PHIL309P

Philosophy, Politics and Economics

Eric Pacuit
University of Maryland, College Park
pacuit.org
Politics cases maxan Nimpen Philosophy Game The May's Theorem Gaus Nash Condorcet's Paradox kneeted
Rational Choice Theory. ParetoHarsany
ArrowSocial Choice TheorySen
Rationality
Arrow's Theorem

Announcements

 Navshementereme Economics ArrowSocial Choice

- Course website https://myelms.umd.edu/courses/1133211
- Problem set 1, due on Friday
- Online quiz 3
- Reading: Gaus, Ch 3; Reiss, Ch 4

Subjective Expected Utility

 Nash Consorcets Parasoox
Rational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen

Probability: Suppose that $W=\left\{w_{1}, \ldots, w_{n}\right\}$ is a finite set of states. A probability function on W is a function $P: W \rightarrow[0,1]$ where $\sum_{w \in W} P(w)=1$ (i.e., $P\left(w_{1}\right)+P\left(w_{2}\right)+\cdots+P\left(w_{n}\right)=1$).

Suppose that A is an act for a set of outcomes O (i.e., $A: W \rightarrow O$) and $u: O \rightarrow \mathbb{R}$ is a cardinal utility function. The expected utility of A is:

$$
\sum_{w \in W} P(w) * u(A(w))
$$

Ordinal vs. Cardinal Utility

Politics ames tumilitimeny wavs wame weice Economics National Chore Tried ArrowSocial Choice
Rationality
arrows theocem
Ordinal scale: Qualitative comparisons of objects allowed, no information about differences or ratios.

Ordinal vs. Cardinal Utility

Ordinal scale: Qualitative comparisons of objects allowed, no information about differences or ratios.

Cardinal scales:

Interval scale: Quantitative comparisons of objects, accurately reflects differences between objects.
E.g., the difference between $75^{\circ} \mathrm{F}$ and $70^{\circ} \mathrm{F}$ is the same as the difference between $30^{\circ} \mathrm{F}$ and $25^{\circ} \mathrm{F}$ However, $70^{\circ} \mathrm{F}\left(=21.11^{\circ} \mathrm{C}\right)$ is not twice as hot as $35^{\circ} \mathrm{F}\left(=1.67^{\circ} \mathrm{C}\right)$. The difference between $70^{\circ} \mathrm{F}$ and $65^{\circ} \mathrm{F}$ is not the same as the difference between $25^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$.

Ordinal vs. Cardinal Utility

Ordinal scale: Qualitative comparisons of objects allowed, no information about differences or ratios.

Cardinal scales:

Interval scale: Quantitative comparisons of objects, accurately reflects differences between objects.
E.g., the difference between $75^{\circ} \mathrm{F}$ and $70^{\circ} \mathrm{F}$ is the same as the difference between $30^{\circ} \mathrm{F}$ and $25^{\circ} \mathrm{F}$ However, $70^{\circ} \mathrm{F}\left(=21.11^{\circ} \mathrm{C}\right)$ is not twice as hot as $35^{\circ} \mathrm{F}\left(=1.67^{\circ} \mathrm{C}\right)$. The difference between $70^{\circ} \mathrm{F}$ and $65^{\circ} \mathrm{F}$ is not the same as the difference between $25^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$.

Ratio scale: Quantitative comparisons of objects, accurately reflects ratios between objects. E.g., 10 lb is twice as much as 5 lb . But, 10 kg is not twice as much as 5 lb .

Suppose that X is a set of outcomes.

A (simple) lottery over X is denoted $\left[x_{1}: p_{1}, x_{2}: p_{2}, \ldots, x_{n}: p_{n}\right]$ where for $i=1, \ldots, n, x_{i} \in X$ and $p_{i} \in[0,1]$, and $\sum_{i} p_{i}=1$.

Let \mathcal{L} be the set of (simple) lotteries over X. We identify elements $x \in X$ with the lottery $[x: 1]$.

Suppose that \succeq is a relation on \mathcal{L}.

Axioms

 Mnsmen hion Economics ArrowSocial Choice TheorySen

Preference

Independence

Continuity

Compound Lotteries The decision maker is indifferent between every compound lottery and the corresponding simple lottery.
\succeq is reflexive, transitive and complete

For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $a \in(0,1], L_{1} \succ L_{2}$ if, and only if,
$\left[L_{1}: a, L_{3}:(1-a)\right] \succ\left[L_{2}: a, L_{3}:(1-a)\right]$.
For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $a \in(0,1]$, if $L_{1} \succ L_{2} \succ L_{3}$, then there exists $a \in(0,1)$ such that $\left[L_{1}: a, L_{3}:(1-a)\right] \sim L_{2}$
$u: \mathcal{L} \rightarrow \Re$ is linear provided for all $L=\left[L_{1}: p_{1}, \ldots, L_{n}: p_{n}\right] \in \mathcal{L}$,

$$
u(L)=\sum_{i=1}^{n} p_{i} u\left(L_{i}\right)
$$

von Neumann-Morgenstern Representation Theorem A binary relation \succeq on \mathcal{L} satisfies Preference, Compound Lotteries, Independence and Continuity iff \succeq is representable by a linear utility function $u: \mathcal{L} \rightarrow \Re$.
Moreover, $u^{\prime}: \mathcal{L} \rightarrow \Re$ represents \succeq iff there exists real numbers $c>0$ and d such that $u^{\prime}(\cdot)=c u(\cdot)+d$. (" u is unique up to linear transformations.")

Cardinal Utility Theory

 Nas shemen mocronomics NashRational Choice Theory ParetoHarsany Arrow Social Choice
Rationality
arrows theocem
Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

Cardinal Utility Theory

 Nash Consorcets parasoox
Rational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen Arrow Racial Chality

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

- Utility is unique only up to linear transformations. So, it still does not make sense to add two different agents cardinal utility functions.

Cardinal Utility Theory

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

- Utility is unique only up to linear transformations. So, it still does not make sense to add two different agents cardinal utility functions.
- Issue with continuity: 1EUR $\succ 1$ cent \succ death, but who would accept a lottery which is p for 1EUR and $(1-p)$ for death??

Cardinal Utility Theory

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

- Utility is unique only up to linear transformations. So, it still does not make sense to add two different agents cardinal utility functions.
- Issue with continuity: 1EUR $\succ 1$ cent \succ death, but who would accept a lottery which is p for 1EUR and $(1-p)$ for death??
- Important issues about how to identify correct descriptions of the outcomes and options.

Why maximize expected utility?

Law of Large Numbers: everyone who maximizes expected utility will almost certainly be better off in the long run. By performing a random experiment sufficiently many times, the probability that the average outcome differs from the expected outcome can be rendered arbitrarily small.

Why maximize expected utility?

Law of Large Numbers: everyone who maximizes expected utility will almost certainly be better off in the long run. By performing a random experiment sufficiently many times, the probability that the average outcome differs from the expected outcome can be rendered arbitrarily small.

Gambler's Ruin: Suppose Ann and Bob start with $\$ 1000$ each and flip a fair coin.

Why maximize expected utility?

Law of Large Numbers: everyone who maximizes expected utility will almost certainly be better off in the long run. By performing a random experiment sufficiently many times, the probability that the average outcome differs from the expected outcome can be rendered arbitrarily small.

Gambler's Ruin: Suppose Ann and Bob start with $\$ 1000$ each and flip a fair coin. Ann gives Bob $\$ 1$ if H and Bob gives Ann $\$ 1$ if T.

Why maximize expected utility?

Law of Large Numbers: everyone who maximizes expected utility will almost certainly be better off in the long run. By performing a random experiment sufficiently many times, the probability that the average outcome differs from the expected outcome can be rendered arbitrarily small.

Gambler's Ruin: Suppose Ann and Bob start with $\$ 1000$ each and flip a fair coin. Ann gives Bob $\$ 1$ if H and Bob gives Ann $\$ 1$ if T. If they flip the coin a sufficiently large number of times, each player is guaranteed to face a sequence of flips that bankrupts them.

Why maximize expected utility?

Law of Large Numbers: everyone who maximizes expected utility will almost certainly be better off in the long run. By performing a random experiment sufficiently many times, the probability that the average outcome differs from the expected outcome can be rendered arbitrarily small.

Gambler's Ruin: Suppose Ann and Bob start with $\$ 1000$ each and flip a fair coin. Ann gives Bob $\$ 1$ if H and Bob gives Ann $\$ 1$ if T. If they flip the coin a sufficiently large number of times, each player is guaranteed to face a sequence of flips that bankrupts them. The player that faces such a sequence first, will never have an opportunity to feel the effects of the Law of Large Numbers.

- Transitivity (money-pump argument)
- Completeness (very strong)
- Continuity (lotteries with extreme bads)
- Independence (Kitten example, Allais, Ellsberg, etc.)

Objections

- The axioms are too strong. Do rational decision have to obey these axioms?
- No action guidance. Rational decision makers do not prefer an act because its expected utility is favorable, but can only be described as if they were acting from this principle.
- Utility without chance. It seems rather odd from a linguistic point of view to say that the meaning of utility has something to do with preferences over lotteries.

Allais Paradox

	Options	Red (1)	White (89)	Blue (10)
S_{1}	A	$1 M$	$1 M$	$1 M$
	B	0	$1 M$	$5 M$

Allais Paradox

 wans samen weinw Economics ArrowSocial Choice
Rationality

Options Red (1) White (89) Blue (10)

S_{2}	C	$1 M$	0	$1 M$
	D	0	0	$5 M$

Allais Paradox

Allais Paradox

 Nash Condorcet's Paradox ECO Pareto Parsanyi

ArrowSocial Choice ParetoHarsany
TheorySen $\underset{\substack{\text { Rrows thenerem }}}{\substack{\text { Rity }}}$

Allais Paradox

Allais Paradox

 Nashemencemomeconomics| | Options | Red (1) | White (89) | Blue (10) |
| :---: | :---: | :---: | :---: | :---: |
| S_{1} | A | $1 M$ | $1 M$ | $1 M$ |
| | B | 0 | $1 M$ | $5 M$ |
| S_{2} | C | $1 M$ | 0 | $1 M$ |
| | D | 0 | 0 | $5 M$ |

Allais Paradox

 whst Nash Condorcets Paradox ECORational Choice Theory ParetoH Harsanyi Arrow Rationality

Options Red (1) White (89) Blue (10)

S_{1}	A	$1 M$	$1 M$	$1 M$
	B	0	$1 M$	$5 M$
S_{2}	C	$1 M$	0	$1 M$
	D	0	0	$5 M$

$$
A \succeq B \text { iff } C \succeq D
$$

Allais Paradox

We should not conclude either

Allais Paradox

We should not conclude either
(a) The axioms of cardinal utility fail to adequately capture our understanding of rational choice, or

Allais Paradox

 wns. NasheonsorcespureRational Choice Theory, ParetoHarsany Arrow Racial Chality

We should not conclude either
(a) The axioms of cardinal utility fail to adequately capture our understanding of rational choice, or
(b) those who choose A in S_{1} and D is S_{2} are irrational.

Allais Paradox

 Mas seme temo M Nonomics Nash Consorcets parasooxRational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen Arrow Racial Chality

We should not conclude either
(a) The axioms of cardinal utility fail to adequately capture our understanding of rational choice, or
(b) those who choose A in S_{1} and D is S_{2} are irrational.

Rather, people's utility functions (their rankings over outcomes) are often far more complicated than the monetary bets would indicate....

A: [\$4,000:0.80]

B: [\$3,000:1]

A: [\$4,000:0.80]

C: [\$4,000:0.20]

B: [\$3,000:1]

D: [\$3,000:0.25]

Ellsberg Paradox

 ArrowSocial Choice
Rationality

	30		60	
	Lotteries	Blue	Yellow	Green
L_{1}	$1 M$	0	0	
L_{2}	0	$1 M$	0	

Ellsberg Paradox

 wans rame ther Arrowsocial Rnalice

	30		60	
Lotteries	Blue	Yellow	Green	
L_{3}	$1 M$	0	$1 M$	
L_{4}	0	$1 M$	$1 M$	

Ellsberg Paradox

Ellsberg Paradox

 Arrowsocial Choice

	30			60	
Lotteries	Blue	Yellow	Green		
L_{1}	$1 M$	0	0		
L_{2}	0		$1 M$	0	
L_{3}	$1 M$	0	$1 M$		
L_{4}	0	$1 M$	$1 M$		

$$
L_{1} \succeq L_{2} \text { iff } L_{3} \succeq L_{4}
$$

A: [\$6,000:0.45]

B: [\$3,000:0.9]

$A:[\$ 6,000: 0.45]$
B: [\$3,000:0.9]
C: [\$6,000:0.001]
D: [\$3,000:0.002]

Framing Matters

UMD plays Ohio State next year. Suppose that (miraculously) UMD wins the game. There are two headlines that could run in the Diamondback:

1. "The Terps Won!"
2. "The Buckeyes Lost!"

Framing Matters

UMD plays Ohio State next year. Suppose that (miraculously) UMD wins the game. There are two headlines that could run in the Diamondback:

1. "The Terps Won!"
2. "The Buckeyes Lost!"

Do the two headlines have the same meaning?

Framing Matters

UMD plays Ohio State next year. Suppose that (miraculously) UMD wins the game. There are two headlines that could run in the Diamondback:

1. "The Terps Won!"
2. "The Buckeyes Lost!"

Do the two headlines have the same meaning?
"The fact that logically equivalent statements evoke different reactions makes it impossible for Humans to be as reliably rational as Econs."
(Kahneman, pg. 363)

Framing Matters

UMD plays Ohio State next year. Suppose that (miraculously) UMD wins the game. There are two headlines that could run in the Diamondback:

1. "The Terps Won!"
2. "The Buckeyes Lost!"

Do the two headlines have the same meaning?
"The fact that logically equivalent statements evoke different reactions makes it impossible for Humans to be as reliably rational as Econs."
(Kahneman, pg. 363)

Would you accept a gamble that offers a 10% chance to win $\$ 95$ and a 90% chance to loose $\$ 5$?

Would you pay $\$ 5$ to participate in a lottery that offers a 10% chance to win $\$ 100$ and a 90% chance to win nothing?

Would you accept a gamble that offers a 10% chance to win $\$ 95$ and a 90% chance to loose $\$ 5$?

Would you pay $\$ 5$ to participate in a lottery that offers a 10% chance to win $\$ 100$ and a 90% chance to win nothing?

Logicophilia, a virulent virus, threatens 600 students at the University of Maryland
[Adapted from Tversky and Kahneman (1981)]

Logicophilia, a virulent virus, threatens 600 students at the University of Maryland

1. You must choose between two prevention programs, resulting in:

A: 200 participants will be saved for sure.
B: 33% chance of saving all of them, otherwise no one will be saved.
[Adapted from Tversky and Kahneman (1981)]

Logicophilia, a virulent virus, threatens 600 students at the University of Maryland

1. You must choose between two prevention programs, resulting in:

A: 200 participants will be saved for sure.
B: 33% chance of saving all of them, otherwise no one will be saved. 72% of the participants choose A over B.
[Adapted from Tversky and Kahneman (1981)]

Logicophilia, a virulent virus, threatens 600 students at the University of Maryland
2. You must choose between two prevention programs, resulting in: A': 400 will not be saved, for sure.
$B^{\prime}: 33 \%$ chance of saving all of them, otherwise no one will be saved.
[Adapted from Tversky and Kahneman (1981)]

Logicophilia, a virulent virus, threatens 600 students at the University of Maryland
2. You must choose between two prevention programs, resulting in: A': 400 will not be saved, for sure.
$B^{\prime}: 33 \%$ chance of saving all of them, otherwise no one will be saved. 78% of the participants choose B^{\prime} over A^{\prime}.
[Adapted from Tversky and Kahneman (1981)]

Logicophilia, a virulent virus, threatens 600 students at the University of Maryland

1. You must choose between two prevention programs, resulting in:

A: 200 participants will be saved for sure.
B: 33% chance of saving all of them, otherwise no one will be saved. 72% of the participants choose A over B.
2. You must choose between two prevention programs, resulting in:

A': 400 will not be saved, for sure.
$\mathrm{B}^{\prime}: 33 \%$ chance of saving all of them, otherwise no one will be saved. 78% of the participants choose B^{\prime} over A^{\prime}.
[Adapted from Tversky and Kahneman (1981)]
$\left.\begin{array}{|llllllll|}\hline \text { The Experiment: } \\ \hline \mathbf{A :} 0 \quad 200 \quad \text { for } \quad \text { sure. } & \text { B: } & (33 \% & 600) & + & (66 \% & 0\end{array}\right)$.

- Standard decision theory is extensional
- Choosing A and $A \leftrightarrow B$ implies Choosing B.
$\left.\begin{array}{|llllllll|}\hline \text { The Experiment: } \\ \hline \mathbf{A :} 0 \quad+\quad 200 \quad \text { for } \quad \text { sure. } & \text { B: } & (33 \% & 600) & + & (66 \% & 0\end{array}\right)$.
- Standard decision theory is extensional
- Choosing A and $A \leftrightarrow B$ implies Choosing B.

Also true of many formalisms of beliefs:

- "Believing" A and $\vdash A \leftrightarrow B$ implies "Believing" B.
"The different choices in the two frames fit prospect theory, in which choices between gambles and sure things are resolved differently, depending on whether the outcomes are good or bad. Decision makers tend to prefer the sure thing over the gamble (they are risk averse) when the outcomes are good. They tend to reject the sure thing and accept the gamble (the are risk seeking) when both outcomes are negative. "
(Kahneman, pg. 368)

Schelling's Example

 Mas seme temourconomics Nash Consorcets ParasooxRational Choice Theory ParetoHarsany
Pat Arrow Rationality

Suppose your tax depends on your income and how many kids you have.

- The "child deduction" might be, say, 1000 per child:

$$
\operatorname{Tax}(i, k)=\operatorname{Base}(i)-[\max (k, 3) \cdot 1000]
$$

Q1: Should the child deduction be larger for the rich than for the poor?

Schelling's Example

 Nash Condorcets Parasox Rational Choice' Theory ParetoHarsany Arrow Racia Choice

Instead of taking the "standard" household to be childless, we could lower the base tax for everyone (e.g., by 3000), and add a surcharge for households with less than 3 kids (e.g., 1000/2000/3000).

We could also let the surcharge depend on income.

$$
\operatorname{Tax}(i, k)=\operatorname{LowerBase}(i)+[(3-k) \cdot \operatorname{Surcharge}(i)]
$$

Q2: Should the childless poor pay as large a surcharge as the childless rich?

Schelling's Example

 uns sementuen Economics Nash consorcets ParaboxRational Choice Theory ParetoHarsany
Arrow Social Choice TheorySen Arrow Social Choice
Rationality
arrows theocem

Q1: Should the child exemption be larger for the rich than for the poor?
Q2: Should the childless poor pay as large a surcharge as the childless rich?

Schelling's Example

Q1: Should the child exemption be larger for the rich than for the poor?
Q2: Should the childless poor pay as large a surcharge as the childless rich?
If you answered "No" to both, then you are not endorsing a coherent policy
As Kahneman puts the point...
"The difference between the tax owed by a childless family and by a family with two children can be described as a reduction or as an increase. If you want the poor to receive at least the same benefit as the rich for having children, then you must want the poor to pay at least the same penalty as the rich for being childless. "
"The message about the nature of framing is stark: framing should not be viewed as an intervention that masks or distorts an underlying preference. At least in this instance...there is no underlying preference that is masked or distorted by the frame. Our preferences are about framed problems, and our moral intuitions are about descriptions, not substance."

Any apparent violation of an axiom of the theory can always be interpreted as any of three things:

1. the subjects' preferences genuinely violate the axioms of the theory;
2. the subjects' preferences have changed during the course of the experiment;
3. the experimenter has overlooked a relevant feature of the context that affects the the subjects' preferences.

Aim of rational choice theory

 Nash
Rational Choice
Choits Pardor
Theory ArrowSocial Choice
Rationality

- Explanation
- Prediction
- Recommendation

The Aim of Economics

The main task of the social sciences is to explain social phenomena. It is not the only task, but it is the most important one, to which others are subordinated or on which they depend.
(Elster, pg. 9)
J. Elster. Explaining Social Behavior: More Nuts and Bolts for the Social Sciences. Cambridge University Press, 2007.

Stability Individuals' preferences are stable over the period of the investigation.

Invariance Individuals' preferences are invariant to irrelevant changes in the context of making the decision.

Against the backdrop of Hume's ideas about "reason versus passions" and Weber's views on objectivity, we can easily see the significance of the distinction between formal and substantive theories of rationality.

Against the backdrop of Hume's ideas about "reason versus passions" and Weber's views on objectivity, we can easily see the significance of the distinction between formal and substantive theories of rationality.
Rationality is clearly an evaluative notion. A rational action is one that is commendable, and an irrational action is one that is not. One cannot consistently say that a certain choice would be irrational and at the same time that the agent ought to do it.

Against the backdrop of Hume's ideas about "reason versus passions" and Weber's views on objectivity, we can easily see the significance of the distinction between formal and substantive theories of rationality.
Rationality is clearly an evaluative notion. A rational action is one that is commendable, and an irrational action is one that is not. One cannot consistently say that a certain choice would be irrational and at the same time that the agent ought to do it. But according to the economist's view, it is the agent's values that matter in the evaluation, not the economist's. The economist provides only some formal constraints of consistency.

The problem is that invariance is not a merely formal principle. If we left it to the agent to determine what counts as a "relevant" feature of the context, no choice would ever be irrational.

Principle of Individuation by Justifiers
Outcomes should be distinguished as different if and only if they differ in a way that makes it rational to have a preference between them.

A dilemma

Either stick to the "formal axioms" of completeness, transitivity, Independence, etc. and refuse to assume the principles of stability and invariance.

A dilemma

Either stick to the "formal axioms" of completeness, transitivity, Independence, etc. and refuse to assume the principles of stability and invariance. But then rational choice theory will be useless for all explanatory and predictive purposes because people could have fully rational preferences that constantly change or are immensely context-dependent.

Either stick to the "formal axioms" of completeness, transitivity, Independence, etc. and refuse to assume the principles of stability and invariance. But then rational choice theory will be useless for all explanatory and predictive purposes because people could have fully rational preferences that constantly change or are immensely context-dependent. Alternatively an economists can assume stability and invariance but only at the expense of making rational-choice theory a substantive theory, a theory laden not just with values but with the economist's values.

