¢ Reading 1: Intro
To Java

Jav a Getting comfortable with the basics of
programming in Java.

1.1 What is Java?

In this course, you will learn not only how to think like a computer scientist and solve problems
algorithmically, but you will also learn the fundamentals of the Java programming language.

Java is an object-oriented programming language (If you don’t know what object-oriented
means right now, never fear! All will be explained eventually). Java is one of the most commonly
used languages in the world today, ranking #1 in IEEE Spectrum’s 2015 review of the most
popular programming languages (see chart below, where the right column is 2014 and the left is
2015). All sorts of real-world projects use Java, from your Android phones and applications, to
games like Minecraft.

Language Rank Types Spectrum Ranking Spectrum Ranking

Java
C

100.0

C++
Python
C#

R

PHP
JavaScript

Ruby
. Matlab

B e P O g b Fel N PR

-
(=]

Reading 1: Intro to Java | CMSC131

1.2 Variables

Programming requires us to store and manipulate data. Data can come in the form of numbers,
words, or even images. One of the most basic elements in programming that can help us store
data is called a variable.

A variable represents a location in your computer's memory in which you can store a value and
can access it later. For example, imagine you wanted to store your age as a number in your
computer’'s memory. In Java, you would type:

int age = 19;
This variable is called “age” and stores the value 19.

Notice how we put the keyword int in front of our variable name. In Java, you have to specify
what type of variable you are creating (for example, are you storing an integer, a decimal value,
a character, etc.?). We will talk more about how to properly declare variables and assign values
to them in section 1.4 Data Types.

1.3 Syntax: Names in Java

Different parts of a program that you write need to have names. You have to name variables in
your Java program, but not all names are valid. The following rules will help you give valid
names to your variables:

All names begin with a letter (A-Z or a-z), $, or _

After the first character, names can have any combination of characters

You can’t use reserved keywords (like 1f or while or int) for names

Names are case sensitive (ex. an identified named Hello is considered different than the
identified hello)

honh =

Examples

e Legalnames: age, $alary, _value, __ 1 value
e lllegal names: 123abc, -salary

1.4 Data Types

As you learned in lecture, all information is stored as bits within the computer. A single bit can
have the value of 0 or 1. 8 bits together make up 1 byte.

e 8bits =1 byte
e 1024 bytes = 1 kibibyte

Reading 1: Intro to Java | CMSC131

e 1024 kilobytes = 1 megibyte
e 1024 megabytes = 1 gigibyte

Primitive Data Types

Variables in Java reserve a portion of memory in the computer for a certain amount of data. But
how does the computer know how much memory to reserve? Based on the datatype of the
variable, the operating system can reserve the right amount of memory for this variable. You
can store integers, decimals, characters, and more in variables. In the chart below, you will find

a description of the primitive data types used in Java.

Primitive Data Type Chart

byte

e 8-bit, signed (meaning that it can be
negative or positive) integer

e Min value = -277

e Max value = 27 -1

e 16-bit, signed integer
e Min value = -27M5
e Max value = 25 -1

e 32-bit, signed integer
e Min value = -2"31
e Max value = 2431 -1

e 64-bit, signed integer
Min value = -2463
Max value = 263 -1

Examples
e byte a = 100;
e byte b = -50;
e int foo = 12345;
e long a = 100000L;

Reading 1: Intro to Java | CMSC131

float

e 32-bit, single-precision floating point (i.e.

can store decimal values)
double
e 64-bit, double-precision floating point
boolean

e Represents 1 bit of information
e Only 2 possible values: true and false

char

e 16-bit Unicode character
e Used to store any character

Examples
e float f1 = 234.5f;
e double dl = 123.4;
® boolean one = true;
e char letterA = ‘A’ ;

1.5 Operators

Operators are symbols in Java that allow us to perform arithmetic or logical operations. Some of
the most basic operators are binary operators which take two values and compare them. In the
table below you will find some common binary operators.

Note that in all of the examples, we will use the variables

int a =1;
int b = 2;

which store integers of value 1 and 2 respectively .

Type Binary Operator Example
Additive + (addition) a + b —evaluatesto 3
- (subtraction) a - b — evaluates to -1
Equality == (equals) a == b — evaluates to false
= (not equals) a != b — evaluates to true
Multiplicative * (multiplication) a * b — evaluates to 2
/ (division) a / b —evaluatesto 0
% (modulus) a $ b — evaluatesto 1
Relational > (greater than) a > b — evaluates to false
< (less than) a < b — evaluates to true
>= (greater than or equal a >= b — evaluates to false
to) a <= b — evaluates to true
<= (less than or equal t0)

There are a few subtleties regarding binary operators that we haven’t explained yet - don’t
worry! Here are some clarifications to common questions:
e Q:Whywoulda / b = 0 whena = 1andb = 2?

o Notice that the variables a and b were declared with the keyword int, meaning
they can only store whole numbers. Thus, when Java performs integer division, it
only stores the quotient (in our case 0) but not the remainder.

e Q: What does the % actually do?

o The modulus operator in Java will give you the remainder of integer division.
Thus,a $ b = 1whena=1andb =2, since 1 goes into 2 zero times with a
remainder of one.

e Q: What is the difference between = and ==%

o In Java, there is a difference between assigning a value to a variable and
checking if that variable equals a value.

o = is the assignment operator. This lets us assign values to a variable. For
example, we assigned the value of 1 to the variable a by writing: int a = 1;

Reading 1: Intro to Java | CMSC131

o ==is the equality operator. This lets us compare the value of primitive types to
see if two values are equal or not. For example, we can compare ifa ==
(which in our case is false).

1.6 Converting Between Bases

Since everything is stored as bits inside computers, we need to know how to convert from our
intuitive number system that is in base 10 (decimal), to the base 2 (binary) or base 16
(hexadecimal) systems often used in computers.

When working in base 10, the furthest right digit is the 1s place, followed by the 10s place, the
100s place, the 1000s place, etc. When working in base 2, recall that the furthest right digit is
the 1s place, followed by the 2s place, the 4s place, the 8s place, etc. There is a clear pattern
here: when working in base x, the furthest right digit is x*0=1s place. The next is the x*1=x
place, then the x*2 place, and so on with powers of x.

BINARY TO DECIMAL

To convert a number from base 2 to base 10, simply think about the value in each digit and add
them up. The best way to understand this method is through an example.

Example. Take 101100101,, which is in binary, and convert it to decimal. Construct a table
which shows each digit place and whether there is a 1 or a 0 there.

Place 256 128 64 32 16 8 4 2 1

Digit 1 0 1 1 0 0 1 0 1

If this is confusing, think about a simpler case in the decimal system. For example, for the
number 13 in base 10, we know we can write 13 as using one 10 and three 1s to get 1*10 + 3*1
= 13. The same process is followed in binary.

101100101, = 1256 + 0*128 + 1"64 + 1*32 + 0*16 + 08 +1*4 + 0*2 + 1*1
= 17278 + 0*2A7 + 17276 + 17275 + 0"27 + 0*273 + 1*2°2 + 0*2M + 17270
=357,

S0 101100101 in base 2 is equivalent to 357 in base 10.

This same process works for other bases as well. If working in base 5 for instance, you would
think of the 1s place, the 5s place, the 25s place, the 125s place, and so on, but the summing
up of the digits works just the same.

Reading 1: Intro to Java | CMSC131

Your turn!

Here are a few conversions to try out. When you finish, you can go to
https://www.tools4noobs.com/online_tools/base_convert/ to verify your answers.

1. Convert 1101 from base 2 to base 10.
2. Convert 111111 from base 2 to base 10."
3. Convert 2102 from base 3 to base 10.

DECIMAL TO BINARY

A lot of people find converting from decimal to another base harder than the other way. Below
are two different ways to think about the process. Again, we will use an example to demonstrate
the methods. Consider 357,, and convert it to binary.

Method 1:

Find the largest power of 2 which is less than 357. If you're still playing the game 20482, you'll
know that 28=256, while 2*9=512, which is too big. Therefore, we know that we want a 256 as
a component of our number. Recall from the previous section that we added the different places
together, so when working backwards, we subtract. 357-256=101. Repeat the process. The
highest power of 2 which is less than 101 is 26=64, so we want to include a 64 in our number.
101-64=37. 2°5=32 is less than 37, so we want a 32. 37-32=5. 222=4 is less than 5, so we want
a 4. 5-4=1. Finally, there is only 1 left, so we want a 1 in the 1s place. So now we have a 256, a
64, a 32, a 4, and a 1. We fill in the other places with 0s. We have no 128, 16, 8, or 2. Putting
these in order in a neat table, we get:

Place 256 128 64 32 16 8 4 2 1

Digit 1 0 1 1 0 0 1 0 1

You may have already noticed that this is the same number we used in the binary to decimal
conversion above. All that’s left is to put the digits together to get the number 101100101,. We
got back to the number we started with in the previous example, verifying again that
101100101, = 357,,.

Method 2:

The conversion from decimal to binary is simply a series of divisions by 2 (because we want

! Interesting note: when a binary number is all 1s, it is 1 less than a power of 2. Similarly, 99 is 1 less than
1072 and 99999 is 1 less than 1075.

2 If you haven't played this game, here’s where to play it: http://gabrielecirulli.github.io/2048/

Reading 1: Intro to Java | CMSC131

https://www.tools4noobs.com/online_tools/base_convert/
http://gabrielecirulli.github.io/2048/

base 2). With each division, keep track of both the quotient (the integer result of the division)
and the remainder. Keep a list of the quotients and remainders. Again, start with 357, and
convert to binary. The first step is to divide 357 by 2, yielding a quotient of 178 and a remainder
of 1. Next, divide 178 by 2. Repeat this process until the quotient is 0 or 1. Here is the table for
the number 357.

Step | Quotient | Remainder
1 178 1
2 89 0
3 44 1
4 22 0
5 11 0
6 5 1
7 2 1
8 1 0

Now simply read from the table to find the number in binary. Start with the very last quotient first
(IMPT: do not forget to include the final quotient!), followed by the remainders, from bottom to
top. These numbers are bolded in the table. This method gets the result 101100101, which is
again consistent with the previous conversions.

Come up with some of your own conversion examples to practice. If you really want to get
fancy, try converting decimal to other bases, like base 4. The process stays the same, with
division by 4 instead, and the stopping case being when the quotient is less than 4.

HEXADECIMAL AND BINARY

First, what is hexadecimal? Hexadecimal, or hex for short, is simply base 16. Before going into
the conversions, you first need to understand hex. We only have names for 10 digits, 0-9, so a
16 digit system needs 6 additional digit names. To solve this problem, hex uses the letters A-F
to represent the numbers 10-15. Here is a chart showing the digits of the hexadecimal system,
as well as the corresponding binary numbers:

Reading 1: Intro to Java | CMSC131

Notice anything? Each hex number is exactly 1 digit and each

Dec[;mal ' ng ' E;S;By binary number uses up to 4 digits. The next number, 16, would
1 1 0001 overflow in both bases, requiring 2 digits in hex (10) and 5
p p 0010 digits in binary (10000). This is not a coincidence! It is a direct
3 3 0011 result of the fact that 2°4=16. While conversion between
4 4 0100 binary and hex can be done using the methods above, this
: : 31[1]:] special case allows us to use trick to make the conversion
F F 0111 easier.
8 8 1000
9 9 1001 For every digit of hex, there are exactly 4 digits of binary. To
10 A 1010 convert AQ9 from hex to binary, for instance, simply convert A
L B 1011 " {51010, 0 to 0000, and 9 to 1001, then put them together to
12 = 1% get 101000001001 in binary.
]: E :ITIE To go the other direction, simply start at the right (this is very

important!) and take groups of 4 and convert them each. To

convert 110110000110, convert 0110 to 6, 1000 to 8, and
1101 to D, then put them together to get D86. But wait! What about cases where the number of
binary digits isn’t a multiple of 4? Not to fear. Simply add Os to the left of the number until there
are a multiple of 4 digits. This doesn’t change the number (10 and 010 are the same thing).
Note: if you remember to do this check first, it won’t matter whether you go right to left or left to
right, but starting from the right will force you to notice the problem by the time you arrive at the
furthest left digits.

OCTAL AND BINARY

Octal is simpler to wrap your head around than hex because there are no new digits needed.
Instead, the digits are just 0-7. The reason we had the trick for binary and hex was because
27 =16. Similarly, we have a trick for binary and octal because 2*3=8, so the same processes
are used, but with groups of 3 digits at a time. You can make a table of the 8 simple binary to
octal conversions and come up with examples on your own to practice.

To convert from octal to binary, take each digit in order and convert it to 3 digits of binary, then
put them all together. To convert from binary to octal, pad the left side with Os (if necessary) to
get a multiple of 3 digits, then convert each set of three binary digits to a single octal digit.

1.7 Coding Disasters®

We want these readings to not only help guide you through this course, but also show you that
what you are learning has real-world applications and potentially huge impacts!

3 Otherwise known as, “Why you should pay attention in this class.”
Reading 1: Intro to Java | CMSC131

For this first reading, we’re going to kick things off with what NOT to do when coding -- and why
it’s really important to get have a rock-solid programming foundation.

NASA Mariner Rocket Destroyed - Carrying a space probe and headed for Venus, the Mariner
1 rocket was diverted from its flight path and destroyed only 5 minutes after liftoff. Why did this
happen? When transcribing a handwritten formula into code, a programmer made a single typo
in a variable name and the software treated normal variations of flight velocity as if they were
serious, sending the rocket off course. The total cost of this tiny error? A heaping $18.5 million.

Lethal Radiation - The Therac-25, a Canadian radiation therapy machine, malfunctioned and
delivered lethal radiation doses to patients, killing 3 people and critically injuring 3 others. The
bug at fault was a race condition (don’t worry about the subtleties of what a race condition is --
you'’ll learn more about this in CMSC132), which occurred when two threads (I promise you'll
learn this too!) of the program tried to access and change the same variable.

Ariane Rocket Explodes - The European rocket, Ariane 5, was destroyed only seconds into its
first launch due to an overflow error. The guidance computer tried to convert the sideways
rocket velocity from 64-bits to 16-bits. However, since the 64-bit number was too big to fit into a
16-bit number, an overflow error occurred and the guidance system shut down.

1.8 Contributors

Amelia Bateman and Andrea Bajcsy

Sources

http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages
http://www.tutorialspoint.com/java/index.htm
https://docs.oracle.com/javase/tutorial/java/nutsandbolts
http://w3processing.com/index.php?subMenultemld=135
http://www.purplemath.com/modules/numbbase.htm
http://www.devtopics.com/20-famous-software-disasters/

Last Modified

January 2, 2016

Reading 1: Intro to Java | CMSC131

http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages
http://www.tutorialspoint.com/java/index.htm
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html
http://w3processing.com/index.php?subMenuItemId=135
http://www.purplemath.com/modules/numbbase.htm
http://www.devtopics.com/20-famous-software-disasters/

