candidates in S.

Weakening IIA

 Mas semen weymeronomics Nash Consorcets parasooxRational Choice Theory ParetoHarsany Arrowsocia Choice

Given a profile and a set of candidates $S \subseteq X$, let $\left.\mathbf{R}\right|_{S}$ denote the restriction of the profile to candidates in S.

Binary Independence: For all profiles $\mathbf{R}, \mathbf{R}^{\prime}$ and candidates $A, B \in X$:

$$
\text { If }\left.\mathbf{R}\right|_{\{A, B\}}=\left.\mathbf{R}^{\prime}\right|_{\{A, B\rangle} \text {, then }\left.F(\mathbf{R})\right|_{\{A, B\}}=\left.F\left(\mathbf{R}^{\prime}\right)\right|_{\{A, B\}}
$$

Weakening IIA

 ArrowSocial Choice TheorySen ${ }_{\text {Arows }}^{\text {Rationality }}$

Given a profile and a set of candidates $S \subseteq X$, let $\left.\mathbf{R}\right|_{S}$ denote the restriction of the profile to candidates in S.

Binary Independence: For all profiles $\mathbf{R}, \mathbf{R}^{\prime}$ and candidates $A, B \in X$:

$$
\text { If }\left.\mathbf{R}\right|_{\{A, B\}}=\left.\mathbf{R}^{\prime}\right|_{\{A, B\rangle} \text {, then }\left.F(\mathbf{R})\right|_{\{A, B\}}=\left.F\left(\mathbf{R}^{\prime}\right)\right|_{\{A, B\}}
$$

m-Ary Independence: For all profiles $\mathbf{R}, \mathbf{R}^{\prime}$ and for all $S \subseteq X$ with $|S|=m$:

$$
\text { If }\left.\mathbf{R}\right|_{S}=\left.\mathbf{R}^{\prime}\right|_{S} \text {, then }\left.F(\mathbf{R})\right|_{S}=\left.F\left(\mathbf{R}^{\prime}\right)\right|_{S}
$$

Weakening IIA

 ArrowSocial Choice TheorySen $\underset{\text { Arows theorem }}{\text { Rationaly }}$

Theorem. (Blau) Suppose that $m=2, \ldots,|X|-1$. If a social welfare function F satisfies m-ary independence, then it also satisfies binary independence.
J. Blau. Arrow's theorem with weak independence. Economica, 38, pgs. 413-420, 1971.
S. Cato. Independence of Irrelevant Alternatives Revisited. Theory and Decision, 2013.

Arrow's Theorem

 Mas semen wey NashRational Choice Theory
Pareto Harsanyi Arrow Rationality

Theorem (Arrow, 1951). Suppose that there are at least three candidates and finitely many voters. Any social welfare function that satisfies universal domain, independence of irrelevant alternatives and unanimity is a dictatorship.

Weakening Unanimity

 Nash
Rational Choice
Theory ParetoHarsany Arrow Rationality
$F: \mathcal{D} \rightarrow O(X)$
Dictatorial: there is a $d \in N$ such that for all $A, B \in X$ and all profiles \mathbf{R} : if $A P_{d} B$, then $A P_{F(\mathbf{R})} B$

Inversely Dictatorial: there is a $d \in N$ such that for all $A, B \in X$ and all profiles \mathbf{R} : if $A P_{d} B$, then $B P_{F(\mathbf{R})} A$

Weakening Unanimity

 Nash Rational Choice Theory ParetoHarsany Arrow Rationality
$F: \mathcal{D} \rightarrow O(X)$
Dictatorial: there is a $d \in N$ such that for all $A, B \in X$ and all profiles \mathbf{R} : if $A P_{d} B$, then $A P_{F(\mathbf{R})} B$

Inversely Dictatorial: there is a $d \in N$ such that for all $A, B \in X$ and all profiles \mathbf{R} : if $A P_{d} B$, then $B P_{F(\mathbf{R})} A$

Null: For all $A, B \in X$ and for all $\mathbf{R} \in \mathcal{D}: A I_{F(\mathbf{R})} B$

Weakening Unanimity

 Arrowsocial Choice
Rationality
$F: \mathcal{D} \rightarrow O(X)$
Dictatorial: there is a $d \in N$ such that for all $A, B \in X$ and all profiles \mathbf{R} : if $A P_{d} B$, then $A P_{F(\mathbf{R})} B$

Inversely Dictatorial: there is a $d \in N$ such that for all $A, B \in X$ and all profiles \mathbf{R} : if $A P_{d} B$, then $B P_{F(\mathbf{R})} A$

Null: For all $A, B \in X$ and for all $\mathbf{R} \in \mathcal{D}: A I_{F(\mathbf{R})} B$
Non-Imposition: For all $A, B \in X$, there is a $\mathbf{R} \in \mathcal{D}$ such that $A F(\mathbf{R}) B$

Weakening Unanimity

Theorem (Wilson) Suppose that N is a finite set. If a social welfare function satisfies universal domain, independence of irrelevant alternatives and non-imposition, then it is either null, dictatorial or inversely dictatorial.
R. Wilson. Social Choice Theory without the Pareto principle. Journal of Economic Theory, 5, pgs. 478-486, 1972.
Y. Murakami. Logic and Social Choice. Routledge, 1968.
S. Cato. Social choice without the Pareto principle: A comprehensive analysis. Social Choice and Welfare, 39, pgs. 869-889, 2012.

Arrow's Theorem

 Mas semen wey NashRational Choice Theory
Pareto Harsanyi Arrow Rationality

Theorem (Arrow, 1951). Suppose that there are at least three candidates and finitely many voters. Any social welfare function that satisfies universal domain, independence of irrelevant alternatives and unanimity is a dictatorship.

Social Choice Functions

 $\underset{\text { Rrrows theorem }}{\text { Ratity }}$
$F: \mathcal{D} \rightarrow \wp(X)-\emptyset$

Resolute: For all profiles $\mathbf{R} \in \mathcal{D},|F(\mathbf{R})|=1$
Non-Imposed: For all candidates $A \in X$, there is a $\mathbf{R} \in \mathcal{D}$ such that $F(\mathbf{R})=\{A\}$.
Monotonicity: For all profiles \mathbf{R} and \mathbf{R}^{\prime}, if $A \in F(\mathbf{R})$ and for all $i \in N$, $\mathbf{N}_{\mathbf{R}}\left(A P_{i} B\right) \subseteq \mathbf{N}_{\mathbf{R}^{\prime}}\left(A P_{i}^{\prime} B\right)$ for all $B \in X-\{A\}$, then $A \in F\left(\mathbf{R}^{\prime}\right)$.

Dictator: A voter d is a dictator if for all $\mathbf{R} \in \mathcal{D}, F(\mathbf{R})=\{A\}$, where A is d^{\prime} s top choice.

Social Choice Functions

Muller-Satterthwaite Theorem. Suppose that there are more than three alternatives and finitely many voters. Every resolute social choice function $F: L(X)^{n} \rightarrow X$ that is monotonic and non-imposed is a dictatorship.
E. Muller and M.A. Satterthwaite. The Equivalence of Strong Positive Association and StrategyProofness. Journal of Economic Theory, 14(2), pgs. 412-418, 1977.

Arrow's Theorem

 Mas semen wey NashRational Choice Theory
Pareto Harsanyi Arrowsocia Choice

Theorem (Arrow, 1951). Suppose that there are at least three candidates and finitely many voters. Any social welfare function that satisfies universal domain, independence of irrelevant alternatives and unanimity is a dictatorship.

