PHIL309P

Philosophy, Politics and Economics

Eric Pacuit
University of Maryland, College Park
pacuit.org
Politics cases maxan Nimpen Philosophy Game The May's Theorem Gaus Nash Condorcet's Paradox kneeted
Rational Choice Theory. ParetoHarsany
ArrowSocial Choice TheorySen
Rationality
Arrow's Theorem

Announcements

 waveneme weormeconomics ArrowSocial Choice TheorySen Rationality

- Course website https://myelms.umd.edu/courses/1133211
- Problem set 1
- Online quiz 2
- Reading: Gaus, Ch 2; Reiss, Ch 3; Briggs SEP article.
- Weekly writing: Due Wednesday, 11.59pm.

Decision Problems

 Mess Giamene cemseryome NonOMICS Nashtuonal Choice Theory peretotharsany Arrowsocial ChoiceRationality
Arrows theorem

In many circumstances the decision maker doesn't get to choose outcomes directly, but rather chooses an instrument that affects what outcome actually occurs.

Decision Problems

 Nashleanace chise ther

ArrowSocial Choice TheorySen $\underset{\text { arrows theorem }}{\text { Rationa }}$

In many circumstances the decision maker doesn't get to choose outcomes directly, but rather chooses an instrument that affects what outcome actually occurs.

Choice under

- certainty: highly confident about the relationship between actions and outcomes
- risk: clear sense of possibilities and their likelihoods
- uncertainty: the relationship between actions and outcomes is so imprecise that it is not possible to assign likelihoods

Decision Problems

 Nash Consorcet's Paradox LCO R Pational Choice' Theory ParetoHarsanyi ArrowSocial Choice
Rationality

Decision Problems

| w_{1} |
| :--- |$w_{2} \quad \cdots \quad w_{n-1} \quad w_{n}$.

Decision Problems

An act is a function $A: W \rightarrow O$

Making an omelet

 wans weme therneconomics Nathemana choice Theory peretotysan Arrow Social CholityRationaliter

States: \{the sixth egg is good, the sixth egg is rotten\}
Consequences: $\{$ six-egg omelet, no omelet and five good eggs destroyed, six-egg omelet and a cup to wash....\}

Acts: $\{$ break egg into bowl, break egg into a cup, throw egg away $\}$

Making an omelet

 wavs nemenemerneconomics ArrowSocial Choice
Rationality

Good egg (s_{1})
Bad egg (s_{2})
Break into a bowl $\left(A_{1}\right)$

Break into a $\operatorname{cup}\left(A_{2}\right)$

Throw away $\left(A_{3}\right)$

six egg omelet $\left(o_{1}\right)$	no omelet and five good eggs destroyed $\left(o_{2}\right)$
six egg omelet and a cup to wash $\left(o_{3}\right)$	five egg omelet and a cup to wash $\left(o_{4}\right)$
five egg omelet and one good egg destroyed $\left(o_{5}\right)$	five egg omelet $\left(o_{6}\right)$

Making an omelet

 mas s.emememe ECONOMiCS Rational Choice Theory Pareto HarsanyiArrowSocial Choice TheorySen Arrowsocial Rality

Good egg (s_{1})

Bad egg (s_{2})

Break into a
bowl $\left(A_{1}\right)$
Break into a $\operatorname{cup}\left(A_{2}\right)$

Throw away $\left(A_{3}\right)$

Good egg $\left(s_{1}\right)$	Bad egg $\left(s_{2}\right)$
six egg omelet $\left(o_{1}\right)$	no omelet and five good eggs destroyed $\left(o_{2}\right)$
six egg omelet and a cup to wash $\left(o_{3}\right)$	five egg omelet and a cup to wash $\left(o_{4}\right)$
five egg omelet and one good egg destroyed $\left(o_{5}\right)$	five egg omelet $\left(o_{6}\right)$

$$
A_{1}\left(s_{1}\right)=o_{1} \quad A_{1}\left(s_{2}\right)=o_{2}
$$

Making an omelet

 Rational Choice Theory ParetoHarsany
ArrowSocial Choice TheorySen Arrowsocial Rality

$$
\text { Good egg }\left(s_{1}\right)
$$ Bad egg (s_{2})

Break into a
bowl $\left(A_{1}\right)$
Break into a $\operatorname{cup}\left(A_{2}\right)$

Throw away $\left(A_{3}\right)$

six egg omelet $\left(o_{1}\right)$	no omelet and five good eggs destroyed $\left(o_{2}\right)$
six egg omelet and a cup to wash $\left(o_{3}\right)$	five egg omelet and a cup to wash $\left(o_{4}\right)$
five egg omelet and one good egg destroyed $\left(o_{5}\right)$	five egg omelet $\left(o_{6}\right)$

$$
A_{1}\left(s_{1}\right)=o_{1} \quad A_{1}\left(s_{2}\right)=o_{2}
$$

Making an omelet

Good egg (s_{1})
Bad egg (s_{2})
Break into a
bowl $\left(A_{1}\right)$
Break into a $\operatorname{cup}\left(A_{2}\right)$

Throw away $\left(A_{3}\right)$

six egg omelet $\left(o_{1}\right)$	no omelet and five good eggs destroyed $\left(o_{2}\right)$
six egg omelet and a cup to wash $\left(o_{3}\right)$	five egg omelet and a cup to wash $\left(o_{4}\right)$
five egg omelet and one good egg destroyed $\left(o_{5}\right)$	five egg omelet $\left(o_{6}\right)$

$$
o_{1} \succ o_{6} \succ o_{3} \succ o_{4} \succ o_{5} \succ o_{2}
$$

Making an omelet

 Game thiancows Philosoph tue Nas shemen wo conomics ArrowSocial Choice Paretorarsan $\underset{\text { Rrows theorem }}{\text { Ration }}$

	Good egg $\left(s_{1}\right)$	Bad egg $\left(s_{2}\right)$
Break into a bowl $\left(A_{1}\right)$	six egg omelet $\left(o_{1}\right)$	no omelet and five good eggs destroyed $\left(o_{2}\right)$
Break into a cup $\left(A_{2}\right)$	six egg omelet and a cup to wash $\left(o_{3}\right)$	five egg omelet and a cup to wash $\left(o_{4}\right)$
Throw away $\left(A_{3}\right)$	five egg omelet and one good egg destroyed $\left(o_{5}\right)$	five egg omelet $\left(o_{6}\right)$

$o_{1} \succ o_{6} \succ o_{3} \succ o_{4} \succ o_{5} \succ o_{2} \quad$ How should A_{1}, A_{2} and A_{3} be ranked?

Strict Dominance

Politics man finise Philosiophy Nash consorcets saratox ECO O O OMICS
Rational Choice Theory ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Rationaly }}$

$$
\forall w \in W, u(A(w))>u(B(w))
$$

Weak Dominance

Politic Gan tunaris. Philosopphy Nash
 ArrowSocial Choice
Rationality

$$
\forall w \in W, u(A(w)) \geq u(B(w)) \text { and } \exists w \in W, u(A(w))>u(B(w))
$$

MaxMin (Security)

$$
\min (\{u(A(w)) \mid w \in W\})
$$

Politics

MaxMax

$$
\max (\{u(A(w)) \mid w \in W\})
$$

Maximize (Subjective) Expected Utility

$$
\sum_{w \in W} P_{A}(w) * u(A(w))
$$

Subjective Expected Utility

 Arrowsocial Choice
Ratrows theosemality

Probability: Suppose that $W=\left\{w_{1}, \ldots, w_{n}\right\}$ is a finite set of states. A probability function on W is a function $P: W \rightarrow[0,1]$ where $\sum_{w \in W} P(w)=1$ (i.e., $P\left(w_{1}\right)+P\left(w_{2}\right)+\cdots+P\left(w_{n}\right)=1$).

Suppose that A is an act for a set of outcomes O (i.e., $A: W \rightarrow O$). The expected utility of A is:

$$
\sum_{w \in W} P(w) * u(A(w))
$$

Making an omelet

	Good egg $\left(s_{1}\right)$	Bad egg $\left(s_{2}\right)$
Break into a bowl $\left(A_{1}\right)$	six egg omelet $\left(o_{1}\right)$	no omelet and five good eggs destroyed $\left(o_{2}\right)$
Break into a cup $\left(A_{2}\right)$	six egg omelet and a cup to wash $\left(o_{3}\right)$	five egg omelet and a cup to wash $\left(o_{4}\right)$
Throw away $\left(A_{3}\right)$	five egg omelet and one good egg destroyed $\left(o_{5}\right)$	five egg omelet $\left(o_{6}\right)$

Making an omelet

Good egg (s_{1}) 0.8

six egg omelet $\left(o_{1}\right) \mathbf{6}$	no omelet and five good eggs destroyed $\left(o_{2}\right) \mathbf{1}$
six egg omelet and a cup to wash $\left(o_{3}\right) 4$	five egg omelet and a cup to wash $\left(o_{4}\right) 3$
five egg omelet and one good egg destroyed $\left(o_{5}\right) \mathbf{2}$	five egg omelet $\left(o_{6}\right) \mathbf{5}$

$$
\begin{gathered}
o_{1} \succ o_{6} \succ o_{3} \succ o_{4} \succ o_{5} \succ o_{2} \quad P\left(s_{1}\right)=0.8, P\left(s_{2}\right)=0.2 \\
u\left(o_{1}\right)=6, u\left(o_{6}\right)=5, u\left(o_{3}\right)=4, u\left(o_{4}\right)=3, u\left(o_{5}\right)=2, u\left(o_{2}\right)=1
\end{gathered}
$$

Making an omelet

Good egg $\left(s_{1}\right) \mathbf{0 . 8}$	Bad egg $\left(s_{2}\right) \mathbf{0 . 2}$
six egg omelet $\left(o_{1}\right) \mathbf{6}$	no omelet and five good eggs destroyed $\left(o_{2}\right) \mathbf{1}$
six egg omelet and a cup to wash $\left(o_{3}\right) \mathbf{4}$	five egg omelet and a cup to wash $\left(o_{4}\right) \mathbf{3}$
five egg omelet and one good egg destroyed $\left(o_{5}\right) \mathbf{2}$	five egg omelet $\left(o_{6}\right) \mathbf{5}$

$$
\begin{gathered}
o_{1} \succ o_{6} \succ o_{3} \succ o_{4} \succ o_{5} \succ o_{2} \quad P\left(s_{1}\right)=0.8, P\left(s_{2}\right)=0.2 \\
E U\left(A_{1}\right)=P\left(s_{1}\right) * u\left(A_{1}\left(s_{1}\right)\right)+P\left(s_{2}\right) * u\left(A_{1}\left(s_{2}\right)\right)=0.8 * 6+0.2 * 1=5.0
\end{gathered}
$$

Making an omelet

Break into a
bowl $\left(A_{1}\right)$
Break into a
cup $\left(A_{2}\right)$
Throw away
$\left(A_{3}\right)$

Good egg $\left(s_{1}\right) \mathbf{0 . 8}$	Bad egg $\left(s_{2}\right) \mathbf{0 . 2}$
six egg omelet $\left(o_{1}\right) \mathbf{6}$	no omelet and five good eggs destroyed $\left(o_{2}\right) \mathbf{1}$
six egg omelet and a cup to wash $\left(o_{3}\right) \mathbf{4}$	five egg omelet and a cup to wash $\left(o_{4}\right) \mathbf{3}$
five egg omelet and one good egg destroyed $\left(o_{5}\right) \mathbf{2}$	five egg omelet $\left(o_{6}\right) \mathbf{5}$

$$
\begin{gathered}
o_{1} \succ o_{6} \succ o_{3} \succ o_{4} \succ o_{5} \succ o_{2} \quad P\left(s_{1}\right)=0.8, P\left(s_{2}\right)=0.2 \\
E U\left(A_{2}\right)=P\left(s_{1}\right) * u\left(A_{2}\left(s_{1}\right)\right)+P\left(s_{2}\right) * u\left(A_{2}\left(s_{2}\right)\right)=0.8 * 4+0.2 * 3=3.8
\end{gathered}
$$

Making an omelet

Break into a bowl $\left(A_{1}\right)$

Break into a $\operatorname{cup}\left(A_{2}\right)$
six egg omelet $\left(o_{1}\right) 6$
no omelet and five good eggs destroyed $\left(o_{2}\right) \mathbf{1}$
five egg omelet and a cup to wash $\left(o_{4}\right) 3$

five egg omelet $\left(o_{6}\right) 5$

$$
o_{1} \succ o_{6} \succ o_{3} \succ o_{4} \succ o_{5} \succ o_{2} \quad P\left(s_{1}\right)=0.8, P\left(s_{2}\right)=0.2
$$

$$
E U\left(A_{3}\right)=P\left(s_{1}\right) * u\left(A_{3}\left(s_{1}\right)\right)+P\left(s_{2}\right) * u\left(A_{3}\left(s_{2}\right)\right)=0.8 * 2+0.2 * 5=2.6
$$

Making an omelet

	Good egg $\left(s_{1}\right) \mathbf{0 . 8}$	Bad egg $\left(s_{2}\right) \mathbf{0 . 2}$
Break into a bowl $\left(A_{1}\right)$	six egg omelet $\left(o_{1}\right) \mathbf{6}$	no omelet and five good eggs destroyed $\left(o_{2}\right) \mathbf{1}$
Break into a cup $\left(A_{2}\right)$	six egg omelet and a cup to wash $\left(o_{3}\right) 4$	five egg omelet and a cup to wash $\left(o_{4}\right) \mathbf{3}$
Throw away $\left(A_{3}\right)$	five egg omelet and one good egg destroyed $\left(o_{5}\right) \mathbf{2}$	five egg omelet $\left(o_{6}\right) \mathbf{5}$

$$
\begin{gathered}
o_{1} \succ o_{6} \succ o_{3} \succ o_{4} \succ o_{5} \succ o_{2} \quad P\left(s_{1}\right)=0.8, P\left(s_{2}\right)=0.2 \\
E U\left(A_{1}\right)=5>E U\left(A_{2}\right)=3.8>E U\left(A_{3}\right)=2.6
\end{gathered}
$$

Making an omelet

Good egg $\left(s_{1}\right) \mathbf{0 . 8}$	Bad egg $\left(s_{2}\right) \mathbf{0 . 2}$
six egg omelet $\left(o_{1}\right) \mathbf{9}$	no omelet and five good eggs destroyed $\left(o_{2}\right) 0$
six egg omelet and a cup to wash $\left(o_{3}\right) 8$	five egg omelet and a cup to wash $\left(o_{4}\right) 7$
five egg omelet and one good egg destroyed $\left(o_{5}\right) \mathbf{1}$	five egg omelet $\left(o_{6}\right) \mathbf{9 . 5}$

Good egg (s_{1}) 0.8
five egg omelet and one good egg destroyed $\left(O_{5}\right) 1$ Bad egg (s_{2}) 0.2

Break into a bowl $\left(A_{1}\right)$

Break into a $\operatorname{cup}\left(A_{2}\right)$

Throw away $\left(A_{3}\right)$

$$
\begin{gathered}
o_{1} \succ o_{6} \succ o_{3} \succ o_{4} \succ o_{5} \succ o_{2} \quad P\left(s_{1}\right)=0.8, P\left(s_{2}\right)=0.2 \\
u\left(o_{1}\right)=9, u\left(o_{6}\right)=9.5, u\left(o_{3}\right)=8, u\left(o_{4}\right)=7, u\left(o_{5}\right)=1, u\left(o_{2}\right)=0
\end{gathered}
$$

Making an omelet

Good egg $\left(s_{1}\right) \mathbf{0 . 8}$	Bad egg $\left(s_{2}\right) \mathbf{0 . 2}$
six egg omelet $\left(o_{1}\right) \mathbf{9}$	no omelet and five good eggs destroyed $\left(o_{2}\right) \mathbf{0}$
six egg omelet and a cup to wash $\left(o_{3}\right) \mathbf{8}$	five egg omelet and a cup to wash $\left(o_{4}\right) \mathbf{7}$
five egg omelet and one good egg destroyed $\left(o_{5}\right) \mathbf{1}$	five egg omelet $\left(o_{6}\right) \mathbf{9 . 5}$

$$
\begin{gathered}
o_{1} \succ o_{6} \succ o_{3} \succ o_{4} \succ o_{5} \succ o_{2} \quad P\left(s_{1}\right)=0.8, P\left(s_{2}\right)=0.2 \\
E U\left(A_{2}\right)=7.8>E U\left(A_{1}\right)=7.2>E U\left(A_{3}\right)=2.7
\end{gathered}
$$

Cardinal Utility Theory

 Nash Consorcets Parapox Theory ParetoHarsany
Rational Choice
ArrowSocial Choice TheorySen

$$
u: X \rightarrow \mathbb{R}
$$

Which comparisons are meaningful?

1. $u(x)$ and $u(y)$? (ordinal utility)
2. $u(x)-u(y)$ and $u(a)-u(b)$?
3. $u(x)$ and $2 * u(z)$?

Cardinal Utility Theory

 mens.amenem Economics Arrowsocial Choice
Ratrows theosemality
$x \succ y \succ z$ is represented by both $(3,2,1)$ and $(1000,999,1)$, so we cannot say y whether is "closer" to x than to z.

Cardinal Utility Theory

 Nashh Consorcets Paradox
Rational Choice Theory ParetoHarsany
ArrowSocial Choice TheorySen Arrowsocia Choice
$x \succ y \succ z$ is represented by both $(3,2,1)$ and $(1000,999,1)$, so we cannot say y whether is "closer" to x than to z.

Key idea: Ordinal preferences over lotteries allows us to infer a cardinal scale (with some additional axioms).

John von Neumann and Oskar Morgenstern. The Theory of Games and Economic Behavior. Princeton University Press, 1944.

A Choice

Politicscass fumm tum
 Nastemace fiedatiect Arrowsocia Choice
R

B

W

S

A Choice

 Arrow Socia Choice

R
 B
 W
 S S

A Choice

Politics cam thescase Philo tumephy was semen wemi conomics

A Choice

Politics
 wns.

A Choice

 mes.

$$
[1: B] \sim[p: R, 1-p: S]
$$

A Choice

$1 * u(B)=p * u(R)+(1-p) * u(S)$

A Choice

Politics
Gam Hucirnem Philosiophy

$$
u(B)=p * 1+(1-p) * 0=p
$$

