PHIL309P

Philosophy, Politics and Economics

Eric Pacuit
University of Maryland, College Park
pacuit.org
Politics cases maxan Phion Nition ine Philosophy Game The May's Theorem Gaus Nash Condorcet's Paradox kneeted
Rational Choice Theory. ParetoHarsany
ArrowSocial Choice TheorySen
Rationality
Arrow's Theorem

Announcements

- Course website

```
https://myelms.umd.edu/courses/1133211
```

- Reading
- Gaus, Ch. 5
- EP, Voting Methods (Stanford Encyclopedia of Philosophy)
- C. List, Social Choice Theory (Stanford Encyclopedia of Philosophy)
- M. Morreau, Arrow's Theorem (Stanford Encyclopedia of Philosophy)

Voting Situations

 Neshemenerem Economics Nashlouna chice Theory| \# voters | 3 | 5 | 7 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| best | A | A | B | C |
| \uparrow | B | C | D | B |
| $\boldsymbol{q}_{\text {worst }}$ | D | D | A | A |

- 21 voters and 4 candidates: Ann (A), Bob (B), Charles (C) and Dora (D)

Voting Situations

 wavs neme thern Economics Nastional Choice Theory ParetoHarsany| \# voters | 3 | 5 | 7 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| best | A | A | B | C |
| \uparrow | B | C | D | B |
| worst | D | B | C | D |
| | D | A | A | |

- 21 voters and 4 candidates: Ann (A), Bob (B), Charles (C) and Dora (D)
- Each voter ranks the candidates from best (at the top of the list) to worst (at the bottom of the list) resulting in the 4 voting blocks given in the above table

Voting Situations

 Nash conarcets Rational Choice Theory ParetoHarsanyi

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst	D	B	C	D
	D	A	A	

Who should win the election?

Which candidate should be chosen?

 Nash Consorcet's Paradot ECO OPM Rational Choice Theory ArrowSocial Choice
Rationality

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst	D	D	A	A

Which candidate should be chosen?

Politicsass numm tume

 ArrowSocial Choice
Rationality

\# voters	3	5	7	6
best	A	A	B	C
	B	C	D	B
	C	B	C	D
	D	D	A	A

- Candidate A : More people (8) rank A first than any other candidate

Which candidate should be chosen?

 nsan shime theoryems ArrowSocial Choice
Rationality

\# voters	3	5	7	6
best	A	A	B	C
$\overbrace{\text { worst }}$	B	C	D	B
	C	B	C	D
		A	A	

- Candidate A : More people rank A first than any other candidate
- Candidate A should not win: more than half rank A last

Which candidate should be chosen?

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst	C	B	C	D
	D	D	A	A

- Candidate A : More people rank A first than any other candidate
- Candidate D should not win

Which candidate should be chosen?

 ArrowSocial Choice
Rationality

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
Worst	C	B	C	D
	D	D	A	A

- Candidate A : More people rank A first than any other candidate
- Candidate D should not win: everyone ranks B higher than D

Which candidate should be chosen?

 Nash Consorcets Paradox LCL
Rational Choice Theory ParetoHarsanyi Arrow Sociationality

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst	C	B	C	D
D	A	A		

- Which of B or C should win?

Which candidate should be chosen?

Marquis de Condorcet (1743-1794)

Jean-Charles de Borda (1733-1799)

Which candidate should be chosen?

 Nasheman choie Troay Arrow Rationality

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst	C	B	C	D
D	A	A		

- Candidate C should win: C beats every other candidate in head-to-head elections (C is the Condorcet winner)

Which candidate should be chosen?

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
$\uparrow_{\text {worst }}$	C	B	C	D
	D	D	A	A

- Candidate C should win: C beats every other candidate in head-to-head elections (C is the Condorcet winner)

Which candidate should be chosen?

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
	C	B	C	D
worst	D	D	A	A

- Candidate C should win: C beats every other candidate in head-to-head elections (C is the Condorcet winner)

Which candidate should be chosen?

\# voters	3	5	7	6
best	A	A	B	C
	B	C	D	B
	C	B	C	D
	D	D	A	A

- Candidate C should win: C beats every other candidate in head-to-head elections (C is the Condorcet winner)

Which candidate should be chosen?

 Nash benaxe fisyet

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst	C	B	C	D
D	D	A	A	

- Candidate C should win: C beats every other candidate in head-to-head elections (C is the Condorcet winner)
- Candidate B should win: Taking into account the entire ordering, B has the most "support" (B is the Borda winner)

Which candidate should be chosen?

 Nash Consorcets Paradox
Rational Choice Theory ParetoHarsany

\# voters	3	5	7	6
best	A	A	B	C
	B	C	D	B
	C	B	C	D
worst	D	D	A	A

- Candidate C should win: C beats every other candidate in head-to-head elections (C is the Condorcet winner)
- Candidate B should win: Taking into account the entire ordering, B has the most "support" (B is the Borda winner)
- B gets 13 (vs. A)

Which candidate should be chosen?

 Nash Condorcets Paradox Rational Choice Theory ParetoHarsany

\# voters	3	5	7	6
best	A	A	B	C
	B	C	D	B
	C	B	C	D
worst	D	D	A	A

- Candidate C should win: C beats every other candidate in head-to-head elections (C is the Condorcet winner)
- Candidate B should win: Taking into account the entire ordering, B has the most "support" (B is the Borda winner)
- B gets 13 (vs. A) + 10 (vs. C)

Which candidate should be chosen?

 Nash Condorcets Paradox Rational Choice Theory ParetoHarsany Arrow Rationality

\# voters	3	5	7	6
best \uparrow A A B C C B worst D D C	D			

- Candidate C should win: C beats every other candidate in head-to-head elections (C is the Condorcet winner)
- Candidate B should win: Taking into account the entire ordering, B has the most "support" (B is the Borda winner)
- B gets 13 (vs. $A)+10($ vs. $C)+21$ (vs. $D)=44$ points

Which candidate should be chosen?

 Nash Consorcet's Paradox ECO
Rational Choice Theory ParetoHarsanyi ArrowSocial Choice
Rationality

\# voters	3	5	7	6
best	A	A	B	C
$\overbrace{\text { worst }}$	B	C	D	B
	C	B	C	D
	D	A	A	

- Candidate C should win: C beats every other candidate in head-to-head elections (C is the Condorcet winner)
- Candidate B should win: Taking into account the entire ordering, B has the most "support" (B is the Borda winner)
- C get $13($ vs. $A)+11($ vs. $B)+14($ vs. $D)=38$ points

Which candidate should be chosen?

 Nash Consorcet's Paradox ECO
Rational Choice Theory ParetoHarsanyi

\# voters	3	5	7	6
best \uparrow	A	A	B	C
	B	C	D	B
worst	C	B	C	D
	D	D	A	A

- Candidate C should win: C beats every other candidate in head-to-head elections (C is the Condorcet winner)
- Candidate B should win: Taking into account the entire ordering, B has the most "support" (B is the Borda winner)
- C get $13($ vs. $A)+11($ vs. $B)+14($ vs. $D)=38$ points

Which candidate should be chosen?

 Nashh Consorcets Paradox
Rational Choice Theory ParetoHarsany

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
	C	B	C	D
worst	D	D	A	A

- Candidate C should win: C beats every other candidate in head-to-head elections (C is the Condorcet winner)
- Candidate B should win: Taking into account the entire ordering, B has the most "support" (B is the Borda winner)
- C get 13 (vs. $A)+11($ vs. $B)+14($ vs. $D)=38$ points

Which candidate should be chosen?

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst	C	B	C	D
	D	A	A	

- Candidate A should not win: more than half rank A last
- Candidate D should not win: everyone ranks B higher than D
- Candidate C : C beats every other candidate in head-to-head elections (C is the Condorcet winner)
- Candidate B : Taking into account the entire ordering, B has the most "support" (B is the Borda winner)

Which candidate should be chosen?

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst	D	B	C	D
		A	A	

- Conclusion: there are many ways to answer the above question!
- Candidate B: Taking into account the entire ordering, B has the most "support" (B is the Borda winner)

The Condorcet Paradox

Recall Condorcet's Idea

 Game Theory Downsmars Theorem Guss
Nash Consorests Paratox ECOMOMICS Nash consorcets Rational Choice Theory ParetoHarsanyi

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst	C	B	C	D
D	A	A		

- Candidate C should win since C beats every other candidate in head-to-head elections.

Recall Condorcet's Idea

 Arrow Rationality

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst	C	B	C	D
	D	A	A	

- Candidate C should win since C beats every other candidate in head-to-head elections.

Recall Condorcet's Idea

 waven same therams Nast Rana Arrow Rationality| \# voters | 3 | 5 | 7 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| best | A | A | B | C |
| \uparrow | B | C | D | B |
| worst | C | B | C | D |
| w | D | A | A | |

- Candidate C should win since C beats every other candidate in head-to-head elections.

Recall Condorcet's Idea

 Arrow Rationality

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst	C	B	C	D
	D	D	A	A

- Candidate C should win since C beats every other candidate in head-to-head elections.

Recall Condorcet's Idea

 Arrow Rationality

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
$\overbrace{\text { worst }}$	D	B	C	D
		D	A	A

- Candidate C should win since C beats every other candidate in head-to-head elections. B is ranked second

Recall Condorcet's Idea

 Arrow Rationality

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst	C	B	C	D
w	A	A		

- Candidate C should win since C beats every other candidate in head-to-head elections. B is ranked second

Recall Condorcet's Idea

 ArrowSocial Choice
Rationality

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst $^{\text {wors }}$	D	B	C	D
	D	A	A	

- Candidate C should win since C beats every other candidate in head-to-head elections. B is ranked second, D is ranked third, and A is ranked last.

$$
C>_{M} B>_{M} D>_{M} A
$$

The Majority Relation

 Mas semen wey Arrow Social Choice
Rationality
arrows theocrem
Suppose that X and Y are candidates and P_{i} represents voter i 's strict preference.
$\mathbf{N}(X P Y)=\left|\left\{i \mid X P_{i} Y\right\}\right|$
"the number of voters that rank X strictly above Y "

The Majority Relation

Suppose that X and Y are candidates and P_{i} represents voter i 's strict preference.
$\mathbf{N}(X P Y)=\left|\left\{i \mid X P_{i} Y\right\}\right|$
"the number of voters that rank X strictly above $Y^{\prime \prime}$
$X \geq_{M} Y$ iff $\mathbf{N}(X P Y) \geq \mathbf{N}(Y P X)$
"a majority prefers candidate X over candidate $Y^{\prime \prime}$

The Majority Relation

Suppose that X and Y are candidates and P_{i} represents voter i 's strict preference.
$\mathbf{N}(X P Y)=\left|\left\{i \mid X P_{i} Y\right\}\right|$
"the number of voters that rank X strictly above Y "
$X \geq_{M} Y$ iff $\mathbf{N}(X P Y) \geq \mathbf{N}(Y P X)$
"a majority prefers candidate X over candidate Y "
X is a Condorcet winner if X beats every other candidate in an head-to-head election: there is no candidate Y such that $Y>_{M} X$

The Majority Relation

Suppose that X and Y are candidates and P_{i} represents voter i 's strict preference.
$\mathbf{N}(X P Y)=\left|\left\{i \mid X P_{i} Y\right\}\right|$
"the number of voters that rank X strictly above Y "
$X \geq_{M} Y$ iff $\mathbf{N}(X P Y) \geq \mathbf{N}(Y P X)$
"a majority prefers candidate X over candidate Y "
X is a Condorcet winner if X beats every other candidate in an head-to-head election: there is no candidate Y such that $Y>_{M} X$
X is a Condorcet loser if X loses to every other candidate in an head-to-head elections: there is no candidate Y such that, $X>_{M} Y$

The Problem

ArrowSocial Choice
Rationality
Voter 1 Voter 2 Voter 3
A C B
B
A
C
$\begin{array}{lll}C & B & A\end{array}$

The Problem

 was same wherneconomics Arrow Rationality
Voter 1 Voter 2 Voter 3

A	C	B
B	A	C
C	B	A

- Does the group prefer A over B ?

The Problem

 Mays sheomem Gexusory Downs Nash Condorret's Paradox ECO ROMOS ArrowSocial Choice TheorySenVoter 1 Voter 2 Voter 3

A	C	B
B	A	C
C	B	A

- Does the group prefer A over B ? Yes

The Problem

Voter 1	Voter 2	Voter 3
A	C	B
B	A	C
C	B	A

- Does the group prefer A over B ? Yes
- Does the group prefer B over C? Yes

The Problem

Voter 1 Voter 2 Voter 3

A	C	B
B	A	C
C	B	A

- Does the group prefer A over B ? Yes
- Does the group prefer B over C? Yes
- Does the group prefer A over C? No

The Problem

 Nash Consorcets Paradox ECO ParetoHarsanyi ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Ration }}$
Voter 1 Voter 2 Voter 3

A	C	B
B	A	C
C	B	A

The majority relation $>_{M}$ is not transitive!
There is a Condorcet cycle: $A>_{M} B>_{M} C>_{M} A$

How bad is this?

- Final decisions are extremely sensitive to institutional features such as who can set the agenda, arbitrary time limits place on deliberation, who is permitted to make motions, etc.

How bad is this?

- Final decisions are extremely sensitive to institutional features such as who can set the agenda, arbitrary time limits place on deliberation, who is permitted to make motions, etc.
- Is there empirical evidence that Condorcet cycles have shown up in real elections?
W. Riker. Liberalism against Populism. Waveland Press, 1982.
G. Mackie. Democracy Defended. Cambridge University Press, 2003.

How bad is this?

- Final decisions are extremely sensitive to institutional features such as who can set the agenda, arbitrary time limits place on deliberation, who is permitted to make motions, etc.
- Is there empirical evidence that Condorcet cycles have shown up in real elections?
W. Riker. Liberalism against Populism. Waveland Press, 1982.
G. Mackie. Democracy Defended. Cambridge University Press, 2003.
- How likely is a Condorcet cycle?

Should we select a Condorcet winner (when one exists)?

Is the Condorcet winner the "best" choice?

 mass Game theoryowns
 ArrowSocial Choice
Rationality

\# voters	47	47	3	3
	A	B	C	C
	C	C	A	B
	B	A	B	A

C is the Condorcet winner

Is the Condorcet winner the "best" choice?

\# voters	47	47	3	3
	A	B	C	C
	C	C	A	B
	B	A	B	A

C is the Condorcet winner; however, it seems that supporters of the main rivals A and B would rather see C win than their candidate's principal opponent, but this does not mean that there is "positive support" for C.

Condorcet's Other Paradox

 Mars theorem Gews Nash Consorcet's Paradot ECO OPM Rational Choice TheoryArrowSocial Choice
Rationality

\# voters	30	1	29	10	10	1
	A	A	B	B	C	C
	B	C	A	C	A	B
	C	B	C	A	B	A

Condorcet's Other Paradox

等| \# voters | 30 | 1 | 29 | 10 | 10 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | A | A | B | B | C | C |
| 1 | B | C | A | C | A | B |
| 0 | C | B | C | A | B | A |

$$
\begin{aligned}
& B S(A)=2 \times 31+1 \times 39+0 \times 11=101 \\
& B S(B)=2 \times 39+1 \times 31+0 \times 11=109 \\
& B S(C)=2 \times 11+1 \times 11+0 \times 59=33
\end{aligned}
$$

$B>_{B C} A>_{B C} C$

Condorcet's Other Paradox

 Nash Consorcet's Paradot ECO OPM Rational Choice Theory

ArrowSocial Choice
Rationality

\# voters	30	1	29	10	10	1
	A	A	B	B	C	C
	B	C	A	C	A	B
	C	B	C	A	B	A

$$
B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C
$$

Condorcet's Other Paradox

Politics.ewnemionion
 Nash Condorcet's Paradox ECO
Rational Choice Theory ParetoHarsanyi

Arrowsocial Choice

\# voters	30	1	29	10	10	1
	A	A	B	B	C	C
B	C	A	C	A	B	
C	B	C	A	B	A	

$$
B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C
$$

Condorcet's Other Paradox

 Marys theorem tewe cusyNash Condorcels Paratox ECOMOMICS Nash Consorcet's Paradot ECO OPM Rational Choice Theory

ArrowSocial Choice
Rationality

\# voters	30	1	29	10	10	1
	A	A	B	B	C	C
	B	C	A	C	A	B
	C	B	C	A	B	A

$$
B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C
$$

Condorcet's Other Paradox

\# voters	30	1	29	10	10	1
s_{2}	A	A	B	B	C	C
s_{1}	B	C	A	C	A	B
s_{0}	C	B	C	A	B	A

Condorcet's Other Paradox: No scoring rule will work...

$$
B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C
$$

Condorcet's Other Paradox

 Nash Consorcets maredo
Rational Choice Theory ParetoHarsany
ArrowSocial Choice TheorySen

| \# voters | 30 | 1 | 29 | 10 | 10 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| s_{2} | A | A | B | B | C | C |
| s_{1} | B | C | A | C | A | B |
| s_{0} | C | B | C | A | B | A |

Condorcet's Other Paradox: No scoring rule will work...
Score $(A)=s_{2} \times 31+s_{1} \times 39+s_{0} \times 11$
Score $(B)=s_{2} \times 39+s_{1} \times 31+s_{0} \times 11$
$B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C$

Condorcet's Other Paradox

 Nash Consorcets Parresox
Rational Choice Theory ParetoHarsany
ArrowSocial Choice TheorySen

| \# voters | 30 | 1 | 29 | 10 | 10 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| s_{2} | A | A | B | B | C | C |
| s_{1} | B | C | A | C | A | B |
| s_{0} | C | B | C | A | B | A |

Condorcet's Other Paradox: No scoring rule will work...
$\operatorname{Score}(A)=s_{2} \times 31+s_{1} \times 39+s_{0} \times 11$
Score $(B)=s_{2} \times 39+s_{1} \times 31+s_{0} \times 11$
$\operatorname{Score}(A)>\operatorname{Score}(B) \Rightarrow 31 s_{2}+39 s_{1}>39 s_{2}+31 s_{1} \Rightarrow s_{1}>s_{2}$
$B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C$

Condorcet's Other Paradox

 Ms.amicher

ArrowSocial Choice TheorySen

\# voters	30	1	29	10	10	1
s_{2}	A	A	B	B	C	C
s_{1}	B	C	A	C	A	B
s_{0}	C	B	C	A	B	A

Theorem (Fishburn 1974). For all $m \geq 3$, there is some voting situation with a Condorcet winner such that every scoring rule will have at least $m-2$ candidates with a greater score than the Condorcet winner.
P. Fishburn. Paradoxes of Voting. The American Political Science Review, 68:2, pgs. 537-546, 1974.

\# voters	30	1	29	10	10	1
	A	A	B	B	C	C
	B	C	A	C	A	B
	C	B	C	A	B	A

 ArrowSocial Choice
Rationality
Arrows theerem

$$
\begin{array}{ccccccc}
\text { \# voters } & 30 & 1 & 29 & 10 & 10 & 1 \\
\hline 2 & \mathrm{~A} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B} & \mathrm{C} & \mathrm{C} \\
1 & \mathrm{~B} & \mathrm{C} & \mathrm{~A} & \mathrm{C} & \mathrm{~A} & \mathrm{~B} \\
0 & \mathrm{C} & \mathrm{~B} & \mathrm{C} & \mathrm{~A} & \mathrm{~B} & \mathrm{~A} \\
B S(A)=2 \times 31+1 \times 39+0 \times 11=101 \\
B S(B)=2 \times 39+1 \times 31+0 \times 11=109 \\
B S(C)=2 \times 11+1 \times 11+0 \times 59=33
\end{array}
$$

$$
B>_{B C} A>_{B C} C
$$ Menseme heormeronomics

 ArrowSocial Choice
Rationality
Arrows theorem

$$
\begin{array}{lcccccc}
\text { \# voters } & 30 & 1 & 29 & 10 & 10 & 1 \\
\hline & \text { A } & \text { A } & \text { B } & \text { B } & \text { C } & \text { C } \\
& \text { B } & \text { C } & \text { A } & \text { C } & \text { A } & \text { B } \\
& \text { C } & \text { B } & \text { C } & \text { A } & \text { B } & \text { A }
\end{array}
$$

$$
B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C
$$

\# voters	30	1	29	10	10	1
	A	A	B	B	C	C
B	C	A	C	A	B	
C	B	C	A	B	A	

$$
B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C
$$

 Arrow Social Chaice
aronsitionemity

$$
\begin{array}{lcccccc}
\text { \# voters } & 30 & 1 & 29 & 10 & 10 & 1 \\
\hline & \mathrm{~A} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B} & \mathrm{C} & \mathrm{C} \\
& \mathrm{~B} & \mathrm{C} & \mathrm{~A} & \mathrm{C} & \mathrm{~A} & \mathrm{~B} \\
& \mathrm{C} & \mathrm{~B} & \mathrm{C} & \mathrm{~A} & \mathrm{~B} & \mathrm{~A}
\end{array}
$$

$$
B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C
$$

Condorcet Triples

 ArrowSocial Choice
Rationality

G_{1}	G_{2}	G_{3}				
A	B	C			G_{1}	G_{2}
A	G_{3}					
B	C	A	B			
C	A	B			C	B
A	A	C				

If $G_{1}=G_{2}=G_{3}$, then this group of voters "cancel out" each other's votes

Saari's argument

 ArrowSocial Choice

\# voters	30	1	29	10	10	1
	A	A	B	B	C	C
	B	C	A	C	A	B
	C	B	C	A	B	A

Saari's argument

 ArrowSocial Choice
Rationality

\# voters	30	1	29	10	10	1
	A	A	B	B	C	C
	B	C	A	C	A	B
	C	B	C	A	B	A
10	10	10				
A	B	C				
B	C	A				
C	A	B				

Saari's argument

 , Gan wiswew Nash Consorceits Paradox ECO OOMICS
Rational Choice Theory Pareto Harsanyi ArrowSocial Choice
Rationality

\# voters	20	1	29	0	0	1
	A	A	B	B	C	C
	B	C	A	C	A	B
	C	B	C	A	B	A
10	10	10			1	1
A	B	C			A	C
B	C	A		C	B	A
C	A	B		B	A	C

Saari's argument

Politics, (wemmions mon cifitwerniosoph Nash consorcets Paradox ECO OOM PMICS ArrowSocial Choice
Rationality

\# voters	20	0	28	0	0	0	
	A		B				
	B		A				
	C		C				
10	10	10		1	1	1	
A	B	C			A	C	B
B	C	A		C	B	A	
C	A	B		B	A	C	

There are many different voting methods

Many different electoral methods: Plurality, Borda Count, Antiplurality/Veto, and k-approval; Plurality with Runoff; Single Transferable Vote (STV)/Hare; Approval Voting; Cup Rule/Voting Trees; Copeland; Banks; Slater Rule; Schwartz Rule; the Condorcet rule; Maximin/Simpson, Kemeny; Ranked Pairs/Tideman; Bucklin Method; Dodgson Method; Young's Method; Majority Judgment; Cumulative Voting; Range/Score Voting; ...

Choosing how to choose

 mes.emenceme NashRational Choice
Arrow Social Choice ParetoHarsany $\underset{\substack{\text { Rrows theorem }}}{\substack{\text { Rity } \\ \text { and }}}$

Pragmatic considerations: Is the procedure easy to use? Is it legal? The importance of ease of use should not be underestimated: Despite its many flaws, plurality rule is, by far, the most commonly used method.

Choosing how to choose

Pragmatic considerations: Is the procedure easy to use? Is it legal? The importance of ease of use should not be underestimated: Despite its many flaws, plurality rule is, by far, the most commonly used method.

Behavioral considerations: Do the different procedures really lead to different outcomes in practice?

Choosing how to choose

Pragmatic considerations: Is the procedure easy to use? Is it legal? The importance of ease of use should not be underestimated: Despite its many flaws, plurality rule is, by far, the most commonly used method.

Behavioral considerations: Do the different procedures really lead to different outcomes in practice?

Information required from the voters: What type of information do the ballots convey? I.e., Choosing a single alternative, linearly rank all the candidates, report something about the "intensity" of preference.

Choosing how to choose

Pragmatic considerations: Is the procedure easy to use? Is it legal? The importance of ease of use should not be underestimated: Despite its many flaws, plurality rule is, by far, the most commonly used method.

Behavioral considerations: Do the different procedures really lead to different outcomes in practice?

Information required from the voters: What type of information do the ballots convey? I.e., Choosing a single alternative, linearly rank all the candidates, report something about the "intensity" of preference.

Axiomatics: Characterize the different voting methods in terms of normative principles of group decision making.

Choosing how to choose

Pragmatic considerations: Is the procedure easy to use? Is it legal? The importance of ease of use should not be underestimated: Despite its many flaws, plurality rule is, by far, the most commonly used method.

Behavioral considerations: Do the different procedures really lead to different outcomes in practice?

Information required from the voters: What type of information do the ballots convey? I.e., Choosing a single alternative, linearly rank all the candidates, report something about the "intensity" of preference.

Axiomatics: Characterize the different voting methods in terms of normative principles of group decision making.

Voting Methods

Positional Scoring Rules: Given the rankings of the candidates provided by the voters, each candidate is assigned a score. The candidate(s) with the highest score is(are) declared the winner(s).

Examples: Borda, Plurality

Generalized Scoring Rules: Voters assign scores, or "grades", to the candidates. The candidate(s) with the "best" aggregate score is(are) declared the winner(s).

Examples: Approval Voting, Majority Judgement, Range Voting

Voting Methods

Staged Procedures: The winner(s) is(are) determined in stages. At each stage, one or more candidates are eliminated. The candidate or candidates that are never eliminated are declared the winner(s).

Examples: Plurality with Runoff, Hare, Coombs

Condorcet Consistent Methods: Voting methods that guarantee that the Condorcet winner is elected.

Examples: Copeland, Dodgson, Young

Voting Methods Tutorial

