Modal Logic
 Epistemic and Doxastic Logic

Eric Pacuit

University of Maryland, College Park

pacuit.org
epacuit@umd.edu

October 19, 2015

Literature

1. W. Holliday, Epistemic Logic and Epistemology, Handbook of Formal Philosophy, Springer, forthcoming
2. E. Pacuit, Dynamic Epistemic Logic I: Modeling Knowledge and Belief, Philosophy Compass, 2013
3. E. Pacuit, Dynamic Epistemic Logic II: Logics of Information Change, Philosophy Compass, 2013
4. R. Sorensen, Epistemic Paradoxes, Stanford Encyclopedia of Philosophy, 2011

Foundations of Epistemic Logic

David Lewis

Jakko Hintikka

Robert Aumann

Larry Moss

Johan van Benthem

Alexandru Baltag

Foundations of Epistemic Logic

Automatic Press : $\frac{\mathrm{Y}}{\mathrm{p}}$ p

Ten Puzzles and Paradoxes

1. Surprise Exam
2. The Knower
3. Logical Omniscience/Knowledge Closure
4. Lottery Paradox \& Preface Paradox
5. Margin of Error Paradox
6. Fitch's Paradox
7. Aumann's Agreeing to Disagree Theorem
8. Brandenburger-Keisler Paradox
9. Absent-Minded Driver
10. Common Knowledge of Rationality and Backwards Induction

Three introductory examples

Epistemic Logic

Let $K_{a} P$ informally mean "agent a knows that P (is true)".

Epistemic Logic

Let $K_{a} P$ informally mean "agent a knows that P (is true)".
$K_{a}(P \rightarrow Q)$: "Ann knows that P implies Q "

Epistemic Logic

Let $K_{a} P$ informally mean "agent a knows that P (is true)".
$K_{a}(P \rightarrow Q)$: "Ann knows that P implies Q "
$K_{a} P \vee \neg K_{a} P$: "either Ann does or does not know P "

Epistemic Logic

Let $K_{a} P$ informally mean "agent a knows that P (is true)".
$K_{a}(P \rightarrow Q)$: "Ann knows that P implies Q "
$K_{a} P \vee \neg K_{a} P$: "either Ann does or does not know P "
$K_{a} P \vee K_{a} \neg P$: "Ann knows whether P is true"

Epistemic Logic

Let $K_{a} P$ informally mean "agent a knows that P (is true)".
$K_{a}(P \rightarrow Q)$: "Ann knows that P implies Q "
$K_{a} P \vee \neg K_{a} P$: "either Ann does or does not know P "
$K_{a} P \vee K_{a} \neg P$: "Ann knows whether P is true"
$\neg K_{a} \neg P:$ " P is an epistemic possibility for Ann"

Epistemic Logic

Let $K_{a} P$ informally mean "agent a knows that P (is true)".
$K_{a}(P \rightarrow Q)$: "Ann knows that P implies Q "
$K_{a} P \vee \neg K_{a} P$: "either Ann does or does not know P "
$K_{a} P \vee K_{a} \neg P$: "Ann knows whether P is true"
$\neg K_{a} \neg P:$ " P is an epistemic possibility for Ann"
$K_{a} K_{a} P:$ "Ann knows that she knows that P "

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.

What are the relevant states?

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.

What are the relevant states?

$(3,2)$
W_{6}

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.

Ann receives card 3 and card 1 is put on the table

$(3,2)$
W_{6}

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.

What information does Ann have?

$(3,2)$
W_{6}

Example

Suppose there are three cards: 1,2 and 3.

Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.

What information does Ann have?

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.

What information does Ann have?

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.

Suppose H_{i} is intended to mean "Ann has card i "
T_{i} is intended to mean "card i is on the table"

Eg., $V\left(H_{1}\right)=\left\{w_{1}, w_{2}\right\}$

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.

Suppose H_{i} is intended to mean "Ann has card i "
T_{i} is intended to mean "card i is on the table"

Eg., $V\left(H_{1}\right)=\left\{w_{1}, w_{2}\right\}$

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.

Suppose that Ann receives card 1 and card 2 is on the table.

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.

Suppose that Ann receives card 1 and card 2 is on the table.

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.
$\mathcal{M}, w_{1} \models K_{a} H_{1}$

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.
$\mathcal{M}, w_{1} \models K_{a} H_{1}$

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.
$\mathcal{M}, w_{1} \models K_{a} H_{1}$
$\mathcal{M}, w_{1} \models K_{a} \neg T_{1}$

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.
$\mathcal{M}, w_{1} \models \neg K_{a} \neg T_{2}$

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.
$\mathcal{M}, w_{1} \models K_{a}\left(T_{2} \vee T_{3}\right)$

Multiagent Epistemic Logic

Many of the examples we are interested in involve more than one agent!

Multiagent Epistemic Logic

Many of the examples we are interested in involve more than one agent!
$K_{a} P$ means "Ann knows P "
$K_{b} P$ means "Bob knows P "

Multiagent Epistemic Logic

Many of the examples we are interested in involve more than one agent!
$K_{a} P$ means "Ann knows P "
$K_{b} P$ means "Bob knows P "

- $K_{a} K_{b} \varphi$: "Ann knows that Bob knows φ "
- $K_{a}\left(K_{b} \varphi \vee K_{b} \neg \varphi\right)$: "Ann knows that Bob knows whether φ
- $\neg K_{b} K_{a} K_{b}(\varphi)$: "Bob does not know that Ann knows that Bob knows that φ "

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, one of the cards is placed face down on the table and the third card is put back in the deck.

Suppose that Ann receives card 1 and card 2 is on the table.

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, Bob is given one of the cards and the third card is put back in the deck.

Suppose that Ann receives card 1 and Bob receives card 2.

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, Bob is given one of the cards and the third card is put back in the deck.

Suppose that Ann receives card 1 and Bob receives card 2.

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, Bob is given one of the cards and the third card is put back in the deck.

Suppose that Ann receives card 1 and Bob receives card 2.

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, Bob is given one of the cards and the third card is put back in the deck.

Suppose that Ann receives card 1 and Bob receives card 2.
$\mathcal{M}, w_{1} \models K_{b}\left(K_{a} A_{1} \vee K_{a} \neg A_{1}\right)$

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, Bob is given one of the cards and the third card is put back in the deck.

Suppose that Ann receives card 1 and Bob receives card 2.
$\mathcal{M}, w_{1} \models K_{b}\left(K_{a} A_{1} \vee K_{a} \neg A_{1}\right)$

Example

Suppose there are three cards:
1,2 and 3.
Ann is dealt one of the cards, Bob is given one of the cards and the third card is put back in the deck.

Suppose that Ann receives card 1 and Bob receives card 2.
$\mathcal{M}, w_{1} \models K_{b}\left(K_{a} A_{1} \vee K_{a} \neg A_{1}\right)$

College Park and Amsterdam

Let K_{c} stand for agent c knows that and K_{a} stand for agent a knows that. Suppose agent c, who lives in College Park, knows that agent a lives in Amsterdam. Let r stand for 'it's raining in Amsterdam'. Although c doesn't know whether it's raining in Amsterdam, c knows that a knows whether it's raining there:

College Park and Amsterdam

Let K_{c} stand for agent c knows that and K_{a} stand for agent a knows that. Suppose agent c, who lives in College Park, knows that agent a lives in Amsterdam. Let r stand for 'it's raining in Amsterdam'. Although c doesn't know whether it's raining in Amsterdam, c knows that a knows whether it's raining there:

$$
\neg\left(K_{c} r \vee K_{c} \neg r\right) \wedge K_{c}\left(K_{a} r \vee K_{a} \neg r\right)
$$

College Park and Amsterdam

Let K_{c} stand for agent c knows that and K_{a} stand for agent a knows that. Suppose agent c, who lives in College Park, knows that agent a lives in Amsterdam. Let r stand for 'it's raining in Amsterdam'. Although c doesn't know whether it's raining in Amsterdam, c knows that a knows whether it's raining there:

$$
\neg\left(K_{c} r \vee K_{c} \neg r\right) \wedge K_{c}\left(K_{a} r \vee K_{a} \neg r\right)
$$

The following picture depicts a situation in which this is true, where an arrow represents compatibility with one's knowledge:

College Park and Amsterdam

Let K_{c} stand for agent c knows that and K_{a} stand for agent a knows that. Suppose agent c, who lives in College Park, knows that agent a lives in Amsterdam. Let r stand for 'it's raining in Amsterdam'. Although c doesn't know whether it's raining in Amsterdam, c knows that a knows whether it's raining there:

$$
\neg\left(K_{c} r \vee K_{c} \neg r\right) \wedge K_{c}\left(K_{a} r \vee K_{a} \neg r\right) .
$$

The following picture depicts a situation in which this is true, where an arrow represents compatibility with one's knowledge:

Now suppose that agent c doesn't know whether agent a has left Amsterdam for a vacation. (Let v stand for 'a has left Amsterdam on vacation'.) Agent c knows that if a is not on vacation, then a knows whether it's raining in Amsterdam; but if a is on vacation, then a won't bother to follow the weather.

$$
K_{c}\left(\neg v \rightarrow\left(K_{a} r \vee K_{a} \neg r\right)\right) \wedge K_{c}\left(v \rightarrow \neg\left(K_{a} r \vee K_{a} \neg r\right)\right)
$$

Now suppose that agent c doesn't know whether agent a has left Amsterdam for a vacation. (Let v stand for ' a has left Amsterdam on vacation'.) Agent c knows that if a is not on vacation, then a knows whether it's raining in Amsterdam; but if a is on vacation, then a won't bother to follow the weather.

$$
K_{c}\left(\neg v \rightarrow\left(K_{a} r \vee K_{a} \neg r\right)\right) \wedge K_{c}\left(v \rightarrow \neg\left(K_{a} r \vee K_{a} \neg r\right)\right) .
$$

The Muddy Children Puzzle

Three children are outside playing. Two of them get mud on their forehead. They cannot see or feel the mud on their own foreheads, but can see who is dirty.

Three children are outside playing. Two of them get mud on their forehead. They cannot see or feel the mud on their own foreheads, but can see who is dirty.

Their mother enters the room and says "At least one of you have mud on your forehead".

Three children are outside playing. Two of them get mud on their forehead. They cannot see or feel the mud on their own foreheads, but can see who is dirty.

Their mother enters the room and says "At least one of you have mud on your forehead".

Then the children are repeatedly asked "do you know if you have mud on your forehead?"

Three children are outside playing. Two of them get mud on their forehead. They cannot see or feel the mud on their own foreheads, but can see who is dirty.

Their mother enters the room and says "At least one of you have mud on your forehead".

Then the children are repeatedly asked "do you know if you have mud on your forehead?"

What happens?

Three children are outside playing. Two of them get mud on their forehead. They cannot see or feel the mud on their own foreheads, but can see who is dirty.

Their mother enters the room and says "At least one of you have mud on your forehead".

Then the children are repeatedly asked "do you know if you have mud on your forehead?"

What happens?
Claim: After first question, the children answer "I don't know",

Three children are outside playing. Two of them get mud on their forehead. They cannot see or feel the mud on their own foreheads, but can see who is dirty.

Their mother enters the room and says "At least one of you have mud on your forehead".

Then the children are repeatedly asked "do you know if you have mud on your forehead?"

What happens?
Claim: After first question, the children answer "I don't know", after the second question the muddy children answer "I have mud on my forehead!" (but the clean child is still in the dark).

Three children are outside playing. Two of them get mud on their forehead. They cannot see or feel the mud on their own foreheads, but can see who is dirty.

Their mother enters the room and says "At least one of you have mud on your forehead".

Then the children are repeatedly asked "do you know if you have mud on your forehead?"

What happens?
Claim: After first question, the children answer "I don't know", after the second question the muddy children answer "I have mud on my forehead!" (but the clean child is still in the dark). Then the clean child says, "Oh, I must be clean."

Muddy Children

Assume:

- There are three children: Ann, Bob and Charles.
- (Only) Ann and Bob have mud on their forehead.

Muddy Children

Assume:

- There are three children: Ann, Bob and Charles.
- (Only) Ann and Bob have mud on their forehead.

Muddy Children

Assume:

- There are three children: Ann, Bob and Charles.
- (Only) Ann and Bob have mud on their forehead.

Muddy Children

Assume:

- There are three children: Ann, Bob and Charles.
- (Only) Ann and Bob have mud on their forehead.

Muddy Children

Assume:

- There are three children: Ann, Bob and Charles.
- (Only) Ann and Bob have mud on their forehead.

Muddy Children

Assume:

- There are three children: Ann, Bob and Charles.
- (Only) Ann and Bob have mud on their forehead.

Muddy Children

Assume:

- There are three children: Ann, Bob and Charles.
- (Only) Ann and Bob have mud on their forehead.

Muddy Children

Assume:

- There are three children: Ann, Bob and Charles.
- (Only) Ann and Bob have mud on their forehead.

Muddy Children

The 8 possible situations

Muddy Children

000

\bigcirc

The actual situation

Muddy Children

Ann's uncertainty

Muddy Children

Bob's uncertainty

Muddy Children

Muddy Children

Muddy Children

None of the children know if they are muddy

Muddy Children

None of the children know if they are muddy

Muddy Children

"At least one has mud on their forehead."

Muddy Children

"At least one has mud on their forehead."

Muddy Children

"Who has mud on their forehead?"

Muddy Children

"Who has mud on their forehead?"

Muddy Children

No one steps forward.

Muddy Children

No one steps forward.

Muddy Children

"Who has mud on their forehead?"

Muddy Children

Charles does not know he is clean.

Muddy Children

Ann and Bob step forward.

Muddy Children

Ann and Bob step forward.

Muddy Children

Now, Charles knows he is clean.

Epistemic Logic: The Language

φ is a formula of Epistemic Logic (\mathcal{L}) if it is of the form

$$
\varphi:=p|\neg \varphi| \varphi \wedge \psi \mid K_{a} \varphi
$$

Epistemic Logic: The Language

φ is a formula of Epistemic Logic (\mathcal{L}) if it is of the form

$$
\varphi:=p|\neg \varphi| \varphi \wedge \psi \mid K_{a} \varphi
$$

- $p \in A t$ is an atomic fact.
- "It is raining"
- "The talk is at 2PM"
- "The card on the table is a 7 of Hearts"

Epistemic Logic: The Language

φ is a formula of Epistemic Logic (\mathcal{L}) if it is of the form

$$
\varphi:=p|\neg \varphi| \varphi \wedge \psi \mid K_{a} \varphi
$$

- $p \in A t$ is an atomic fact.
- The usual propositional language $\left(\mathcal{L}_{0}\right)$

Epistemic Logic: The Language

φ is a formula of Epistemic Logic (\mathcal{L}) if it is of the form

$$
\varphi:=p|\neg \varphi| \varphi \wedge \psi \mid K_{a} \varphi
$$

- $p \in A t$ is an atomic fact.
- The usual propositional language $\left(\mathcal{L}_{0}\right)$
- $K_{a} \varphi$ is intended to mean "Agent a knows that φ is true".

Epistemic Logic: The Language

φ is a formula of Epistemic Logic (\mathcal{L}) if it is of the form

$$
\varphi:=p|\neg \varphi| \varphi \wedge \psi \mid K_{a} \varphi
$$

- $p \in A t$ is an atomic fact.
- The usual propositional language $\left(\mathcal{L}_{0}\right)$
- $K_{a} \varphi$ is intended to mean "Agent a knows that φ is true".
- The usual definitions for $\rightarrow, \vee, \leftrightarrow$ apply
- Define $L_{a} \varphi$ (or \hat{K}_{a}) as $\neg K_{a} \neg \varphi$

Epistemic Logic: The Language

φ is a formula of Epistemic Logic (\mathcal{L}) if it is of the form

$$
\varphi:=p|\neg \varphi| \varphi \wedge \psi \mid K_{a} \varphi
$$

$K_{a}(p \rightarrow q)$: "Ann knows that p implies q "
$K_{a} p \vee \neg K_{a} p:$
$K_{a} p \vee K_{a} \neg p:$

$$
\begin{array}{r}
L_{a} \varphi: \\
K_{a} L_{a} \varphi:
\end{array}
$$

Epistemic Logic: The Language

φ is a formula of Epistemic Logic (\mathcal{L}) if it is of the form

$$
\varphi:=p|\neg \varphi| \varphi \wedge \psi \mid K_{a} \varphi
$$

$K_{a}(p \rightarrow q)$: "Ann knows that p implies q "
$K_{a} p \vee \neg K_{a} p$: "either Ann does or does not know p "
$K_{a} p \vee K_{a} \neg p$: "Ann knows whether p is true"

$$
\begin{array}{r}
L_{a} \varphi: \\
K_{a} L_{a} \varphi:
\end{array}
$$

Epistemic Logic: The Language

φ is a formula of Epistemic $\operatorname{Logic}(\mathcal{L})$ if it is of the form

$$
\varphi:=p|\neg \varphi| \varphi \wedge \psi \mid K_{a} \varphi
$$

$K_{a}(p \rightarrow q)$: "Ann knows that p implies q "
$K_{a} p \vee \neg K_{a} p$: "either Ann does or does not know p "
$K_{a} p \vee K_{a} \neg p$: "Ann knows whether p is true"
$L_{a} \varphi$: " φ is an epistemic possibility"
$K_{a} L_{a} \varphi$: "Ann knows that she thinks φ is possible"

Epistemic Logic: Kripke Models

$$
\mathcal{M}=\left\langle W,\left\{R_{a}\right\}_{a \in \mathcal{A}}, V\right\rangle
$$

Epistemic Logic: Kripke Models

$$
\mathcal{M}=\left\langle W,\left\{R_{a}\right\}_{a \in \mathcal{A}}, V\right\rangle
$$

- $W \neq \emptyset$ is the set of all relevant situations (states of affairs, possible worlds)

Epistemic Logic: Kripke Models

$$
\mathcal{M}=\left\langle W,\left\{R_{a}\right\}_{a \in \mathcal{A}}, V\right\rangle
$$

- $W \neq \emptyset$ is the set of all relevant situations (states of affairs, possible worlds)
- $R_{a} \subseteq W \times W$ represents the agent a's knowledge

Epistemic Logic: Kripke Models

$$
\mathcal{M}=\left\langle W,\left\{R_{a}\right\}_{a \in \mathcal{A}}, V\right\rangle
$$

- $W \neq \emptyset$ is the set of all relevant situations (states of affairs, possible worlds)
- $R_{a} \subseteq W \times W$ represents the agent a's knowledge
- V : At $\rightarrow \wp(W)$ is a valuation function assigning propositional variables to worlds

Epistemic Logic: Truth in a Model

Given $\varphi \in \mathcal{L}$, a Kripke model $\mathcal{M}=\left\langle W,\left\{R_{a}\right\}_{a \in \mathcal{A}}, V\right\rangle$ and $w \in W$
$\mathcal{M}, w \models \varphi$ means "in \mathcal{M}, if the actual state is w, then φ is true"

Epistemic Logic: Truth in a Model

Given $\varphi \in \mathcal{L}$, a Kripke model $\mathcal{M}=\left\langle W,\left\{R_{a}\right\}_{a \in \mathcal{A}}, V\right\rangle$ and $w \in W$ $\mathcal{M}, w \models \varphi$ is defined as follows:

- $\mathcal{M}, w \models p$ iff $w \in V(p)$ (with $p \in A t$)
- $\mathcal{M}, w \models \neg \varphi$ if $\mathcal{M}, w \not \vDash \varphi$
- $\mathcal{M}, w \models \varphi \wedge \psi$ if $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$
- $\mathcal{M}, w \models K_{a} \varphi$ if for each $v \in W$, if $w R_{a} v$, then $\mathcal{M}, v \models \varphi$

Epistemic Logic: Truth in a Model

Given $\varphi \in \mathcal{L}$, a Kripke model $\mathcal{M}=\left\langle W,\left\{R_{a}\right\}_{a \in \mathcal{A}}, V\right\rangle$ and $w \in W$ $\mathcal{M}, w \models \varphi$ is defined as follows:
$\checkmark \mathcal{M}, w \models p$ iff $w \in V(p)$ (with $p \in A t$)

- $\mathcal{M}, w \models \neg \varphi$ if $\mathcal{M}, w \not \models \varphi$
- $\mathcal{M}, w \models \varphi \wedge \psi$ if $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$
- $\mathcal{M}, w \models K_{a} \varphi$ if for each $v \in W$, if $w R_{a} v$, then $\mathcal{M}, v \models \varphi$

Epistemic Logic: Truth in a Model

Given $\varphi \in \mathcal{L}$, a Kripke model $\mathcal{M}=\left\langle W,\left\{R_{a}\right\}_{a \in \mathcal{A}}, V\right\rangle$ and $w \in W$ $\mathcal{M}, w \models \varphi$ is defined as follows:

$$
\begin{aligned}
& \checkmark \mathcal{M}, w \models p \text { iff } w \in V(p) \text { (with } p \in A t \text {) } \\
& \checkmark \mathcal{M}, w \models \neg \varphi \text { if } \mathcal{M}, w \not \models \varphi \\
& \checkmark \mathcal{M}, w \models \varphi \wedge \psi \text { if } \mathcal{M}, w \models \varphi \text { and } \mathcal{M}, w \models \psi \\
& \checkmark \mathcal{M}, w \models K_{a} \varphi \text { if for each } v \in W \text {, if } w R_{a} v \text {, then } \mathcal{M}, v \models \varphi
\end{aligned}
$$

Epistemic Logic: Truth in a Model

Given $\varphi \in \mathcal{L}$, a Kripke model $\mathcal{M}=\left\langle W,\left\{R_{a}\right\}_{a \in \mathcal{A}}, V\right\rangle$ and $w \in W$ $\mathcal{M}, w \models \varphi$ is defined as follows:

```
\(\checkmark \mathcal{M}, w \models p\) iff \(w \in V(p)\) (with \(p \in A t\) )
\(\checkmark \mathcal{M}, w \models \neg \varphi\) if \(\mathcal{M}, w \mid \neq \varphi\)
\(\checkmark \mathcal{M}, w \models \varphi \wedge \psi\) if \(\mathcal{M}, w \models \varphi\) and \(\mathcal{M}, w \models \psi\)
\(\checkmark \mathcal{M}, w \models K_{a} \varphi\) if for each \(v \in W\), if \(w R_{a} v\), then \(\mathcal{M}, v \models \varphi\)
```


Epistemic Logic: Truth in a Model

Given $\varphi \in \mathcal{L}$, a Kripke model $\mathcal{M}=\left\langle W,\left\{R_{a}\right\}_{a \in \mathcal{A}}, V\right\rangle$ and $w \in W$ $\mathcal{M}, w \models \varphi$ is defined as follows:

$$
\begin{aligned}
& \checkmark \mathcal{M}, w \not \models p \text { iff } w \in V(p) \text { (with } p \in A t) \\
& \checkmark \mathcal{M}, w \models \neg \varphi \text { if } \mathcal{M}, w \not \models \varphi \\
& \checkmark \mathcal{M}, w \models \varphi \wedge \psi \text { if } \mathcal{M}, w \models \varphi \text { and } \mathcal{M}, w \models \psi \\
& \checkmark \mathcal{M}, w \models K_{a} \varphi \text { if for each } v \in W, \text { if } w R_{a} v, \text { then } \mathcal{M}, v \models \varphi \\
& \checkmark \mathcal{M}, w \models L_{a} \varphi \text { if there exists a } v \in W \text { such that } w R_{a} v \text { and } \\
& \mathcal{M}, v \models \varphi
\end{aligned}
$$

$K_{a} \varphi$: "Agent a is informed that φ ", "Agent a knows that φ "

$K_{a} \varphi$: "Agent a is informed that φ ", "Agent a knows that φ "
$\mathcal{M}, w \models K_{a} \varphi$ iff for all $v \in W$, if $w R_{a} v$ then $\mathcal{M}, v \models \varphi$
l.e., $R_{a}(w)=\left\{v \mid w R_{a} v\right\} \subseteq \llbracket \varphi \rrbracket_{\mathcal{M}}=\{v \mid \mathcal{M}, v \models \varphi\}$:
$K_{a} \varphi$: "Agent a is informed that φ ", "Agent a knows that φ "
$\mathcal{M}, w \models K_{a} \varphi$ iff for all $v \in W$, if $w R_{a} v$ then $\mathcal{M}, v \models \varphi$
I.e., $R_{a}(w)=\left\{v \mid w R_{a} v\right\} \subseteq \llbracket \varphi \rrbracket_{\mathcal{M}}=\{v \mid \mathcal{M}, v \models \varphi\}$:

- $w R_{a} v$ if "everything a knows in state w is true in v
$K_{a} \varphi$: "Agent a is informed that φ ", "Agent a knows that φ "
$\mathcal{M}, w \models K_{a} \varphi$ iff for all $v \in W$, if $w R_{a} v$ then $\mathcal{M}, v \models \varphi$
I.e., $R_{a}(w)=\left\{v \mid w R_{a} v\right\} \subseteq \llbracket \varphi \rrbracket_{\mathcal{M}}=\{v \mid \mathcal{M}, v \models \varphi\}$:
- $w R_{\mathrm{a}} v$ if "everything a knows in state w is true in v
- $w R_{a} v$ if "agent a has the same experiences and memories in both w and v "
$K_{a} \varphi$: "Agent a is informed that φ ", "Agent a knows that φ "
$\mathcal{M}, w \models K_{a} \varphi$ iff for all $v \in W$, if $w R_{a} v$ then $\mathcal{M}, v \models \varphi$
I.e., $R_{a}(w)=\left\{v \mid w R_{a} v\right\} \subseteq \llbracket \varphi \rrbracket_{\mathcal{M}}=\{v \mid \mathcal{M}, v \models \varphi\}$:
- $w R_{\mathrm{a}} v$ if "everything a knows in state w is true in v
- $w R_{\mathrm{a}} v$ if "agent a has the same experiences and memories in both w and v "
- $w R_{a} v$ if "agent a has cannot rule-out v, given her evidence and observations (at state w)"
$K_{a} \varphi$: "Agent a is informed that φ ", "Agent a knows that φ "
$\mathcal{M}, w \models K_{a} \varphi$ iff for all $v \in W$, if $w R_{a} v$ then $\mathcal{M}, v \models \varphi$
I.e., $R_{a}(w)=\left\{v \mid w R_{a} v\right\} \subseteq \llbracket \varphi \rrbracket_{\mathcal{M}}=\{v \mid \mathcal{M}, v \models \varphi\}$:
- $w R_{\mathrm{a}} v$ if "everything a knows in state w is true in v
- $w R_{\mathrm{a}} v$ if "agent a has the same experiences and memories in both w and v "
- $w R_{a} v$ if "agent a has cannot rule-out v, given her evidence and observations (at state w)"
- $w R_{a} v$ if "agent a is in the same local state in w and v "
$L_{a} \varphi$ iff there is a $v \in W$ such that $\mathcal{M}, v \models \varphi$
I.e., $R_{a}(w)=\left\{v \mid w R_{a} v\right\} \cap \llbracket \varphi \rrbracket_{\mathcal{M}}=\{v \mid \mathcal{M}, v \vDash \varphi\} \neq \emptyset$
$L_{a} \varphi$ iff there is a $v \in W$ such that $\mathcal{M}, v \vDash \varphi$
I.e., $R_{a}(w)=\left\{v \mid w R_{a} v\right\} \cap \llbracket \varphi \rrbracket_{\mathcal{M}}=\{v \mid \mathcal{M}, v \vDash \varphi\} \neq \emptyset$
- $L_{a} \varphi$: "Agent a thinks that φ might be true."
- $L_{a} \varphi$: "Agent a considers φ possible."
$L_{a} \varphi$ iff there is a $v \in W$ such that $\mathcal{M}, v \vDash \varphi$
I.e., $R_{a}(w)=\left\{v \mid w R_{a} v\right\} \cap \llbracket \varphi \rrbracket_{\mathcal{M}}=\{v \mid \mathcal{M}, v \models \varphi\} \neq \emptyset$
- Hadi://"Ag\&
- $\left\llcorner_{a} \varphi\right.$: "Agent a considers φ possible."
- $L_{a} \varphi$: "(according to the model), φ is consistent with what a knows $\left(\neg K_{a} \neg \varphi\right)$ ".

The Surprise Exam Paradox

A teacher announces to her student, a clever logician, that she will give him a surprise exam in a term of $n \geq 2$ days.

The Surprise Exam Paradox

A teacher announces to her student, a clever logician, that she will give him a surprise exam in a term of $n \geq 2$ days. He replies:

- you can't wait until day n to give the exam, because then I'd know on the morning of n that the exam must be that day;

The Surprise Exam Paradox

A teacher announces to her student, a clever logician, that she will give him a surprise exam in a term of $n \geq 2$ days. He replies:

- you can't wait until day n to give the exam, because then I'd know on the morning of n that the exam must be that day;
- you also can't wait until day $n-1$ to give the exam, because then I'd know on the morning of $n-1$ that it must be that day, having ruled out day n by the previous reasoning.

The Surprise Exam Paradox

A teacher announces to her student, a clever logician, that she will give him a surprise exam in a term of $n \geq 2$ days. He replies:

- you can't wait until day n to give the exam, because then I'd know on the morning of n that the exam must be that day;
- you also can't wait until day $n-1$ to give the exam, because then I'd know on the morning of $n-1$ that it must be that day, having ruled out day n by the previous reasoning.
- you also can't wait until day $n-2$ to give the exam, etc.

The Surprise Exam Paradox

A teacher announces to her student, a clever logician, that she will give him a surprise exam in a term of $n \geq 2$ days. He replies:

- you can't wait until day n to give the exam, because then I'd know on the morning of n that the exam must be that day;
- you also can't wait until day $n-1$ to give the exam, because then I'd know on the morning of $n-1$ that it must be that day, having ruled out day n by the previous reasoning.
- you also can't wait until day $n-2$ to give the exam, etc.

He concludes that the teacher cannot give him a surprise exam.

The Surprise Exam Paradox

A teacher announces to her student, a clever logician, that she will give him a surprise exam in a term of $n \geq 2$ days. He replies:

- you can't wait until day n to give the exam, because then I'd know on the morning of n that the exam must be that day;
- you also can't wait until day $n-1$ to give the exam, because then I'd know on the morning of $n-1$ that it must be that day, having ruled out day n by the previous reasoning.
- you also can't wait until day $n-2$ to give the exam, etc.

He concludes that the teacher cannot give him a surprise exam. But then he is surprised to receive an exam on, say, day $n-1$.

The Surprise Exam Paradox

A teacher announces to her student, a clever logician, that she will give him a surprise exam in a term of $n \geq 2$ days. He replies:

- you can't wait until day n to give the exam, because then I'd know on the morning of n that the exam must be that day;
- you also can't wait until day $n-1$ to give the exam, because then I'd know on the morning of $n-1$ that it must be that day, having ruled out day n by the previous reasoning.
- you also can't wait until day $n-2$ to give the exam, etc.

He concludes that the teacher cannot give him a surprise exam. But then he is surprised to receive an exam on, say, day $n-1$.

Question: what went wrong in the student's reasoning?

We will follow in the tradition of those who have formalized the prediction paradox in static epistemic/doxastic logic:
R. Binkley. The Surprise Examination in Modal Logic. Journal of Philosophy, 1968.
C. Harrison. 1969.. The Unanticipated Examination in View of Kripke's Semantics for Modal Logic. Philosophical Logic..
J. McLelland and C. Chihara. The Surprise Examination Paradox. Journal of Philosophical Logic, 1975.
R. Sorensen. Blindspots. Oxford University Press, 1988.

Our brief discussion here is based on a more detailed analysis in:
W. Holliday. Simplifying the Surprise Exam. 2013 (email for manuscript).

Step 1: Choosing the Formalism (language)

To formalize the paradoxes, we use the epistemic language

$$
\varphi::=p_{i}|\neg \varphi|(\varphi \wedge \varphi) \mid K_{i} \varphi
$$

where $i \in \mathbb{N}$.

Step 1: Choosing the Formalism (language)

To formalize the paradoxes, we use the epistemic language

$$
\varphi::=p_{i}|\neg \varphi|(\varphi \wedge \varphi) \mid K_{i} \varphi
$$

where $i \in \mathbb{N}$. For the surprise exam paradox, we read
$K_{i} \varphi$ as "the student knows on the morning of day i that φ^{\prime};
p_{i} as "there is an exam on the afternoon of day i ".

Step 1: Choosing the Formalism (language)

To formalize the paradoxes, we use the epistemic language

$$
\varphi::=p_{i}|\neg \varphi|(\varphi \wedge \varphi) \mid K_{i} \varphi
$$

where $i \in \mathbb{N}$. For the surprise exam paradox, we read
$K_{i} \varphi$ as "the student knows on the morning of day i that φ^{\prime};
p_{i} as "there is an exam on the afternoon of day i ".
For the designated student paradox, we read
$K_{i} \varphi$ as "the i-th student in line knows that φ ";
p_{i} as "there is a gold star on the back of the i-th student".

Step 1: Choosing the Formalism (reasoning system)

To formalize the reasoning in the paradoxes, we will use the minimal "normal" modal proof system K, extending propositional logic with the following rule for each $i \in \mathbb{N}$ (Chellas 1980, §4.1):

$$
\mathrm{RK}_{i} \frac{\left(\varphi_{1} \wedge \cdots \wedge \varphi_{m}\right) \rightarrow \psi}{\left(K_{i} \varphi_{1} \wedge \cdots \wedge K_{i} \varphi_{m}\right) \rightarrow K_{i} \psi},
$$

which states that if the premise is a theorem, so is the conclusion.

Step 1: Choosing the Formalism (reasoning system)

To formalize the reasoning in the paradoxes, we will use the minimal "normal" modal proof system K, extending propositional logic with the following rule for each $i \in \mathbb{N}$ (Chellas 1980, §4.1):

$$
\mathrm{RK}_{i} \frac{\left(\varphi_{1} \wedge \cdots \wedge \varphi_{m}\right) \rightarrow \psi}{\left(K_{i} \varphi_{1} \wedge \cdots \wedge K_{i} \varphi_{m}\right) \rightarrow K_{i} \psi},
$$

which states that if the premise is a theorem, so is the conclusion.
Intuitively, RK_{i} says that the student on day i (or the i-th student) knows all the logical consequences of what he knows.

Step 1: Choosing the Formalism (reasoning system)

To formalize the reasoning in the paradoxes, we will use the minimal "normal" modal proof system K, extending propositional logic with the following rule for each $i \in \mathbb{N}$ (Chellas 1980, §4.1):

$$
\mathrm{RK}_{i} \frac{\left(\varphi_{1} \wedge \cdots \wedge \varphi_{m}\right) \rightarrow \psi}{\left(K_{i} \varphi_{1} \wedge \cdots \wedge K_{i} \varphi_{m}\right) \rightarrow K_{i} \psi}
$$

which states that if the premise is a theorem, so is the conclusion.
Intuitively, RK_{i} says that the student on day i (or the i-th student) knows all the logical consequences of what he knows.

This "logical omniscience" assumption is obviously false for real, finite agents, but it is standardly assumed for the students in the surprise exam and designated student paradoxes. In any case, let us wait and see if this idealization distorts our analysis.

Step 1: Choosing the Formalism (reasoning system)

To formalize the reasoning involved in the paradox, we will use a simple modal proof system, extending propositional logic with the following rule for each $i \in \mathbb{N}$ (Chellas 1980, §4.1):

$$
\mathrm{RK}_{i} \frac{\left(\varphi_{1} \wedge \cdots \wedge \varphi_{m}\right) \rightarrow \psi}{\left(K_{i} \varphi_{1} \wedge \cdots \wedge K_{i} \varphi_{m}\right) \rightarrow K_{i} \psi}
$$

which states that if the premise is a theorem, so is the conclusion.
Intuitively, RK_{i} says that the student on day i (or the i-th student) knows all the logical consequences of what she knows.

In the $m=0$ case, RK_{i} is the standard rule of Necessitation $\left(\mathrm{Nec}_{i}\right)$, i.e., if ψ is a theorem, then $K_{i} \psi$ is a theorem, so the student on day i (or the i-th student) knows all the theorems.

Step 1: Choosing the Formalism (reasoning system)

To formalize the reasoning involved in the paradox, we will use a simple modal proof system, extending propositional logic with the following rule for each $i \in \mathbb{N}$ (Chellas 1980, §4.1):

$$
\mathrm{RK}_{i} \frac{\left(\varphi_{1} \wedge \cdots \wedge \varphi_{m}\right) \rightarrow \psi}{\left(K_{i} \varphi_{1} \wedge \cdots \wedge K_{i} \varphi_{m}\right) \rightarrow K_{i} \psi}
$$

which states that if the premise is a theorem, so is the conclusion.
Intuitively, RK_{i} says that the student on day i (or the i-th student) knows all the logical consequences of what she knows.

Later we will consider extensions of \mathbf{K} with axiom schemas such as $\mathbf{T}: K \varphi \rightarrow \varphi$. Given schemas $\Sigma_{1}, \ldots, \Sigma_{n}, \mathrm{~K} \Sigma_{1} \ldots \Sigma_{n}$ is the least extension of \mathbf{K} that includes all instances of $\Sigma_{1}, \ldots, \Sigma_{n}$.

Step 1: Choosing the Formalism (reasoning system)

A formula β is provable in $\mathbf{K} \Sigma_{1} \ldots \Sigma_{n}$ from a set of formulas Γ, written $\Gamma \vdash_{\mathbf{K} \Sigma_{1} \ldots \Sigma_{n}} \beta$, iff there is a sequence $\left\langle\chi_{1}, \ldots, \chi_{\text {I }}\right\rangle$ of formulas with $\beta=\chi_{\text {I }}$ such that for all $1 \leq k \leq I$, either:

Step 1: Choosing the Formalism (reasoning system)

A formula β is provable in $\mathbf{K} \Sigma_{1} \ldots \Sigma_{n}$ from a set of formulas Γ, written $\Gamma \vdash_{\mathbf{K} \Sigma_{1} \ldots \Sigma_{n}} \beta$, iff there is a sequence $\left\langle\chi_{1}, \ldots, \chi_{\text {I }}\right\rangle$ of formulas with $\beta=\chi_{\text {I }}$ such that for all $1 \leq k \leq I$, either:
(i) χ_{k} is an instance of a propositional tautology;

Step 1: Choosing the Formalism (reasoning system)

A formula β is provable in $\mathbf{K} \Sigma_{1} \ldots \Sigma_{n}$ from a set of formulas Γ, written $\Gamma \vdash_{K \Sigma_{1} \ldots \Sigma_{n}} \beta$, iff there is a sequence $\left\langle\chi_{1}, \ldots, \chi_{\prime}\right\rangle$ of formulas with $\beta=\chi_{I}$ such that for all $1 \leq k \leq I$, either:
(i) χ_{k} is an instance of a propositional tautology;
(ii) χ_{k} is an instance of one of the axiom schemas $\Sigma_{1}, \ldots, \Sigma_{n}$;

Step 1: Choosing the Formalism (reasoning system)

A formula β is provable in $\mathbf{K} \Sigma_{1} \ldots \Sigma_{n}$ from a set of formulas Γ, written $\Gamma \vdash_{\mathbf{K} \Sigma_{1} \ldots \Sigma_{n}} \beta$, iff there is a sequence $\left\langle\chi_{1}, \ldots, \chi_{\prime}\right\rangle$ of formulas with $\beta=\chi_{I}$ such that for all $1 \leq k \leq I$, either:
(i) χ_{k} is an instance of a propositional tautology;
(ii) χ_{k} is an instance of one of the axiom schemas $\Sigma_{1}, \ldots, \Sigma_{n}$;
(iii) $\chi_{k} \in \Gamma$;

Step 1: Choosing the Formalism (reasoning system)

A formula β is provable in $\mathbf{K} \Sigma_{1} \ldots \Sigma_{n}$ from a set of formulas Γ, written $\Gamma \vdash_{\mathbf{K} \Sigma_{1} \ldots \Sigma_{n}} \beta$, iff there is a sequence $\left\langle\chi_{1}, \ldots, \chi_{\prime}\right\rangle$ of formulas with $\beta=\chi_{I}$ such that for all $1 \leq k \leq I$, either:
(i) χ_{k} is an instance of a propositional tautology;
(ii) χ_{k} is an instance of one of the axiom schemas $\Sigma_{1}, \ldots, \Sigma_{n}$;
(iii) $\chi_{k} \in \Gamma$;
(iv) (RK) χ_{k} is $\left(K_{i} \varphi_{1} \wedge \cdots \wedge K_{i} \varphi_{m}\right) \rightarrow K_{i} \psi$ for some $i \in \mathbb{N}$, and for some $j<k, \chi_{j}$ is $\left(\varphi_{1} \wedge \cdots \wedge \varphi_{m}\right) \rightarrow \psi$ and $\vdash_{K \Sigma_{1} \ldots \Sigma_{n}} \chi_{j} ;$

Step 1: Choosing the Formalism (reasoning system)

A formula β is provable in $\mathbf{K} \Sigma_{1} \ldots \Sigma_{n}$ from a set of formulas Γ, written $\Gamma \vdash_{K \Sigma_{1} \ldots \Sigma_{n}} \beta$, iff there is a sequence $\left\langle\chi_{1}, \ldots, \chi_{\prime}\right\rangle$ of formulas with $\beta=\chi_{\text {I }}$ such that for all $1 \leq k \leq I$, either:
(i) χ_{k} is an instance of a propositional tautology;
(ii) χ_{k} is an instance of one of the axiom schemas $\Sigma_{1}, \ldots, \Sigma_{n}$;
(iii) $\chi_{k} \in \Gamma$;
(iv) (RK) χ_{k} is $\left(K_{i} \varphi_{1} \wedge \cdots \wedge K_{i} \varphi_{m}\right) \rightarrow K_{i} \psi$ for some $i \in \mathbb{N}$, and for some $j<k, \chi_{j}$ is $\left(\varphi_{1} \wedge \cdots \wedge \varphi_{m}\right) \rightarrow \psi$ and $\vdash_{K \Sigma_{1} \ldots \Sigma_{n}} \chi_{j} ;$
(v) (Modus Ponens) there are $i, j<k$ such that χ_{i} is $\chi_{j} \rightarrow \chi_{k}$.

Step 1: Choosing the Formalism (reasoning system)

A formula β is provable in $\mathbf{K} \Sigma_{1} \ldots \Sigma_{n}$ from a set of formulas Γ, written $\Gamma \vdash_{\boldsymbol{K} \Sigma_{1} \ldots \Sigma_{n}} \beta$, iff there is a sequence $\left\langle\chi_{1}, \ldots, \chi_{\prime}\right\rangle$ of formulas with $\beta=\chi_{I}$ such that for all $1 \leq k \leq I$, either:
(i) χ_{k} is an instance of a propositional tautology;
(ii) χ_{k} is an instance of one of the axiom schemas $\Sigma_{1}, \ldots, \Sigma_{n}$;
(iii) $\chi_{k} \in \Gamma$;
(iv) (RK) χ_{k} is $\left(K_{i} \varphi_{1} \wedge \cdots \wedge K_{i} \varphi_{m}\right) \rightarrow K_{i} \psi$ for some $i \in \mathbb{N}$, and for some $j<k, \chi_{j}$ is $\left(\varphi_{1} \wedge \cdots \wedge \varphi_{m}\right) \rightarrow \psi$ and $\vdash_{K \Sigma_{1} \ldots \Sigma_{n}} \chi_{j} ;$
(v) (Modus Ponens) there are $i, j<k$ such that χ_{i} is $\chi_{j} \rightarrow \chi_{k}$.

If there is no such proof, we write $\Gamma \vdash_{K \Sigma_{1} \ldots \Sigma_{n}} \beta$. As usual, β is a theorem of $\mathbf{K} \Sigma_{1} \ldots \Sigma_{n}$ iff β is provable from \emptyset, i.e., $\vdash_{\mathbf{K} \Sigma_{1} \ldots \Sigma_{n}} \beta$.

Step 1: Choosing the Formalism (reasoning system)

A formula β is provable in $\mathbf{K} \Sigma_{1} \ldots \Sigma_{n}$ from a set of formulas Γ, written $\Gamma \vdash_{\boldsymbol{K} \Sigma_{1} \ldots \Sigma_{n}} \beta$, iff there is a sequence $\left\langle\chi_{1}, \ldots, \chi_{\prime}\right\rangle$ of formulas with $\beta=\chi_{\text {I }}$ such that for all $1 \leq k \leq I$, either:
(i) χ_{k} is an instance of a propositional tautology;
(ii) χ_{k} is an instance of one of the axiom schemas $\Sigma_{1}, \ldots, \Sigma_{n}$;
(iii) $\chi_{k} \in \Gamma$;
(iv) (RK) χ_{k} is $\left(K_{i} \varphi_{1} \wedge \cdots \wedge K_{i} \varphi_{m}\right) \rightarrow K_{i} \psi$ for some $i \in \mathbb{N}$, and for some $j<k, \chi_{j}$ is $\left(\varphi_{1} \wedge \cdots \wedge \varphi_{m}\right) \rightarrow \psi$ and $\vdash_{K \Sigma_{1} \ldots \Sigma_{n}} \chi_{j}$;
(v) (Modus Ponens) there are $i, j<k$ such that χ_{i} is $\chi_{j} \rightarrow \chi_{k}$.

It is important to observe the requirement in (iv) that the formula χ_{j} to which the RK_{i} rule is applied must be a theorem of the logic.

Step 2: Formalizing the Assumptions $(n=2)$

Starting with the $n=2$ case, consider the following assumptions:

Step 2: Formalizing the Assumptions $(n=2)$

Starting with the $n=2$ case, consider the following assumptions:
(A) $K_{1}\left(\left(p_{1} \wedge \neg K_{1} p_{1}\right) \vee\left(p_{2} \wedge \neg K_{2} p_{2}\right)\right)$;
(B) $K_{1}\left(p_{2} \rightarrow K_{2} \neg p_{1}\right)$;
(C) $K_{1} K_{2}\left(p_{1} \vee p_{2}\right)$.

Step 2: Formalizing the Assumptions $(n=2)$

Starting with the $n=2$ case, consider the following assumptions:
(A) $K_{1}\left(\left(p_{1} \wedge \neg K_{1} p_{1}\right) \vee\left(p_{2} \wedge \neg K_{2} p_{2}\right)\right)$;
(B) $K_{1}\left(p_{2} \rightarrow K_{2} \neg p_{1}\right)$;
(C) $K_{1} K_{2}\left(p_{1} \vee p_{2}\right)$.

For the surprise exam, (A) states that the student knows on the morning of day 1 that the teacher's announcement is true.

Step 2: Formalizing the Assumptions $(n=2)$

Starting with the $n=2$ case, consider the following assumptions:
(A) $K_{1}\left(\left(p_{1} \wedge \neg K_{1} p_{1}\right) \vee\left(p_{2} \wedge \neg K_{2} p_{2}\right)\right)$;
(B) $K_{1}\left(p_{2} \rightarrow K_{2} \neg p_{1}\right)$;
(C) $K_{1} K_{2}\left(p_{1} \vee p_{2}\right)$.

For the surprise exam, (A) states that the student knows on the morning of day 1 that the teacher's announcement is true. (B) states that the student knows on the morning of day 1 that if the exam is on the afternoon of day 2 , then the student will know on the morning of day 2 that it was not on day 1 (on the basis of memory).

Step 2: Formalizing the Assumptions $(n=2)$

Starting with the $n=2$ case, consider the following assumptions:
(A) $K_{1}\left(\left(p_{1} \wedge \neg K_{1} p_{1}\right) \vee\left(p_{2} \wedge \neg K_{2} p_{2}\right)\right)$;
(B) $K_{1}\left(p_{2} \rightarrow K_{2} \neg p_{1}\right)$;
(C) $K_{1} K_{2}\left(p_{1} \vee p_{2}\right)$.

For the surprise exam, (A) states that the student knows on the morning of day 1 that the teacher's announcement is true. (B) states that the student knows on the morning of day 1 that if the exam is on the afternoon of day 2 , then the student will know on the morning of day 2 that it was not on day 1 (on the basis of memory). Finally, (C) states that the student knows on the morning of day 1 that she will know on the morning of day 2 the part of the teacher's announcement about an exam.

Step 2: Formalizing the Assumptions $(n=2)$

Starting with the $n=2$ case, consider the following assumptions:
(A) $K_{1}\left(\left(p_{1} \wedge \neg K_{1} p_{1}\right) \vee\left(p_{2} \wedge \neg K_{2} p_{2}\right)\right)$;
(B) $K_{1}\left(p_{2} \rightarrow K_{2} \neg p_{1}\right)$;
(C) $K_{1} K_{2}\left(p_{1} \vee p_{2}\right)$.

For the designated student, (A) states that student 1 knows that the teacher's announcement is true.

Step 2: Formalizing the Assumptions $(n=2)$

Starting with the $n=2$ case, consider the following assumptions:
(A) $K_{1}\left(\left(p_{1} \wedge \neg K_{1} p_{1}\right) \vee\left(p_{2} \wedge \neg K_{2} p_{2}\right)\right)$;
(B) $K_{1}\left(p_{2} \rightarrow K_{2} \neg p_{1}\right)$;
(C) $K_{1} K_{2}\left(p_{1} \vee p_{2}\right)$.

For the designated student, (A) states that student 1 knows that the teacher's announcement is true. (B) states that student 1 knows that if student 2 has the gold star, then student 2 knows that student 1 does not have the gold star (on the basis of seeing the silver star on student 1's back).

Step 2: Formalizing the Assumptions $(n=2)$

Starting with the $n=2$ case, consider the following assumptions:
(A) $K_{1}\left(\left(p_{1} \wedge \neg K_{1} p_{1}\right) \vee\left(p_{2} \wedge \neg K_{2} p_{2}\right)\right)$;
(B) $K_{1}\left(p_{2} \rightarrow K_{2} \neg p_{1}\right)$;
(C) $K_{1} K_{2}\left(p_{1} \vee p_{2}\right)$.

For the designated student, (A) states that student 1 knows that the teacher's announcement is true. (B) states that student 1 knows that if student 2 has the gold star, then student 2 knows that student 1 does not have the gold star (on the basis of seeing the silver star on student 1's back). (C) states that student 1 knows that student 2 knows that one of them has the gold star.

Step 3: Showing Inconsistency with a Proof $(n=2)$

Let us first show: $\{(A),(B),(C)\} \vdash_{\mathbf{K}} K_{1}\left(p_{1} \wedge \neg K_{1} p_{1}\right)$

Step 3: Showing Inconsistency with a Proof $(n=2)$

Let us first show: $\{(A),(B),(C)\} \vdash_{\mathbf{K}} K_{1}\left(p_{1} \wedge \neg K_{1} p_{1}\right)$
(A) $K_{1}\left(\left(p_{1} \wedge \neg K_{1} p_{1}\right) \vee\left(p_{2} \wedge \neg K_{2} p_{2}\right)\right) \quad$ premise
(B) $K_{1}\left(p_{2} \rightarrow K_{2} \neg p_{1}\right) \quad$ premise
(C) $K_{1} K_{2}\left(p_{1} \vee p_{2}\right)$ premise

Step 3: Showing Inconsistency with a Proof $(n=2)$

Let us first show: $\{(A),(B),(C)\} \vdash_{\mathbf{K}} K_{1}\left(p_{1} \wedge \neg K_{1} p_{1}\right)$
(A) $K_{1}\left(\left(p_{1} \wedge \neg K_{1} p_{1}\right) \vee\left(p_{2} \wedge \neg K_{2} p_{2}\right)\right) \quad$ premise
(B) $K_{1}\left(p_{2} \rightarrow K_{2} \neg p_{1}\right) \quad$ premise
(C) $K_{1} K_{2}\left(p_{1} \vee p_{2}\right)$ premise
(1.1) $\left.\left(\left(p_{1} \vee p_{2}\right) \wedge \neg p_{1}\right) \rightarrow p_{2}\right) \quad$ propositional tautology

Step 3: Showing Inconsistency with a Proof $(n=2)$

Let us first show: $\{(A),(B),(C)\} \vdash_{\mathbf{K}} K_{1}\left(p_{1} \wedge \neg K_{1} p_{1}\right)$
(A) $K_{1}\left(\left(p_{1} \wedge \neg K_{1} p_{1}\right) \vee\left(p_{2} \wedge \neg K_{2} p_{2}\right)\right) \quad$ premise
(B) $K_{1}\left(p_{2} \rightarrow K_{2} \neg p_{1}\right) \quad$ premise
(C) $K_{1} K_{2}\left(p_{1} \vee p_{2}\right)$ premise
(1.1) $\left.\left(\left(p_{1} \vee p_{2}\right) \wedge \neg p_{1}\right) \rightarrow p_{2}\right) \quad$ propositional tautology
(1.2) $\left(K_{2}\left(p_{1} \vee p_{2}\right) \wedge K_{2} \neg p_{1}\right) \rightarrow K_{2} p_{2} \quad$ from (1.1) by RK_{2}

Step 3: Showing Inconsistency with a Proof $(n=2)$

Let us first show: $\{(A),(B),(C)\} \vdash_{\mathbf{K}} K_{1}\left(p_{1} \wedge \neg K_{1} p_{1}\right)$
(A) $K_{1}\left(\left(p_{1} \wedge \neg K_{1} p_{1}\right) \vee\left(p_{2} \wedge \neg K_{2} p_{2}\right)\right) \quad$ premise
(B) $K_{1}\left(p_{2} \rightarrow K_{2} \neg p_{1}\right) \quad$ premise
(C) $K_{1} K_{2}\left(p_{1} \vee p_{2}\right)$ premise
(1) $\left(K_{2}\left(p_{1} \vee p_{2}\right) \wedge K_{2} \neg p_{1}\right) \rightarrow K_{2} p_{2} \quad$ using PL and RK_{2}

Step 3: Showing Inconsistency with a Proof $(n=2)$

Let us first show: $\{(A),(B),(C)\} \vdash_{\mathbf{K}} K_{1}\left(p_{1} \wedge \neg K_{1} p_{1}\right)$
(A) $K_{1}\left(\left(p_{1} \wedge \neg K_{1} p_{1}\right) \vee\left(p_{2} \wedge \neg K_{2} p_{2}\right)\right) \quad$ premise
(B) $K_{1}\left(p_{2} \rightarrow K_{2} \neg p_{1}\right) \quad$ premise
(C) $K_{1} K_{2}\left(p_{1} \vee p_{2}\right)$ premise
(1) $\left(K_{2}\left(p_{1} \vee p_{2}\right) \wedge K_{2} \neg p_{1}\right) \rightarrow K_{2} p_{2} \quad$ using PL and RK_{2}
(2) $K_{1}\left(\left(K_{2}\left(p_{1} \vee p_{2}\right) \wedge K_{2} \neg p_{1}\right) \rightarrow K_{2} p_{2}\right) \quad$ from (1) by Nec_{1}

Step 3: Showing Inconsistency with a Proof $(n=2)$

Let us first show: $\{(A),(B),(C)\} \vdash_{\mathbf{K}} K_{1}\left(p_{1} \wedge \neg K_{1} p_{1}\right)$
(A) $K_{1}\left(\left(p_{1} \wedge \neg K_{1} p_{1}\right) \vee\left(p_{2} \wedge \neg K_{2} p_{2}\right)\right) \quad$ premise
(B) $K_{1}\left(p_{2} \rightarrow K_{2} \neg p_{1}\right) \quad$ premise
(C) $K_{1} K_{2}\left(p_{1} \vee p_{2}\right)$ premise
(1) $\left(K_{2}\left(p_{1} \vee p_{2}\right) \wedge K_{2} \neg p_{1}\right) \rightarrow K_{2} p_{2} \quad$ using PL and RK_{2}
(2) $K_{1}\left(\left(K_{2}\left(p_{1} \vee p_{2}\right) \wedge K_{2} \neg p_{1}\right) \rightarrow K_{2} p_{2}\right) \quad$ from (1) by Nec_{1}
(3) $K_{1}\left(K_{2} \neg p_{1} \rightarrow K_{2} p_{2}\right) \quad$ from (C) and (2) using PL and RK_{1}

Step 3: Showing Inconsistency with a Proof $(n=2)$

Let us first show: $\{(A),(B),(C)\} \vdash_{\mathbf{K}} K_{1}\left(p_{1} \wedge \neg K_{1} p_{1}\right)$
(A) $K_{1}\left(\left(p_{1} \wedge \neg K_{1} p_{1}\right) \vee\left(p_{2} \wedge \neg K_{2} p_{2}\right)\right) \quad$ premise
(B) $K_{1}\left(p_{2} \rightarrow K_{2} \neg p_{1}\right) \quad$ premise
(C) $K_{1} K_{2}\left(p_{1} \vee p_{2}\right)$ premise
(1) $\left(K_{2}\left(p_{1} \vee p_{2}\right) \wedge K_{2} \neg p_{1}\right) \rightarrow K_{2} p_{2} \quad$ using PL and RK_{2}
(2) $K_{1}\left(\left(K_{2}\left(p_{1} \vee p_{2}\right) \wedge K_{2} \neg p_{1}\right) \rightarrow K_{2} p_{2}\right) \quad$ from (1) by Nec_{1}
(3) $K_{1}\left(K_{2} \neg p_{1} \rightarrow K_{2} p_{2}\right) \quad$ from (C) and (2) using PL and RK_{1}
(4) $K_{1} \neg\left(p_{2} \wedge \neg K_{2} p_{2}\right) \quad$ from (B) and (3) using PL and RK_{1}

Step 3: Showing Inconsistency with a Proof $(n=2)$

Let us first show: $\{(A),(B),(C)\} \vdash_{\mathbf{K}} K_{1}\left(p_{1} \wedge \neg K_{1} p_{1}\right)$
(A) $K_{1}\left(\left(p_{1} \wedge \neg K_{1} p_{1}\right) \vee\left(p_{2} \wedge \neg K_{2} p_{2}\right)\right) \quad$ premise
(B) $K_{1}\left(p_{2} \rightarrow K_{2} \neg p_{1}\right) \quad$ premise
(C) $K_{1} K_{2}\left(p_{1} \vee p_{2}\right)$ premise
(1) $\left(K_{2}\left(p_{1} \vee p_{2}\right) \wedge K_{2} \neg p_{1}\right) \rightarrow K_{2} p_{2} \quad$ using PL and RK_{2}
(2) $K_{1}\left(\left(K_{2}\left(p_{1} \vee p_{2}\right) \wedge K_{2} \neg p_{1}\right) \rightarrow K_{2} p_{2}\right) \quad$ from (1) by Nec_{1}
(3) $K_{1}\left(K_{2} \neg p_{1} \rightarrow K_{2} p_{2}\right) \quad$ from (C) and (2) using PL and RK_{1}
(4) $K_{1} \neg\left(p_{2} \wedge \neg K_{2} p_{2}\right)$ from (B) and (3) using PL and RK_{1}
(5) $K_{1}\left(p_{1} \wedge \neg K_{1} p_{1}\right) \quad$ from (A) and (4) using PL and RK_{1}

Step 3: Showing Inconsistency with a Proof $(n=2)$

Given $\{(A),(B),(C)\} \vdash_{\mathbf{K}} K_{1}\left(p_{1} \wedge \neg K_{1} p_{1}\right)$, although we haven't yet derived a contradiction, we have derived something paradoxical.

Step 3: Showing Inconsistency with a Proof $(n=2)$

Given $\{(A),(B),(C)\} \vdash_{\mathbf{K}} K_{1}\left(p_{1} \wedge \neg K_{1} p_{1}\right)$, although we haven't yet derived a contradiction, we have derived something paradoxical.

If we just add the "factivity" axiom $\mathrm{T}_{1}, K_{1} \varphi \rightarrow \varphi$, or the "weak factivity" axiom $J_{1}, K_{1} \neg K_{1} \varphi \rightarrow \neg K_{1} \varphi$ (e.g., reading K as belief instead of knowledge), then we can derive a contradiction:

$$
\{(A),(B),(C)\} \vdash_{\mathbf{k} \mathbf{T}_{\mathbf{1}}} \perp \text { and }\{(A),(B),(C)\} \vdash \vdash_{\mathbf{K J}_{1}} \perp
$$

Step 3: Showing Inconsistency with a Proof $(n=2)$

Given $\{(A),(B),(C)\} \vdash_{\mathbf{K}} K_{1}\left(p_{1} \wedge \neg K_{1} p_{1}\right)$, although we haven't yet derived a contradiction, we have derived something paradoxical.

If we just add the "factivity" axiom $\mathrm{T}_{1}, K_{1} \varphi \rightarrow \varphi$, or the "weak factivity" axiom $J_{1}, K_{1} \neg K_{1} \varphi \rightarrow \neg K_{1} \varphi$ (e.g., reading K as belief instead of knowledge), then we can derive a contradiction:

$$
\{(A),(B),(C)\} \vdash_{\mathbf{K} \mathbf{T}_{1}} \perp \text { and }\{(A),(B),(C)\} \vdash_{\mathbf{K J}_{1}} \perp .
$$

Thus, we must reject either $(A),(B),(C)$, or the rule $\mathrm{RK}_{i} \ldots$

Normal Modal Logics

A polymodal logic extending propositional logic with a set $\left\{\square_{i}\right\}_{i \in I}$ of unary sentential operators is normal iff (i) for all $i \in I$,

$$
\mathrm{RK}_{i} \frac{\left(\varphi_{1} \wedge \cdots \wedge \varphi_{m}\right) \rightarrow \psi}{\left(\square_{i} \varphi_{1} \wedge \cdots \wedge \square_{i} \varphi_{m}\right) \rightarrow \square_{i} \psi}
$$

is an admissible rule and (ii) the logic is closed under uniform substitution: if φ is a theorem, so is the result of uniformly substituting formulas for the atomic sentences in φ.

The "Problem" of Logical Omniscience

The rule

$$
\operatorname{RK}_{i} \frac{\left(\varphi_{1} \wedge \cdots \wedge \varphi_{m}\right) \rightarrow \psi}{\left(K_{i} \varphi_{1} \wedge \cdots \wedge K_{i} \varphi_{m}\right) \rightarrow K_{i} \psi}
$$

reflects so-called (synchronic) logical omniscience: the agent knows (at time t) all the consequences of what she knows (at t).

The "Problem" of Logical Omniscience

The rule

$$
\operatorname{RK}_{i} \frac{\left(\varphi_{1} \wedge \cdots \wedge \varphi_{m}\right) \rightarrow \psi}{\left(K_{i} \varphi_{1} \wedge \cdots \wedge K_{i} \varphi_{m}\right) \rightarrow K_{i} \psi}
$$

reflects so-called (synchronic) logical omniscience: the agent knows (at time t) all the consequences of what she knows (at t).

Given this, there are two ways to view K_{i} : as representing either the idealized (implicit, "virtual") knowledge of ordinary agents, or the ordinary knowledge of idealized agents. For discussion, see
R. Stalnaker.
1991. "The Problem of Logical Omniscience, I," Synthese.
2006. "On Logics of Knowledge and Belief," Philosophical Studies.

The "Problem" of Logical Omniscience

The rule

$$
\operatorname{RK}_{i} \frac{\left(\varphi_{1} \wedge \cdots \wedge \varphi_{m}\right) \rightarrow \psi}{\left(K_{i} \varphi_{1} \wedge \cdots \wedge K_{i} \varphi_{m}\right) \rightarrow K_{i} \psi}
$$

reflects so-called (synchronic) logical omniscience: the agent knows (at time t) all the consequences of what she knows (at t).

There is now a large literature on alternative frameworks for representing the knowledge of agents with bounded rationality, who do not always "put two and two together" and therefore lack the logical omniscience reflected by RK_{i}. See, for example:
J. Y. Halpern and R. Pucella. 2011. Dealing with Logical Omniscience: Expressiveness and Pragmatics. Artificial Intelligence.

Logical Omniscience

- From $\varphi \leftrightarrow \psi$ infer $K_{i} \varphi \leftrightarrow K_{i} \psi$

Logical Omniscience

- From $\varphi \leftrightarrow \psi$ infer $K_{i} \varphi \leftrightarrow K_{i} \psi$
- From $\varphi \rightarrow \psi$ infer $K_{i} \varphi \rightarrow K_{i} \psi$

Logical Omniscience

- From $\varphi \leftrightarrow \psi$ infer $K_{i} \varphi \leftrightarrow K_{i} \psi$
- From $\varphi \rightarrow \psi$ infer $K_{i} \varphi \rightarrow K_{i} \psi$
- $\left(K_{i}(\varphi \rightarrow \psi) \wedge K_{i} \varphi\right) \rightarrow K_{i} \psi$

Logical Omniscience

- From $\varphi \leftrightarrow \psi$ infer $K_{i} \varphi \leftrightarrow K_{i} \psi$
- From $\varphi \rightarrow \psi$ infer $K_{i} \varphi \rightarrow K_{i} \psi$
- $\left(K_{i}(\varphi \rightarrow \psi) \wedge K_{i} \varphi\right) \rightarrow K_{i} \psi$
- From φ infer $K_{i} \varphi$

Logical Omniscience

- From $\varphi \leftrightarrow \psi$ infer $K_{i} \varphi \leftrightarrow K_{i} \psi$
- From $\varphi \rightarrow \psi$ infer $K_{i} \varphi \rightarrow K_{i} \psi$
- $\left(K_{i}(\varphi \rightarrow \psi) \wedge K_{i} \varphi\right) \rightarrow K_{i} \psi$
- From φ infer $K_{i} \varphi$
- $K_{i} \top$

Logical Omniscience

- From $\varphi \leftrightarrow \psi$ infer $K_{i} \varphi \leftrightarrow K_{i} \psi$
- From $\varphi \rightarrow \psi$ infer $K_{i} \varphi \rightarrow K_{i} \psi$
- $\left(K_{i}(\varphi \rightarrow \psi) \wedge K_{i} \varphi\right) \rightarrow K_{i} \psi$
- From φ infer $K_{i} \varphi$
- $K_{i} \top$
- $\left(K_{i} \varphi \wedge K_{i} \psi\right) \rightarrow K_{i}(\varphi \wedge \psi)$

Dealing with Logical Omniscience

- Syntactic approaches: an agents knowledge is represented by a set of formulas (intuitively, the set of formulas she knows);

Dealing with Logical Omniscience

- Syntactic approaches: an agents knowledge is represented by a set of formulas (intuitively, the set of formulas she knows);
- Awareness: an agent knows φ if she is aware of φ and φ is true in all the worlds she considers possible;

Dealing with Logical Omniscience

- Syntactic approaches: an agents knowledge is represented by a set of formulas (intuitively, the set of formulas she knows);
- Awareness: an agent knows φ if she is aware of φ and φ is true in all the worlds she considers possible;
- Algorithmic knowledge: an agent knows φ if her knowledge algorithm returns "Yes" on a query of φ; and

Dealing with Logical Omniscience

- Syntactic approaches: an agents knowledge is represented by a set of formulas (intuitively, the set of formulas she knows);
- Awareness: an agent knows φ if she is aware of φ and φ is true in all the worlds she considers possible;
- Algorithmic knowledge: an agent knows φ if her knowledge algorithm returns "Yes" on a query of φ; and
- Impossible worlds: an agent may consider possible worlds that are logically inconsistent (for example, where p and $\neg p$ may both be true).

Dealing with Logical Omniscience

- Syntactic approaches: an agents knowledge is represented by a set of formulas (intuitively, the set of formulas she knows);
- Awareness: an agent knows φ if she is aware of φ and φ is true in all the worlds she considers possible;
- Algorithmic knowledge: an agent knows φ if her knowledge algorithm returns "Yes" on a query of φ; and
- Impossible worlds: an agent may consider possible worlds that are logically inconsistent (for example, where p and $\neg p$ may both be true).

Non-Normal Modal Logics

Dealing with Logical Omniscience

- Syntactic approaches: $\mathcal{M}, w \models K_{i} \varphi$ iff $\varphi \in \mathcal{C}_{i}(w)$

Dealing with Logical Omniscience

- Syntactic approaches: $\mathcal{M}, w \vDash K_{i} \varphi$ iff $\varphi \in \mathcal{C}_{i}(w)$
- Awareness structures: $\mathcal{M}, w \models K_{i} \varphi$ iff for all $v \in W$, if $w R_{i} v$ then $\mathcal{M}, v \vDash \varphi$ and $\varphi \in \mathcal{A}_{i}(w)$

Dealing with Logical Omniscience

- Syntactic approaches: $\mathcal{M}, w \vDash K_{i} \varphi$ iff $\varphi \in \mathcal{C}_{i}(w)$
- Awareness structures: $\mathcal{M}, w \models K_{i} \varphi$ iff for all $v \in W$, if $w R_{i} v$ then $\mathcal{M}, v \vDash \varphi$ and $\varphi \in \mathcal{A}_{i}(w)$
- Algorithmic knowledge: $\mathcal{M}, w \models K_{i} \varphi$ iff $\mathrm{A}_{i}(w, \varphi)=$ Yes

Dealing with Logical Omniscience

- Syntactic approaches: $\mathcal{M}, w \models K_{i} \varphi$ iff $\varphi \in \mathcal{C}_{i}(w)$
- Awareness structures: $\mathcal{M}, w \models K_{i} \varphi$ iff for all $v \in W$, if $w R_{i} v$ then $\mathcal{M}, v \vDash \varphi$ and $\varphi \in \mathcal{A}_{i}(w)$
- Algorithmic knowledge: $\mathcal{M}, w \models K_{i} \varphi$ iff $\mathrm{A}_{i}(w, \varphi)=$ Yes
- Impossible worlds: $\mathcal{M}, w \vDash K_{i} \varphi$ iff if $w \in N$, then for all $v \in W$, if $w R_{i} v$ and $v \in N$ then $\mathcal{M}, v \vDash \varphi$
$\mathcal{M}, w \models K_{i} \varphi$ iff if $w \notin N$, then $\varphi \in \mathcal{C}_{i}(w)$

Justification Logic (1)

$t: \varphi$: " t is a justification/proof for φ "
S. Artemov and M. Fitting. Justification logic. The Stanford Encyclopedia of Philosophy, 2012.
S. Artemov. Explicit provability and constructive semantics. The Bulletin of Symbolic Logic 7 (2001) 136.
M. Fitting. The logic of proofs, semantically. Annals of Pure and Applied Logic $132(2005) 125$.

Justification Logic (2)

$$
\begin{aligned}
t & :=c|x| t+s|!t| t \cdot s \\
\varphi & :=p|\varphi \wedge \psi| \neg \varphi \mid t: \varphi
\end{aligned}
$$

Justification Logic (2)

$$
\begin{aligned}
t & :=c|x| t+s|!t| t \cdot s \\
\varphi & :=p|\varphi \wedge \psi| \neg \varphi \mid t: \varphi
\end{aligned}
$$

Justification Logic:

- $t: \varphi \rightarrow \varphi$
- $t:(\varphi \rightarrow \psi) \rightarrow(s: \varphi \rightarrow t \cdot s: \psi)$
- $t: \varphi \rightarrow(t+s): \varphi$
- $t: \varphi \rightarrow(s+t): \varphi$
- $t: \varphi \rightarrow!t: t: \varphi$

Justification Logic (2)

$$
\begin{aligned}
t & :=c|x| t+s|!t| t \cdot s \\
\varphi & :=p|\varphi \wedge \psi| \neg \varphi \mid t: \varphi
\end{aligned}
$$

Justification Logic:

- $t: \varphi \rightarrow \varphi$
- $t:(\varphi \rightarrow \psi) \rightarrow(s: \varphi \rightarrow t \cdot s: \psi)$
- $t: \varphi \rightarrow(t+s): \varphi$
- $t: \varphi \rightarrow(s+t): \varphi$
- $t: \varphi \rightarrow!t: t: \varphi$

Internalization: if $\vdash_{J L} \varphi$ then there is a proof polynomial t such that $\vdash_{J L} t: \varphi$
Realization Theorem: if $\vdash_{\mathbf{S 4}} \varphi$ then there is a proof polynomial t such that $\vdash_{J L} t: \varphi$

Justification Logic (3)

Fitting Semantics: $\mathcal{M}=\langle W, R, \mathcal{E}, V\rangle$

- $W \neq \emptyset$
- $R \subseteq W \times W$
- $\mathcal{E}: W \times$ ProofTerms $\rightarrow \wp\left(\mathcal{L}_{J L}\right)$
- $V:$ At $\rightarrow \wp(W)$
$\mathcal{M}, w \models t: \varphi$ iff for all v, if $w R v$ then $\mathcal{M}, v \models \varphi$ and $\varphi \in \mathcal{E}(w, t)$

Justification Logic (3)

Monotonicity For all $w, v \in W$, if $w R v$ then for all proof polynomials $t, \mathcal{E}(w, t) \subseteq \mathcal{E}(v, t)$.

Application For all proof polynomials s, t and for each $w \in W$, if $\varphi \rightarrow \psi \in \mathcal{E}(w, t)$ and $\varphi \in \mathcal{E}(w, s)$, then $\psi \in \mathcal{E}(w, t \cdot s)$

Proof Checker For all proof polynomials t and for each $w \in W$, if $\varphi \in \mathcal{E}(w, t)$, then $t: \varphi \in \mathcal{E}(w,!t)$.

Sum For all proof polynomials s, t and for each $w \in W$, $\mathcal{E}(w, s) \cup \mathcal{E}(w, t) \subseteq \mathcal{E}(w, s+t)$.

Approaches

- Lack of awareness
- Lack of computational power
- Imperfect understanding of the model

