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1 Propositional Logic

Suppose that At is a (finite or countable) set of atomic propositions. Propositional formulas are
defined inductively:

e [f P € At, then P is a propositional formula.

e If ¢ is a propositional formulas, then so is —p.

e If ©, 9 are propositional formulas, then so are ¢ A, V¢, and ¢ — .
e Nothing else is a propositional formula.

Rather than writing out the full inductive definition, it is common to define a formal language by
specifying the (context-free) grammar that generates the language:

Definition 1.1 (Propositional Formulas) Suppose that At is a set of atomic propositions. Let
L(At) be the smallest set of formulas defined by the following grammar:

Ploplend oV le =9
where P € At. We write £ instead of £(At) when the set of atomic propositions is understood. <

Definition 1.2 (Propositional Valuation) A propositional valuation is a function V' : At —
{1,0}. We extend a propositional valuation to a all propositional formulas as follows: V : L(At) —
{0,1} as follows:

e V(P)=V(P) for all P € At
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T )1 V() =land V(¥) =1
Vignv) = {0 otherwise

T 1 V() =lor V(y) =1

Vigve) = {0 otherwise

v _JO0 i V(p)=Tand V(¥)=0
Vie=v) = {1 otherwise

To simplify the notation, we often write V' for both the propositional valuation and its extension
to the full set of propositional formulas. N

Sometimes it is convenient to include two special atomic propositions ‘1’ and ‘T’, meaning ‘false’
and ‘true’; respectively. We can either think of these atomic proposition as being defined (L is
PA=P and T is PV =P where P € At) or as special atomic propositions where for all propositional
valuations, V(L) =0 and V(T) = 1.

We say that a set I' of propositional formulas is satisfiable if all the formulas in I" can be true
at the same time, i.e., there is a propositional valuation V' such that for all p € T, V(¢) = 1. A
formula ¢ € I' is valid if for all propositional valuations V', V (¢) = 1.

Definition 1.3 (Logical Consequence) Suppose that I' is a set propositional formulas. We say
that ¢ is a logical consequence of I', denoted I' |= ¢, provided for all propositional valuations V', if
for all ¢ € I', V(¢) = 1, then V(p) = 1. q

There are many different types of axiomatizations for propositional logic (e.g., Hilbert-style
deductions, Natural deduction systems, Gentzen Systems, Tableaux). Consider the following set of
axiom schemes and rule.

s 2

l.a—= (8 —a)

2. (= (B—7) = ((a = B) = (a =)
3. L=«

4. (aNY) = «

5. (aNB) =

6. a— (= (aAB))

7. a— (aVp)

8. ¢ — (aVpP)

9. (= L)—=((—1)—= (aVvp) — 1)
10. ((a—=1)—>1)—a

a oa—f

11. (Modus Ponens) >




Note that «, f and v should be thought of as meta-variables that will be replaced with any formula
of propositional logic.

Definition 1.4 (Deduction) Suppose that I' is a set of propositional formulas. A deduction of ¢
from I' is a finite sequence of formulas @1, ..., @, where ¢, = ¢, for each i = 1,...,n, ¢; is either
an element of I', an instance of one of the above axiom schemes or follows from earlier formulas by
Modus Ponens (i.e., there are ¢;, ¢ such that j,k <1, ; = a, pr, = a — B and p; = 5. We write
I' F ¢ when there is a deduction of ¢ from T'. N

We say that a set of formulas ¢ is consistent if I" I/ ¢. The two key Theorems relating
deductions and logical consequence are Soundness and Completeness:

Theorem 1.5 (Soundness) I'+ ¢ implies that T’ = .

Theorem 1.6 (Completeness) I' = ¢ implies that T'+ .

1.1 Possible Worlds

Suppose that W is a non-empty set, elements of which are called possible worlds, or states.
Each possible world is associated with a propositional valuation. This is typically expressed by a
valuation function on W: V : W x At — {0,1}. A valuation function is extended to a function
V:W x £ — {0,1} as in Definition As above, we ofter write V : W x £ — {0, 1} for both the
valuation function and its extension to L.

Each valuation function V : W x £ — {0, 1} is associate with a function [-] : £ — (W), where
(W) is the set of all subsets of W, as follows:

For each p € L, [¢] = {w | V(w,p) =1}
It is a straightforward (but instructive!) exercise to verify the following Fact:
Fact 1.7 For all p € L,
o [¢] =W —[4l
o [p Ayl =Tl ¥l
o [pvel=Ilelu Y]
e lp—=yl=W-IphUl¥]

Alternatively, given a propositional valuation V' : At — {0, 1}, we can define a valuation function
[l : £ — (W) inductively: For each P € At, [P] = {w | V(P) = 1}, and the Boolean clauses are
as in the above Fact:

o [~ =W -[]

o Al =[] N [Y]
oVl =[] U [Y]

o [p—=v]=W-[e])Ul¥]

[
[
[
[



Then, given a function [-] : £ — (W), we can define a function V : W x £ — {0,1} as follows:
For each ¢ € £ and w € W,
1 ifwe [g]

Viw.e)= {o if w ¢ [¢]

2 First-Order Logic

The language of predicate logic is constructed from a number of different pieces of syntax: variables,
constants, function symbols and predicate symbols. Both function and predicate symbols are
associated with an arity: the number of arguments that are required by the function or predicate.
We start by defining terms. Let V be a finite (or countable) set of variables and C a set of
constants.

Definition 2.1 (Terms) Let V be a set of variable, C a set of constant symbols and F a set of
function symbols. Each function symbol is associated with an arity (a positive integer specifying
the number of arguments). Write f(® if the arity of f is n. A term 7 is constructed as follows:

e Any variable z € V is a term.
e Any constant ¢ € C is a term.

o If /(") ¢ F is a function symbol (i.e., f accepts n arguments) and 7,...,7, are terms, then
f(r,...,mn) is a term.

e Nothing else is a term.

Let T be the set of terms. 4

Terms are used to construct atomic formulas:

Definition 2.2 (Atomic Formulas) Let P be a set of predicate symbols. Each predicate symbol
is associated with an arity (the number of objects that are related by P). We write P™) if the arity

of P is n. Suppose that P is an atomic predicate symbol with arity n. If 7,...,7, are terms, then
P(11,...,7,) is an atomic formula. To simplify the notation, we may write P7i7o---7,. A special
predicate symbol ‘=’ is included with the intended interpretation equality. <

Definition 2.3 (Formulas) Formulas are constructed as follows:
e Atomic formulas P(7,...,7,) are formulas;
e If p is a formula, then so is —p;
e If ¢ and ¥ are a formulas, then so is ¢ A ¥;
e If ¢ is a formula, then so is (Vx)p, where z is a variable;
e Nothing else is a formula.

The other boolean connectives (V,—, <) are defined as usual. In addition, (3z)p is defined as
—(Vz)—ep. q



Definition 2.4 (Free Variable) Suppose that z is a variable. Then, x occurs free in ¢ is
defined as follows:

1. If ¢ is an atomic formula, then x occurs free in ¢ provided = occurs in ¢ (i.e., is a symbol in
).

2. x occurs free in =) iff © occurs free in ¥

3. x occurs free in 1 A g iff & occurs free in ) or x occurs free in 9

4. x occurs free in (Vy)y iff x occurs free in ¢ and = # y

5. x occurs free in (Jy)v iff x occurs free in ¢ and = # y <
The set of free variables in ¢, denoted Fr(y), is defined by recursion as follows:

1. If ¢ is an atomic formula, then Fr(y) is the set of all variables (if any) that occur in ¢

2. If ¢ is =), then Fr(—¢) = Fr(yp)

3. If v is 91 A g, then Fr(p) = Fr(i1) U Fr(i2)

4. If ¢ is (Vz)y, then Fr(¢)) = Fr(v) after removing z, if present.

A variable z that is not free is said to be bound. Formulas that do not contain any free
variables are called sentences:

Definition 2.5 (Sentence) If ¢ is a formula and Fr(¢) = ) (i.e., there are no free variables), then
p is a sentence. <

2.1 Substitutions

If 7 and 7/ are terms, we write 7[xz/7'] for the terms where x is replaced by 7. We can formally
define this operation by recursion:

o zfx/T] =7
o ylz/7|=yforxz#£y
o clx/T]=c

o F(1i,...,m)[x/T'] = F(nlz/7],...,malzx/T])

The same notation can be used for formulas p[z/7] which means replace all free occurrences of z
with 7 in a formula ¢. This is defined as follows:

o P(r1,....,mn)[x/7] = P(n[z/7],...,Ta[z/T])
o Wlz/7] = —(p[z/7])

o (V1 Ao)[z/7]) = Yi[z/T] A thalz/7]

o (Vo)p)lz/7] = (Vo)



o (Vy)p)[z/7] = (Yy)¢[x/T], where y # x
The following are key examples of this operation:

1. (z=vy)ly/x]isz=x and (z = y)[z/y] is y = v,

-
2. (Va(z = y))lafy] s (Voo =y,
3. (Vaz(x =y))ly/z] is (Vo)x = z,

(

4. (Vo)=(Vy)(z = y) = (=Vy(z = y))[z/y] is (V)= (Vy)(z = y) = ~Vy(y = y).

Definition 2.6 (Substitutability) A term 7 is substitutable for x in ¢ is defined as follows:

e For an atomic formula ¢, 7 is always substitutable for = in ¢ (there are no quantifiers, so ¢
can always be substituted for x)

e 7 is substitutable for x in —¢ iff 7 is is substitutable for z in v

e 7 is substitutable for x in 11 A1y iff 7 is is substitutable for x in ¥, and 7 is is substitutable
for x in 19

e 7 is substitutable for x in (Vy)v iff either

1. x does not occur free in (Yy)

2. y does not occur in 7 and T is substitutable for x in . N

2.2 First-Order Models
2.2.1 Interpreting Terms

Suppose that W is a set. An interpretation I (for W) associates with each functions symbol F
a function on W of the appropriate arity, denoted F, and to each constant ¢ an element of W,
denoted ¢!. If W is a set and I an interpretation, then for a function symbol F of arity n,

FLoWx-ooxW =W
~—_——
n times

For each constant symbol, ¢, we have
dew

Our goal is to show how to associate with each term and element of a set W. We first need the
notion of a substitution:

Definition 2.7 (Substitution) Suppose that W is a nonempty set. A substitution is a function
s:V—->W. <

Definition 2.8 (Interpretation of Terms) Suppose that [ is an interpretation for W and s :
YV — W is a substitution. We define the function (/,s) : 7 — W by recursion as follows:

o (Is)(2) = s(a)



o (I,s)(c)=c!
o (I,s)(F(r1,...,m)) = FI((I,8)(11),...,(I,s)(1n)) <

Suppose that s : V — W is a substitution. If a € W, we define a new substitution s[z/a] as
follows:

a ify=ux

Sh#aKy)=={

s(z) otherwise

Suppose that s : V — W and s’ : V — W are two substitutions. For each variable x € V, we
define a relation on the set of substitutions as follows:

s ~, s iff s(y) =s'(y) for all y # x

Hence, s ~, s’ provided there is some a € W such that s’ = s[z/a].

2.2.2 First Order Models

Definition 2.9 (Model) A model is a pair 2l = (W, I) where W is a nonempty set (called the
domain) and I is a function (called the interpretation) assigning to each function symbol F', a
function denoted F!, to each constant symbol, an element of W denoted ¢! and to each predicate
symbol P, a relation on W of the appropriate arity. If P has arity n, then we have

Plcwx...xWw
~—_——

n times

If A is a model, we write |A| for the domain of A, and we write FA ¢A and PA to denote FI, ¢!
and P!, respectively. N

We say s is a substitution for A provided s : V — | A|. Let A = (W, I) be a model. For each
term 7, we write 748 for (I,s)(7).

Definition 2.10 (Truth) Suppose that A is a model and s is a substitution for \A. The formula
@ is true in A (given s), denoted A, sy, is defined by recursion as follows:

o Ask P(r,...,m) iff (i{*5,..., %) e PA

o Ask—wiff Ajs

o A s =11 Ay iff Ajs =1y and A,s |= 1o

o A s = (Va)y iff for all substitutions s’ for A if s ~, s/, then A, s’ = q

2.3 Deductions in First Order Logic

An axiom system for first-order logic consists of the following four axioms (there are others, this is
the one from Enderton’s Introduction to Mathematical Logic):



1. All tautologies

[\)

. (VYx)p — plz/t], where T is substitutable for x in ¢
- (Vo) (= ¢) = (Vo) — (Vo)y)

. @ = (Vx)p, where = does not occur free in ¢
. J

V]

Definition 2.11 (Generalization) Given a formula ¢, a generalization of ¢ is a formula of
the form (Vzy)--- (Vap)e. <

Definition 2.12 (Tautology) A tautology (in FOL) is any formula obtained by replacing each
atomic proposition with a first-order formula. N

Definition 2.13 (Deduction) We write I' - ¢ iff there is a finite sequence of formulas ¢1, ..., ¢,
such that ¢, = ¢, each ; is either a generalization of one of the above axioms, is an element of I,
or follows from earlier formulas on the list by modus ponens. We write - ¢ instead of ) F . <

Example . F Jz(a A B) = Jza A Jz5.

1. Va(-a— —(aAp)) Instance of Axiom 1
2. Vz(-a— —(aAp)) = Vea = Ve (a A p)) Instance of Axiom 3
3. Vr-a — Vr-(aAB) MP 1,2
4. (Vz-a = Ve=(aAp)) = (-Voz-(a A ) = =Vz—-a) Instance of Axiom 1
5. —Vz=(aAB) = Ve« MP 34
6. Jr(aAp)— Jza Definition of ‘3’
7. Vx(=f = —-(aApB)) Instance of Axiom 1
8. Va(=8—= —(aAp)) = Ve = Ve=(a A b)) Instance of Axiom 3
9. V- — Vz-(aApB) MP 7.8
10. (V=8 = Va—(a A B)) = (-Vz—=(a A ) — —Vz—F3) Instance of Axiom 1
11. —Vz-(aAp) — —Vz—p MP 9,10
12. Jz(aAp) — Jzp Definition of ‘3’
13. (Fz(aAB) = Jza) = (Bx(a A B) — 3xp)

— (Fz(a A B) = (Jza A Txp))) Instance of Axiom 1
14. (Bz(aApB) = 3zp) = Bx(aApB) = (BraAIzp)) MP 6,13
15. Fz(aApB) = (Fra ATxp) MP 12, 14

2.4 Basic Model Theory

e A set of formulas 7' is inconsistent provided 7' F L (where L is a formula of the form
0 # S(0). A set of formulas T' is consistent if it is not inconsistent.

e Suppose that 7" is a set of sentences. Then Cn(T") = {¢ | T ¢} is the set of (first-order)
consequences of T'.



Suppose that A is a first-order model. Then, Th(A) = {¢ | ¢ is a sentence and A = ¢} is
the theory of A. For example, Th(Ns) is the set of sentences of Lg true in Ng; and Th(N)
is the set of sentences of L4 true in A/ (the theory of true arithmetic).

A set of sentences T' is satisfiable if there is a model A such that A = T (where A =T
means A = ¢ for each ¢ € T').
A theory is a set of sentences. (Sometimes

A theory is (effectively) axiomatizable provided there is recursive set A of sentences (and
possibly rules) such that Cn(A) = T. A theory T is finitely axiomatizable provided there
is a finite set A of sentences (and possibly rules) such that Cn(A) =T.

A theory T' (in the language £) is negation-complete provided for every sentence of ¢ in
L, either T F ¢ or T F —p.

A theory T is decidable provided the set Cn(T) is recursive.

Some useful observations and Theorems:

If £ is a first-order language constructed from a signature of size k (where x is a cardinal),
then |£| = max{Ng,x} (R is the first countable cardinal). Thus, there are countably many
formulas of L4.

The set £ of well-formed formulas (wff) is recursive.

If T is effectively axiomatizable, then Cn(T) is semidecidable.

If T is effectively axiomatizable and negation-complete, then Cn(T) is decidable.
Model Construction Theorem. Every consistent set of formulas has a model.
Compactness Theorem. If every finite subset of T is satisfiable, then T is satisfiable.

Léowenheim-Skolem Theorem. If T has a model, then T has a countable model. A model
A is countable provided the domain of A is countable (i.e., |A| is countable). The upward
Lowenheim-Skolem Theorem states that if T" has a model, then it has a model of any infinite
cardinality k.

Two structures A and B are elementarily equivalent, denoted A = B, provided for every
sentence ¢, A = ¢ iff B = ¢ (i.e., Th(A) = Th(B)).

Definition 2.14 (Isomorphism) Suppose that A and B are two models. A function f : |A| — |B]
is an isomorphism provided

f is a bijection
For all constants ¢ € C, f(c?*) =B

fFA(ar, ... an)) = FB(f(a1),..., f(an))
For all (a1, ...,a,) € PAiff (f(ay),..., f(a,) € PB



We write A = B when there is an isomorphism from A to B. <

Isomorphism Theorem. For any two first-order models if A = B, then A = B.

There are examples of structures that are elementarily equivalent but not isomorphic (e.g.,
(R, <) and (Q, <) cannot be distinguished by a first-order formula, but are not isomorphic since
there is no bijection function from R to Q.)

Suppose that A is a first-order structure. A set X C |A| is definable (in the language L)
provided there is a formula () with one free variable such that

X ={a| A p(a)}

This definition can be readily adapted to k-ary relations X C |AJ¥.

Example. N is not definable in the structure (R, <). Suppose it is defined by ¢(z) in the first-
order language with equality and <. Consider h : R — R defined as h(r) = r3. Then, h is
a isomorphism between (R, <) and itself (it is an automorphism). Thus, by the Isomorphism
Theorem, (R,<) | ¢(r) iff (R,<) | ¢(h(r)). But, then v/2 ¢ N implies (R, <) £ o(v/2) iff
(R, <) & p(h(¥/2)) iff (R, <) F~ ¢(2), which is a contradiction since 2 € N.
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