Propositional and First Order Logic

Notes for PHIL 478M

Eric Pacuit Department of Philosophy University of Maryland, College Park pacuit.org epacuit@umd.edu

August 31, 2015

1 Propositional Logic

Suppose that At is a (finite or countable) set of **atomic propositions**. Propositional formulas are defined inductively:

- If $P \in At$, then P is a propositional formula.
- If φ is a propositional formulas, then so is $\neg \varphi$.
- If φ, ψ are propositional formulas, then so are $\varphi \land \psi, \varphi \lor \psi$, and $\varphi \to \psi$.
- Nothing else is a propositional formula.

Rather than writing out the full inductive definition, it is common to define a formal language by specifying the (context-free) grammar that generates the language:

Definition 1.1 (Propositional Formulas) Suppose that At is a set of atomic propositions. Let $\mathcal{L}(At)$ be the smallest set of formulas defined by the following grammar:

$$P \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi$$

where $P \in At$. We write \mathcal{L} instead of $\mathcal{L}(At)$ when the set of atomic propositions is understood.

Definition 1.2 (Propositional Valuation) A propositional valuation is a function $V : At \rightarrow \{1,0\}$. We extend a propositional valuation to a all propositional formulas as follows: $\overline{V} : \mathcal{L}(At) \rightarrow \{0,1\}$ as follows:

• $\overline{V}(P) = V(P)$ for all $P \in \mathsf{At}$

•
$$\overline{V}(\neg \varphi) = \begin{cases} 1 & \text{if } \overline{V}(\varphi) = 0\\ 0 & \text{if } \overline{V}(\varphi) = 1 \end{cases}$$

•
$$\overline{V}(\varphi \land \psi) = \begin{cases} 1 & \text{if } \overline{V}(\varphi) = 1 \text{ and } \overline{V}(\psi) = 1 \\ 0 & \text{otherwise} \end{cases}$$

• $\overline{V}(\varphi \lor \psi) = \begin{cases} 1 & \text{if } \overline{V}(\varphi) = 1 \text{ or } \overline{V}(\psi) = 1 \\ 0 & \text{otherwise} \end{cases}$
• $\overline{V}(\varphi \to \psi) = \begin{cases} 0 & \text{if } \overline{V}(\varphi) = 1 \text{ and } \overline{V}(\psi) = 0 \\ 1 & \text{otherwise} \end{cases}$

To simplify the notation, we often write V for both the propositional valuation and its extension to the full set of propositional formulas.

Sometimes it is convenient to include two special atomic propositions ' \perp ' and ' \top ', meaning 'false' and 'true', respectively. We can either think of these atomic proposition as being defined (\perp is $P \land \neg P$ and \top is $P \lor \neg P$ where $P \in \mathsf{At}$) or as special atomic propositions where for all propositional valuations, $V(\perp) = 0$ and $V(\top) = 1$.

We say that a set Γ of propositional formulas is **satisfiable** if all the formulas in Γ can be true at the same time, i.e., there is a propositional valuation V such that for all $\varphi \in \Gamma$, $V(\varphi) = 1$. A formula $\varphi \in \Gamma$ is **valid** if for all propositional valuations V, $V(\varphi) = 1$.

Definition 1.3 (Logical Consequence) Suppose that Γ is a set propositional formulas. We say that φ is a logical consequence of Γ , denoted $\Gamma \models \varphi$, provided for all propositional valuations V, if for all $\psi \in \Gamma$, $V(\psi) = 1$, then $V(\varphi) = 1$.

There are many different types of axiomatizations for propositional logic (e.g., Hilbert-style deductions, Natural deduction systems, Gentzen Systems, Tableaux). Consider the following set of *axiom schemes* and rule.

1.
$$\alpha \rightarrow (\beta \rightarrow \alpha)$$

2. $(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$
3. $\perp \rightarrow \alpha$
4. $(\alpha \land \psi) \rightarrow \alpha$
5. $(\alpha \land \psi) \rightarrow \alpha$
5. $(\alpha \land \beta) \rightarrow \beta$
6. $\alpha \rightarrow (\psi \rightarrow (\alpha \land \beta))$
7. $\alpha \rightarrow (\alpha \lor \beta)$
8. $\psi \rightarrow (\alpha \lor \beta)$
9. $(\alpha \rightarrow \bot) \rightarrow ((\beta \rightarrow \bot) \rightarrow ((\alpha \lor \beta) \rightarrow \bot))$
10. $((\alpha \rightarrow \bot) \rightarrow \bot) \rightarrow \alpha$
11. (Modus Ponens) $\frac{\alpha \quad \alpha \rightarrow \beta}{\psi}$

Note that α, β and γ should be thought of as meta-variables that will be replaced with any formula of propositional logic.

Definition 1.4 (Deduction) Suppose that Γ is a set of propositional formulas. A deduction of φ from Γ is a finite sequence of formulas $\varphi_1, \ldots, \varphi_n$ where $\varphi_n = \varphi$, for each $i = 1, \ldots, n, \varphi_i$ is either an element of Γ , an instance of one of the above axiom schemes or follows from earlier formulas by Modus Ponens (i.e., there are φ_j, φ_k such that $j, k < i, \varphi_j = \alpha, \varphi_k = \alpha \rightarrow \beta$ and $\varphi_i = \beta$. We write $\Gamma \vdash \varphi$ when there is a deduction of φ from Γ .

We say that a set of formulas φ is **consistent** if $\Gamma \not\vdash \varphi$. The two key Theorems relating deductions and logical consequence are Soundness and Completeness:

Theorem 1.5 (Soundness) $\Gamma \vdash \varphi$ implies that $\Gamma \models \varphi$.

Theorem 1.6 (Completeness) $\Gamma \models \varphi$ *implies that* $\Gamma \vdash \varphi$ *.*

1.1 Possible Worlds

Suppose that W is a non-empty set, elements of which are called **possible worlds**, or **states**. Each possible world is associated with a propositional valuation. This is typically expressed by a **valuation function** on $W: V: W \times At \rightarrow \{0,1\}$. A valuation function is extended to a function $\overline{V}: W \times \mathcal{L} \rightarrow \{0,1\}$ as in Definition 1.2. As above, we ofter write $V: W \times \mathcal{L} \rightarrow \{0,1\}$ for both the valuation function and its extension to \mathcal{L} .

Each valuation function $V : W \times \mathcal{L} \to \{0, 1\}$ is associate with a function $\llbracket \cdot \rrbracket : \mathcal{L} \to \wp(W)$, where $\wp(W)$ is the set of all subsets of W, as follows:

For each
$$\varphi \in \mathcal{L}$$
, $\llbracket \varphi \rrbracket = \{ w \mid V(w, \varphi) = 1 \}$

It is a straightforward (but instructive!) exercise to verify the following Fact:

Fact 1.7 For all $\varphi \in \mathcal{L}$,

- $\llbracket \neg \varphi \rrbracket = W \llbracket \varphi \rrbracket$
- $\llbracket \varphi \land \psi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket$
- $\llbracket \varphi \lor \psi \rrbracket = \llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket$
- $\llbracket \varphi \to \psi \rrbracket = (W \llbracket \varphi \rrbracket) \cup \llbracket \psi \rrbracket$

Alternatively, given a propositional valuation $V : \mathsf{At} \to \{0, 1\}$, we can define a valuation function $\llbracket \cdot \rrbracket : \mathcal{L} \to \wp(W)$ inductively: For each $P \in \mathsf{At}$, $\llbracket P \rrbracket = \{w \mid V(P) = 1\}$, and the Boolean clauses are as in the above Fact:

- $\llbracket \neg \varphi \rrbracket = W \llbracket \varphi \rrbracket$
- $\llbracket \varphi \land \psi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket$
- $\llbracket \varphi \lor \psi \rrbracket = \llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket$
- $\llbracket \varphi \to \psi \rrbracket = (W \llbracket \varphi \rrbracket) \cup \llbracket \psi \rrbracket$

Then, given a function $\llbracket \cdot \rrbracket : \mathcal{L} \to \wp(W)$, we can define a function $V : W \times \mathcal{L} \to \{0, 1\}$ as follows: For each $\varphi \in \mathcal{L}$ and $w \in W$,

$$V(w,\varphi) = \begin{cases} 1 & \text{if } w \in \llbracket \varphi \rrbracket\\ 0 & \text{if } w \notin \llbracket \varphi \rrbracket \end{cases}$$

2 First-Order Logic

The language of predicate logic is constructed from a number of different pieces of syntax: variables, constants, function symbols and predicate symbols. Both function and predicate symbols are associated with an *arity*: the number of arguments that are required by the function or predicate. We start by defining **terms**. Let \mathcal{V} be a finite (or countable) set of **variables** and \mathcal{C} a set of **constants**.

Definition 2.1 (Terms) Let \mathcal{V} be a set of variable, \mathcal{C} a set of constant symbols and \mathcal{F} a set of function symbols. Each function symbol is associated with an **arity** (a positive integer specifying the number of arguments). Write $f^{(n)}$ if the arity of f is n. A term τ is constructed as follows:

- Any variable $x \in \mathcal{V}$ is a term.
- Any constant $c \in C$ is a term.
- If $f^{(n)} \in \mathcal{F}$ is a function symbol (i.e., f accepts n arguments) and τ_1, \ldots, τ_n are terms, then $f(\tau_1, \ldots, \tau_n)$ is a term.
- Nothing else is a term.

Let \mathcal{T} be the set of terms.

Terms are used to construct atomic formulas:

Definition 2.2 (Atomic Formulas) Let \mathcal{P} be a set of predicate symbols. Each predicate symbol is associated with an arity (the number of objects that are related by P). We write $P^{(n)}$ if the arity of P is n. Suppose that P is an atomic predicate symbol with arity n. If τ_1, \ldots, τ_n are terms, then $P(\tau_1, \ldots, \tau_n)$ is an atomic formula. To simplify the notation, we may write $P\tau_1\tau_2\cdots\tau_n$. A special predicate symbol '=' is included with the intended interpretation *equality*.

Definition 2.3 (Formulas) Formulas are constructed as follows:

- Atomic formulas $P(\tau_1, \ldots, \tau_n)$ are formulas;
- If φ is a formula, then so is $\neg \varphi$;
- If φ and ψ are a formulas, then so is $\varphi \wedge \psi$;
- If φ is a formula, then so is $(\forall x)\varphi$, where x is a variable;
- Nothing else is a formula.

The other boolean connectives $(\lor, \rightarrow, \leftrightarrow)$ are defined as usual. In addition, $(\exists x)\varphi$ is defined as $\neg(\forall x)\neg\varphi$.

 \triangleleft

Definition 2.4 (Free Variable) Suppose that x is a variable. Then, x occurs free in φ is defined as follows:

1. If φ is an atomic formula, then x occurs free in φ provided x occurs in φ (i.e., is a symbol in φ).

 \triangleleft

- 2. x occurs free in $\neg \psi$ iff x occurs free in ψ
- 3. x occurs free in $\psi_1 \wedge \psi_2$ iff x occurs free in ψ_1 or x occurs free in ψ_2
- 4. x occurs free in $(\forall y)\psi$ iff x occurs free in ψ and $x \neq y$
- 5. x occurs free in $(\exists y)\psi$ iff x occurs free in ψ and $x \neq y$

The set of free variables in φ , denoted $Fr(\varphi)$, is defined by recursion as follows:

- 1. If φ is an atomic formula, then $Fr(\varphi)$ is the set of all variables (if any) that occur in φ
- 2. If φ is $\neg \psi$, then $\mathsf{Fr}(\neg \varphi) = \mathsf{Fr}(\varphi)$
- 3. If φ is $\psi_1 \wedge \psi_2$, then $\mathsf{Fr}(\varphi) = \mathsf{Fr}(\psi_1) \cup \mathsf{Fr}(\psi_2)$
- 4. If φ is $(\forall x)\psi$, then $\mathsf{Fr}(\psi) = \mathsf{Fr}(\psi)$ after removing x, if present.

A variable x that is not free is said to be **bound**. Formulas that do not contain any free variables are called sentences:

Definition 2.5 (Sentence) If φ is a formula and $Fr(\varphi) = \emptyset$ (i.e., there are no free variables), then φ is a sentence.

2.1 Substitutions

If τ and τ' are terms, we write $\tau[x/\tau']$ for the terms where x is replaced by τ' . We can formally define this operation by recursion:

- $x[x/\tau'] = \tau'$
- $y[x/\tau'] = y$ for $x \neq y$
- $c[x/\tau'] = c$
- $F(\tau_1, ..., \tau_n)[x/\tau'] = F(\tau_1[x/\tau'], ..., \tau_n[x/\tau'])$

The same notation can be used for formulas $\varphi[x/\tau]$ which means replace all free occurrences of x with τ in a formula φ . This is defined as follows:

- $P(\tau_1,\ldots,\tau_n)[x/\tau] = P(\tau_1[x/\tau],\ldots,\tau_n[x/\tau])$
- $\neg \psi[x/\tau] = \neg(\varphi[x/\tau])$
- $(\psi_1 \wedge \psi_2)[x/\tau] = \psi_1[x/\tau] \wedge \psi_2[x/\tau]$
- $((\forall x)\varphi)[x/\tau] = (\forall x)\varphi$

• $((\forall y)\varphi)[x/\tau] = (\forall y)\varphi[x/\tau]$, where $y \neq x$

The following are key examples of this operation:

1. (x = y)[y/x] is x = x and (x = y)[x/y] is y = y,

2.
$$(\forall x(x=y))[x/y]$$
 is $(\forall x)x = y$,

3.
$$(\forall x(x=y))[y/x]$$
 is $(\forall x)x = x$,

4. $(\forall x) \neg (\forall y)(x=y) \rightarrow (\neg \forall y(x=y))[x/y]$ is $(\forall x) \neg (\forall y)(x=y) \rightarrow \neg \forall y(y=y)$.

Definition 2.6 (Substitutability) A term τ is substitutable for x in φ is defined as follows:

- For an atomic formula φ , τ is always substitutable for x in φ (there are no quantifiers, so t can always be substituted for x)
- τ is substitutable for x in $\neg \psi$ iff τ is is substitutable for x in ψ
- τ is substitutable for x in $\psi_1 \wedge \psi_1$ iff τ is is substitutable for x in ψ_1 and τ is is substitutable for x in ψ_2
- τ is substitutable for x in $(\forall y)\psi$ iff either
 - 1. x does not occur free in $(\forall y)\psi$
 - 2. y does not occur in τ and τ is substitutable for x in ψ .

 \triangleleft

2.2 First-Order Models

2.2.1 Interpreting Terms

Suppose that W is a set. An interpretation I (for W) associates with each functions symbol F a function on W of the appropriate arity, denoted F^{I} , and to each constant c an element of W, denoted c^{I} . If W is a set and I an interpretation, then for a function symbol F of arity n,

$$F^I: \underbrace{W \times \cdots \times W}_{n \text{ times}} \to W$$

For each constant symbol, c, we have

 $c^I \in W$

Our goal is to show how to associate with each term and element of a set W. We first need the notion of a substitution:

Definition 2.7 (Substitution) Suppose that W is a nonempty set. A substitution is a function $\mathbf{s}: \mathcal{V} \to W$.

Definition 2.8 (Interpretation of Terms) Suppose that I is an interpretation for W and \mathbf{s} : $\mathcal{V} \to W$ is a substitution. We define the function $(I, \mathbf{s}) : \mathcal{T} \to W$ by recursion as follows:

• $(I, \mathbf{s})(x) = \mathbf{s}(x)$

• $(I, \mathbf{s})(c) = c^I$

•
$$(I, \mathbf{s})(F(\tau_1, \dots, \tau_n)) = F^I((I, \mathbf{s})(\tau_1), \dots, (I, \mathbf{s})(\tau_n))$$

Suppose that $\mathbf{s} : \mathcal{V} \to W$ is a substitution. If $a \in W$, we define a new substitution $\mathbf{s}[x/a]$ as follows:

$$\mathbf{s}[x/a](y) = \begin{cases} a & \text{if } y = x \\ \mathbf{s}(x) & \text{otherwise} \end{cases}$$

Suppose that $\mathbf{s} : \mathcal{V} \to W$ and $\mathbf{s}' : \mathcal{V} \to W$ are two substitutions. For each variable $x \in \mathcal{V}$, we define a relation on the set of substitutions as follows:

$$\mathbf{s} \sim_x \mathbf{s}'$$
 iff $\mathbf{s}(y) = \mathbf{s}'(y)$ for all $y \neq x$

Hence, $\mathbf{s} \sim_x \mathbf{s}'$ provided there is some $a \in W$ such that $\mathbf{s}' = \mathbf{s}[x/a]$.

2.2.2 First Order Models

Definition 2.9 (Model) A model is a pair $\mathfrak{A} = \langle W, I \rangle$ where W is a nonempty set (called the domain) and I is a function (called the interpretation) assigning to each function symbol F, a function denoted F^I , to each constant symbol, an element of W denoted c^I and to each predicate symbol P, a relation on W of the appropriate arity. If P has arity n, then we have

$$P^I \subseteq \underbrace{W \times \cdots \times W}_{n \text{ times}}$$

If \mathcal{A} is a model, we write $|\mathcal{A}|$ for the domain of \mathcal{A} , and we write $F^{\mathcal{A}}$, $c^{\mathcal{A}}$ and $P^{\mathcal{A}}$ to denote F^{I} , c^{I} and P^{I} , respectively.

We say **s** is a substitution for \mathcal{A} provided $\mathbf{s} : \mathcal{V} \to |\mathcal{A}|$. Let $\mathcal{A} = \langle W, I \rangle$ be a model. For each term τ , we write $\tau^{\mathcal{A}, \mathbf{s}}$ for $(I, \mathbf{s})(\tau)$.

Definition 2.10 (Truth) Suppose that \mathcal{A} is a model and \mathbf{s} is a substitution for \mathcal{A} . The formula φ is true in \mathcal{A} (given \mathbf{s}), denoted $\mathcal{A}, \mathbf{s}\varphi$, is defined by recursion as follows:

- $\mathcal{A}, \mathbf{s} \models P(\tau_1, \dots, \tau_n) \text{ iff } (\tau_1^{\mathcal{A}, \mathbf{s}}, \dots, \tau_n^{\mathcal{A}, \mathbf{s}}) \in P^{\mathcal{A}}$
- $\mathcal{A}, \mathbf{s} \models \neg \psi$ iff $\mathcal{A}, \mathbf{s} \not\models \psi$
- $\mathcal{A}, \mathbf{s} \models \psi_1 \land \psi_2$ iff $\mathcal{A}, \mathbf{s} \models \psi_1$ and $\mathcal{A}, \mathbf{s} \models \psi_2$
- $\mathcal{A}, \mathbf{s} \models (\forall x) \psi$ iff for all substitutions \mathbf{s}' for \mathcal{A} if $\mathbf{s} \sim_x \mathbf{s}'$, then $\mathcal{A}, \mathbf{s}' \models \psi$

 \triangleleft

2.3 Deductions in First Order Logic

An axiom system for first-order logic consists of the following four axioms (there are others, this is the one from Enderton's *Introduction to Mathematical Logic*):

All tautologies
 (∀x)φ → φ[x/t], where τ is substitutable for x in φ
 (∀x)(φ → ψ) → ((∀x)φ → (∀x)ψ)
 φ → (∀x)φ, where x does not occur free in φ

Definition 2.11 (Generalization) Given a formula φ , a generalization of φ is a formula of the form $(\forall x_1) \cdots (\forall x_n) \varphi$.

Definition 2.12 (Tautology) A tautology (in FOL) is any formula obtained by replacing each atomic proposition with a first-order formula.

Definition 2.13 (Deduction) We write $\Gamma \vdash \varphi$ iff there is a finite sequence of formulas $\varphi_1, \ldots, \varphi_n$ such that $\varphi_n = \varphi$, each φ_i is either a generalization of one of the above axioms, is an element of Γ , or follows from earlier formulas on the list by modus ponens. We write $\vdash \varphi$ instead of $\emptyset \vdash \varphi$.

Example . $\vdash \exists x(\alpha \land \beta) \rightarrow \exists x\alpha \land \exists x\beta.$

1.	$\forall x(\neg \alpha \to \neg(\alpha \land \beta))$	Instance of Axiom 1
2.	$\forall x(\neg \alpha \to \neg(\alpha \land \beta)) \to (\forall x \neg \alpha \to \forall x \neg(\alpha \land \beta))$	Instance of Axiom 3
3.	$\forall x \neg \alpha \to \forall x \neg (\alpha \land \beta)$	MP 1,2
4.	$(\forall x \neg \alpha \to \forall x \neg (\alpha \land \beta)) \to (\neg \forall x \neg (\alpha \land \beta) \to \neg \forall x \neg \alpha)$	Instance of Axiom 1
5.	$\neg \forall x \neg (\alpha \land \beta) \to \neg \forall x \neg \alpha$	MP 3,4
6.	$\exists x(\alpha \land \beta) \to \exists x\alpha$	Definition of \exists
7.	$\forall x(\neg\beta \to \neg(\alpha \land \beta))$	Instance of Axiom 1
8.	$\forall x(\neg\beta \to \neg(\alpha \land \beta)) \to (\forall x \neg \beta \to \forall x \neg(\alpha \land \beta))$	Instance of Axiom 3
9.	$\forall x \neg \beta \rightarrow \forall x \neg (\alpha \land \beta)$	MP 7,8
10.	$(\forall x \neg \beta \rightarrow \forall x \neg (\alpha \land \beta)) \rightarrow (\neg \forall x \neg (\alpha \land \beta) \rightarrow \neg \forall x \neg \beta)$	Instance of Axiom 1
11.	$\neg \forall x \neg (\alpha \land \beta) \to \neg \forall x \neg \beta$	MP 9,10
12.	$\exists x (\alpha \land \beta) \to \exists x \beta$	Definition of \exists
13.	$(\exists x(\alpha \land \beta) \to \exists x\alpha) \to ((\exists x(\alpha \land \beta) \to \exists x\beta)$	
	$\to (\exists x(\alpha \land \beta) \to (\exists x\alpha \land \exists x\beta)))$	Instance of Axiom 1
14.	$(\exists x(\alpha \land \beta) \to \exists x\beta) \to (\exists x(\alpha \land \beta) \to (\exists x\alpha \land \exists x\beta))$	MP 6,13
15.	$\exists x(\alpha \land \beta) \to (\exists x\alpha \land \exists x\beta)$	MP 12, 14

2.4 Basic Model Theory

- A set of formulas T is **inconsistent** provided $T \vdash \bot$ (where \bot is a formula of the form $\mathbf{0} \neq \mathbf{S}(\mathbf{0})$. A set of formulas T is **consistent** if it is not inconsistent.
- Suppose that T is a set of sentences. Then $Cn(T) = \{\varphi \mid T \vdash \varphi\}$ is the set of (first-order) consequences of T.

- Suppose that \mathcal{A} is a first-order model. Then, $Th(\mathcal{A}) = \{\varphi \mid \varphi \text{ is a sentence and } \mathcal{A} \models \varphi\}$ is the **theory of** \mathcal{A} . For example, $Th(\mathcal{N}_S)$ is the set of sentences of \mathcal{L}_S true in \mathcal{N}_S ; and $Th(\mathcal{N})$ is the set of sentences of \mathcal{L}_A true in \mathcal{N} (the **theory of true arithmetic**).
- A set of sentences T is satisfiable if there is a model \mathcal{A} such that $\mathcal{A} \models T$ (where $\mathcal{A} \models T$ means $\mathcal{A} \models \varphi$ for each $\varphi \in T$).
- A theory is a set of sentences. (Sometimes

A theory is (effectively) axiomatizable provided there is recursive set A of sentences (and possibly rules) such that Cn(A) = T. A theory T is finitely axiomatizable provided there is a finite set A of sentences (and possibly rules) such that Cn(A) = T.

A theory T (in the language \mathcal{L}) is **negation-complete** provided for every sentence of φ in \mathcal{L} , either $T \vdash \varphi$ or $T \vdash \neg \varphi$.

A theory T is **decidable** provided the set Cn(T) is recursive.

Some useful observations and Theorems:

- If \mathcal{L} is a first-order language constructed from a signature of size κ (where κ is a cardinal), then $|\mathcal{L}| = \max\{\aleph_0, \kappa\}$ (\aleph_0 is the first countable cardinal). Thus, there are countably many formulas of \mathcal{L}_A .
- The set \mathcal{L} of well-formed formulas (wff) is recursive.
- If T is effectively axiomatizable, then Cn(T) is semidecidable.
- If T is effectively axiomatizable and negation-complete, then Cn(T) is decidable.
- Model Construction Theorem. Every consistent set of formulas has a model.
- Compactness Theorem. If every finite subset of T is satisfiable, then T is satisfiable.
- Löwenheim-Skolem Theorem. If T has a model, then T has a countable model. A model \mathcal{A} is countable provided the domain of \mathcal{A} is countable (i.e., $|\mathcal{A}|$ is countable). The upward Löwenheim-Skolem Theorem states that if T has a model, then it has a model of any infinite cardinality κ .

Two structures \mathcal{A} and \mathcal{B} are **elementarily equivalent**, denoted $\mathcal{A} \equiv \mathcal{B}$, provided for every sentence φ , $\mathcal{A} \models \varphi$ iff $\mathcal{B} \models \varphi$ (i.e., $Th(\mathcal{A}) = Th(\mathcal{B})$).

Definition 2.14 (Isomorphism) Suppose that \mathcal{A} and \mathcal{B} are two models. A function $f : |\mathcal{A}| \to |\mathcal{B}|$ is an **isomorphism** provided

- f is a bijection
- For all constants $c \in \mathcal{C}$, $f(c^{\mathcal{A}}) = c^{\mathcal{B}}$
- $f(F^{\mathcal{A}}(a_1,\ldots,a_n)) = F^{\mathcal{B}}(f(a_1),\ldots,f(a_n))$
- For all $(a_1, \ldots, a_n) \in P^{\mathcal{A}}$ iff $(f(a_1), \ldots, f(a_n) \in P^{\mathcal{B}}$

We write $\mathcal{A} \cong \mathcal{B}$ when there is an isomorphism from \mathcal{A} to \mathcal{B} .

Isomorphism Theorem. For any two first-order models if $\mathcal{A} \cong \mathcal{B}$, then $\mathcal{A} \equiv \mathcal{B}$.

There are examples of structures that are elementarily equivalent but not isomorphic (e.g., $(\mathbb{R}, <)$ and $(\mathbb{Q}, <)$ cannot be distinguished by a first-order formula, but are not isomorphic since there is no bijection function from \mathbb{R} to \mathbb{Q} .)

Suppose that \mathcal{A} is a first-order structure. A set $X \subseteq |\mathcal{A}|$ is **definable** (in the language \mathcal{L}) provided there is a formula $\varphi(x)$ with one free variable such that

$$X = \{a \mid \mathcal{A} \models \varphi(a)\}$$

This definition can be readily adapted to k-ary relations $X \subseteq |\mathcal{A}|^k$.

Example. \mathbb{N} is not definable in the structure $(\mathbb{R}, <)$. Suppose it is defined by $\varphi(x)$ in the firstorder language with equality and <. Consider $h : \mathbb{R} \to \mathbb{R}$ defined as $h(r) = r^3$. Then, h is a isomorphism between $(\mathbb{R}, <)$ and itself (it is an *automorphism*). Thus, by the Isomorphism Theorem, $(\mathbb{R}, <) \models \varphi(r)$ iff $(\mathbb{R}, <) \models \varphi(h(r))$. But, then $\sqrt[3]{2} \notin \mathbb{N}$ implies $(\mathbb{R}, <) \not\models \varphi(\sqrt[3]{2})$ iff $(\mathbb{R}, <) \not\models \varphi(h(\sqrt[3]{2}))$ iff $(\mathbb{R}, <) \not\models \varphi(2)$, which is a contradiction since $2 \in \mathbb{N}$.