Propositional and First Order Logic

Notes for PHIL 478M

Eric Pacuit
Department of Philosophy
University of Maryland, College Park
pacuit.org
epacuit@umd.edu

August 31, 2015

1 Propositional Logic

Suppose that At is a (finite or countable) set of atomic propositions. Propositional formulas are defined inductively:

- If $P \in \mathrm{At}$, then P is a propositional formula.
- If φ is a propositional formulas, then so is $\neg \varphi$.
- If φ, ψ are propositional formulas, then so are $\varphi \wedge \psi, \varphi \vee \psi$, and $\varphi \rightarrow \psi$.
- Nothing else is a propositional formula.

Rather than writing out the full inductive definition, it is common to define a formal language by specifying the (context-free) grammar that generates the language:

Definition 1.1 (Propositional Formulas) Suppose that At is a set of atomic propositions. Let $\mathcal{L}(A t)$ be the smallest set of formulas defined by the following grammar:

$$
P|\neg \varphi| \varphi \wedge \psi|\varphi \vee \psi| \varphi \rightarrow \psi
$$

where $P \in$ At. We write \mathcal{L} instead of $\mathcal{L}(\mathrm{At})$ when the set of atomic propositions is understood. \triangleleft
Definition 1.2 (Propositional Valuation) A propositional valuation is a function $V:$ At \rightarrow $\{1,0\}$. We extend a propositional valuation to a all propositional formulas as follows: $\bar{V}: \mathcal{L}(\mathrm{At}) \rightarrow$ $\{0,1\}$ as follows:

- $\bar{V}(P)=V(P)$ for all $P \in \mathrm{At}$
- $\bar{V}(\neg \varphi)= \begin{cases}1 & \text { if } \bar{V}(\varphi)=0 \\ 0 & \text { if } \bar{V}(\varphi)=1\end{cases}$
- $\bar{V}(\varphi \wedge \psi)= \begin{cases}1 & \text { if } \bar{V}(\varphi)=1 \text { and } \bar{V}(\psi)=1 \\ 0 & \text { otherwise }\end{cases}$
- $\bar{V}(\varphi \vee \psi)= \begin{cases}1 & \text { if } \bar{V}(\varphi)=1 \text { or } \bar{V}(\psi)=1 \\ 0 & \text { otherwise }\end{cases}$
- $\bar{V}(\varphi \rightarrow \psi)= \begin{cases}0 & \text { if } \bar{V}(\varphi)=1 \text { and } \bar{V}(\psi)=0 \\ 1 & \text { otherwise }\end{cases}$

To simplify the notation, we often write V for both the propositional valuation and its extension to the full set of propositional formulas.

Sometimes it is convenient to include two special atomic propositions ' \perp ' and ' T ', meaning 'false' and 'true', respectively. We can either think of these atomic proposition as being defined (\perp is $P \wedge \neg P$ and \top is $P \vee \neg P$ where $P \in \mathrm{At}$) or as special atomic propositions where for all propositional valuations, $V(\perp)=0$ and $V(\mathrm{~T})=1$.

We say that a set Γ of propositional formulas is satisfiable if all the formulas in Γ can be true at the same time, i.e., there is a propositional valuation V such that for all $\varphi \in \Gamma, V(\varphi)=1$. A formula $\varphi \in \Gamma$ is valid if for all propositional valuations $V, V(\varphi)=1$.

Definition 1.3 (Logical Consequence) Suppose that Γ is a set propositional formulas. We say that φ is a logical consequence of Γ, denoted $\Gamma \models \varphi$, provided for all propositional valuations V, if for all $\psi \in \Gamma, V(\psi)=1$, then $V(\varphi)=1$.

There are many different types of axiomatizations for propositional logic (e.g., Hilbert-style deductions, Natural deduction systems, Gentzen Systems, Tableaux). Consider the following set of axiom schemes and rule.

1. $\alpha \rightarrow(\beta \rightarrow \alpha)$
2. $(\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow((\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma))$
3. $\perp \rightarrow \alpha$
4. $(\alpha \wedge \psi) \rightarrow \alpha$
5. $(\alpha \wedge \beta) \rightarrow \beta$
6. $\alpha \rightarrow(\psi \rightarrow(\alpha \wedge \beta))$
7. $\alpha \rightarrow(\alpha \vee \beta)$
8. $\psi \rightarrow(\alpha \vee \beta)$
9. $(\alpha \rightarrow \perp) \rightarrow((\beta \rightarrow \perp) \rightarrow((\alpha \vee \beta) \rightarrow \perp)$
10. $((\alpha \rightarrow \perp) \rightarrow \perp) \rightarrow \alpha$
11. (Modus Ponens) $\frac{\alpha \alpha \rightarrow \beta}{\psi}$

Note that α, β and γ should be thought of as meta-variables that will be replaced with any formula of propositional logic.

Definition 1.4 (Deduction) Suppose that Γ is a set of propositional formulas. A deduction of φ from Γ is a finite sequence of formulas $\varphi_{1}, \ldots, \varphi_{n}$ where $\varphi_{n}=\varphi$, for each $i=1, \ldots, n, \varphi_{i}$ is either an element of Γ, an instance of one of the above axiom schemes or follows from earlier formulas by Modus Ponens (i.e., there are φ_{j}, φ_{k} such that $j, k<i, \varphi_{j}=\alpha, \varphi_{k}=\alpha \rightarrow \beta$ and $\varphi_{i}=\beta$. We write $\Gamma \vdash \varphi$ when there is a deduction of φ from Γ.

We say that a set of formulas φ is consistent if $\Gamma \nvdash \varphi$. The two key Theorems relating deductions and logical consequence are Soundness and Completeness:

Theorem 1.5 (Soundness) $\Gamma \vdash \varphi$ implies that $\Gamma \models \varphi$.
Theorem 1.6 (Completeness) $\Gamma \models \varphi$ implies that $\Gamma \vdash \varphi$.

1.1 Possible Worlds

Suppose that W is a non-empty set, elements of which are called possible worlds, or states. Each possible world is associated with a propositional valuation. This is typically expressed by a valuation function on $W: V: W \times A t \rightarrow\{0,1\}$. A valuation function is extended to a function $\bar{V}: W \times \mathcal{L} \rightarrow\{0,1\}$ as in Definition 1.2. As above, we ofter write $V: W \times \mathcal{L} \rightarrow\{0,1\}$ for both the valuation function and its extension to \mathcal{L}.

Each valuation function $V: W \times \mathcal{L} \rightarrow\{0,1\}$ is associate with a function $\llbracket \cdot \rrbracket: \mathcal{L} \rightarrow \wp(W)$, where $\wp(W)$ is the set of all subsets of W, as follows:

$$
\text { For each } \varphi \in \mathcal{L}, \llbracket \varphi \rrbracket=\{w \mid V(w, \varphi)=1\}
$$

It is a straightforward (but instructive!) exercise to verify the following Fact:
Fact 1.7 For all $\varphi \in \mathcal{L}$,

- $\llbracket \neg \varphi \rrbracket=W-\llbracket \varphi \rrbracket$
- $\llbracket \varphi \wedge \psi \rrbracket=\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket$
- $\llbracket \varphi \vee \psi \rrbracket=\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket$
- $\llbracket \varphi \rightarrow \psi \rrbracket=(W-\llbracket \varphi \rrbracket) \cup \llbracket \psi \rrbracket$

Alternatively, given a propositional valuation $V:$ At $\rightarrow\{0,1\}$, we can define a valuation function $\llbracket \rrbracket: \mathcal{L} \rightarrow \wp(W)$ inductively: For each $P \in \mathrm{At}, \llbracket P \rrbracket=\{w \mid V(P)=1\}$, and the Boolean clauses are as in the above Fact:

- $\llbracket \neg \varphi \rrbracket=W-\llbracket \varphi \rrbracket$
- $\llbracket \varphi \wedge \psi \rrbracket=\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket$
- $\llbracket \varphi \vee \psi \rrbracket=\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket$
- $\llbracket \varphi \rightarrow \psi \rrbracket=(W-\llbracket \varphi \rrbracket) \cup \llbracket \psi \rrbracket$

Then, given a function $\llbracket \llbracket!: \mathcal{L} \rightarrow \wp(W)$, we can define a function $V: W \times \mathcal{L} \rightarrow\{0,1\}$ as follows: For each $\varphi \in \mathcal{L}$ and $w \in W$,

$$
V(w, \varphi)= \begin{cases}1 & \text { if } w \in \llbracket \varphi \rrbracket \\ 0 & \text { if } w \notin \llbracket \varphi \rrbracket\end{cases}
$$

2 First-Order Logic

The language of predicate logic is constructed from a number of different pieces of syntax: variables, constants, function symbols and predicate symbols. Both function and predicate symbols are associated with an arity: the number of arguments that are required by the function or predicate. We start by defining terms. Let \mathcal{V} be a finite (or countable) set of variables and \mathcal{C} a set of constants.

Definition 2.1 (Terms) Let \mathcal{V} be a set of variable, \mathcal{C} a set of constant symbols and \mathcal{F} a set of function symbols. Each function symbol is associated with an arity (a positive integer specifying the number of arguments). Write $f^{(n)}$ if the arity of f is n. A term τ is constructed as follows:

- Any variable $x \in \mathcal{V}$ is a term.
- Any constant $c \in \mathcal{C}$ is a term.
- If $f^{(n)} \in \mathcal{F}$ is a function symbol (i.e., f accepts n arguments) and $\tau_{1}, \ldots, \tau_{n}$ are terms, then $f\left(\tau_{1}, \ldots, \tau_{n}\right)$ is a term.
- Nothing else is a term.

Let \mathcal{T} be the set of terms.

Terms are used to construct atomic formulas:
Definition 2.2 (Atomic Formulas) Let \mathcal{P} be a set of predicate symbols. Each predicate symbol is associated with an arity (the number of objects that are related by P). We write $P^{(n)}$ if the arity of P is n. Suppose that P is an atomic predicate symbol with arity n. If $\tau_{1}, \ldots, \tau_{n}$ are terms, then $P\left(\tau_{1}, \ldots, \tau_{n}\right)$ is an atomic formula. To simplify the notation, we may write $P \tau_{1} \tau_{2} \cdots \tau_{n}$. A special predicate symbol ' $=$ ' is included with the intended interpretation equality.

Definition 2.3 (Formulas) Formulas are constructed as follows:

- Atomic formulas $P\left(\tau_{1}, \ldots, \tau_{n}\right)$ are formulas;
- If φ is a formula, then so is $\neg \varphi$;
- If φ and ψ are a formulas, then so is $\varphi \wedge \psi$;
- If φ is a formula, then so is $(\forall x) \varphi$, where x is a variable;
- Nothing else is a formula.

The other boolean connectives $(\vee, \rightarrow, \leftrightarrow)$ are defined as usual. In addition, $(\exists x) \varphi$ is defined as $\neg(\forall x) \neg \varphi$.

Definition 2.4 (Free Variable) Suppose that x is a variable. Then, x occurs free in φ is defined as follows:

1. If φ is an atomic formula, then x occurs free in φ provided x occurs in φ (i.e., is a symbol in $\varphi)$.
2. x occurs free in $\neg \psi$ iff x occurs free in ψ
3. x occurs free in $\psi_{1} \wedge \psi_{2}$ iff x occurs free in ψ_{1} or x occurs free in ψ_{2}
4. x occurs free in $(\forall y) \psi$ iff x occurs free in ψ and $x \neq y$
5. x occurs free in $(\exists y) \psi$ iff x occurs free in ψ and $x \neq y$

The set of free variables in φ, denoted $\operatorname{Fr}(\varphi)$, is defined by recursion as follows:

1. If φ is an atomic formula, then $\operatorname{Fr}(\varphi)$ is the set of all variables (if any) that occur in φ
2. If φ is $\neg \psi$, then $\operatorname{Fr}(\neg \varphi)=\operatorname{Fr}(\varphi)$
3. If φ is $\psi_{1} \wedge \psi_{2}$, then $\operatorname{Fr}(\varphi)=\operatorname{Fr}\left(\psi_{1}\right) \cup \operatorname{Fr}\left(\psi_{2}\right)$
4. If φ is $(\forall x) \psi$, then $\operatorname{Fr}(\psi)=\operatorname{Fr}(\psi)$ after removing x, if present.

A variable x that is not free is said to be bound. Formulas that do not contain any free variables are called sentences:

Definition 2.5 (Sentence) If φ is a formula and $\operatorname{Fr}(\varphi)=\emptyset$ (i.e., there are no free variables), then φ is a sentence.

2.1 Substitutions

If τ and τ^{\prime} are terms, we write $\tau\left[x / \tau^{\prime}\right]$ for the terms where x is replaced by τ^{\prime}. We can formally define this operation by recursion:

- $x\left[x / \tau^{\prime}\right]=\tau^{\prime}$
- $y\left[x / \tau^{\prime}\right]=y$ for $x \neq y$
- $c\left[x / \tau^{\prime}\right]=c$
- $F\left(\tau_{1}, \ldots, \tau_{n}\right)\left[x / \tau^{\prime}\right]=F\left(\tau_{1}\left[x / \tau^{\prime}\right], \ldots, \tau_{n}\left[x / \tau^{\prime}\right]\right)$

The same notation can be used for formulas $\varphi[x / \tau]$ which means replace all free occurrences of x with τ in a formula φ. This is defined as follows:

- $P\left(\tau_{1}, \ldots, \tau_{n}\right)[x / \tau]=P\left(\tau_{1}[x / \tau], \ldots, \tau_{n}[x / \tau]\right)$
- $\neg \psi[x / \tau]=\neg(\varphi[x / \tau])$
- $\left(\psi_{1} \wedge \psi_{2}\right)[x / \tau]=\psi_{1}[x / \tau] \wedge \psi_{2}[x / \tau]$
- $((\forall x) \varphi)[x / \tau]=(\forall x) \varphi$
- $((\forall y) \varphi)[x / \tau]=(\forall y) \varphi[x / \tau]$, where $y \neq x$

The following are key examples of this operation:

1. $(x=y)[y / x]$ is $x=x$ and $(x=y)[x / y]$ is $y=y$,
2. $(\forall x(x=y))[x / y]$ is $(\forall x) x=y$,
3. $(\forall x(x=y))[y / x]$ is $(\forall x) x=x$,
4. $(\forall x) \neg(\forall y)(x=y) \rightarrow(\neg \forall y(x=y))[x / y]$ is $(\forall x) \neg(\forall y)(x=y) \rightarrow \neg \forall y(y=y)$.

Definition 2.6 (Substitutability) A term τ is substitutable for x in φ is defined as follows:

- For an atomic formula φ, τ is always substitutable for x in φ (there are no quantifiers, so t can always be substituted for x)
- τ is substitutable for x in $\neg \psi$ iff τ is is substitutable for x in ψ
- τ is substitutable for x in $\psi_{1} \wedge \psi_{1}$ iff τ is is substitutable for x in ψ_{1} and τ is is substitutable for x in ψ_{2}
- τ is substitutable for x in $(\forall y) \psi$ iff either

1. x does not occur free in $(\forall y) \psi$
2. y does not occur in τ and τ is substitutable for x in ψ.

2.2 First-Order Models

2.2.1 Interpreting Terms

Suppose that W is a set. An interpretation I (for W) associates with each functions symbol F a function on W of the appropriate arity, denoted F^{I}, and to each constant c an element of W, denoted c^{I}. If W is a set and I an interpretation, then for a function symbol F of arity n,

$$
F^{I}: \underbrace{W \times \cdots \times W}_{n \text { times }} \rightarrow W
$$

For each constant symbol, c, we have

$$
c^{I} \in W
$$

Our goal is to show how to associate with each term and element of a set W. We first need the notion of a substitution:

Definition 2.7 (Substitution) Suppose that W is a nonempty set. A substitution is a function $\mathbf{s}: \mathcal{V} \rightarrow W$.

Definition 2.8 (Interpretation of Terms) Suppose that I is an interpretation for W and \mathbf{s} : $\mathcal{V} \rightarrow W$ is a substitution. We define the function $(I, \mathbf{s}): \mathcal{T} \rightarrow W$ by recursion as follows:

- $(I, \mathbf{s})(x)=\mathbf{s}(x)$
- $(I, \mathbf{s})(c)=c^{I}$
- $(I, \mathbf{s})\left(F\left(\tau_{1}, \ldots, \tau_{n}\right)\right)=F^{I}\left((I, \mathbf{s})\left(\tau_{1}\right), \ldots,(I, \mathbf{s})\left(\tau_{n}\right)\right)$

Suppose that $\mathbf{s}: \mathcal{V} \rightarrow W$ is a substitution. If $a \in W$, we define a new substitution $\mathbf{s}[x / a]$ as follows:

$$
\mathbf{s}[x / a](y)= \begin{cases}a & \text { if } y=x \\ \mathbf{s}(x) & \text { otherwise }\end{cases}
$$

Suppose that $\mathbf{s}: \mathcal{V} \rightarrow W$ and $\mathbf{s}^{\prime}: \mathcal{V} \rightarrow W$ are two substitutions. For each variable $x \in \mathcal{V}$, we define a relation on the set of substitutions as follows:

$$
\mathbf{s} \sim_{x} \mathbf{s}^{\prime} \text { iff } \mathbf{s}(y)=\mathbf{s}^{\prime}(y) \text { for all } y \neq x
$$

Hence, $\mathbf{s} \sim_{x} \mathbf{s}^{\prime}$ provided there is some $a \in W$ such that $\mathbf{s}^{\prime}=\mathbf{s}[x / a]$.

2.2.2 First Order Models

Definition 2.9 (Model) A model is a pair $\mathfrak{A}=\langle W, I\rangle$ where W is a nonempty set (called the domain) and I is a function (called the interpretation) assigning to each function symbol F, a function denoted F^{I}, to each constant symbol, an element of W denoted c^{I} and to each predicate symbol P, a relation on W of the appropriate arity. If P has arity n, then we have

$$
P^{I} \subseteq \underbrace{W \times \cdots \times W}_{n \text { times }}
$$

If \mathcal{A} is a model, we write $|\mathcal{A}|$ for the domain of \mathcal{A}, and we write $F^{\mathcal{A}}, c^{\mathcal{A}}$ and $P^{\mathcal{A}}$ to denote F^{I}, c^{I} and P^{I}, respectively.

We say \mathbf{s} is a substitution for \mathcal{A} provided $\mathbf{s}: \mathcal{V} \rightarrow|\mathcal{A}|$. Let $\mathcal{A}=\langle W, I\rangle$ be a model. For each term τ, we write $\tau^{\mathcal{A}, \mathbf{s}}$ for $(I, \mathbf{s})(\tau)$.

Definition 2.10 (Truth) Suppose that \mathcal{A} is a model and \mathbf{s} is a substitution for \mathcal{A}. The formula φ is true in \mathcal{A} (given \mathbf{s}), denoted $\mathcal{A}, \mathbf{s} \varphi$, is defined by recursion as follows:

- $\mathcal{A}, \mathbf{s} \models P\left(\tau_{1}, \ldots, \tau_{n}\right)$ iff $\left(\tau_{1}^{\mathcal{A}, \mathbf{s}}, \ldots, \tau_{n}^{\mathcal{A}, \mathbf{s}}\right) \in P^{\mathcal{A}}$
- $\mathcal{A}, \mathbf{s} \models \neg \psi$ iff $\mathcal{A}, \mathbf{s} \not \vDash \psi$
- $\mathcal{A}, \mathbf{s} \models \psi_{1} \wedge \psi_{2}$ iff $\mathcal{A}, \mathbf{s} \models \psi_{1}$ and $\mathcal{A}, \mathbf{s} \models \psi_{2}$
- $\mathcal{A}, \mathbf{s} \models(\forall x) \psi$ iff for all substitutions \mathbf{s}^{\prime} for \mathcal{A} if $\mathbf{s} \sim_{x} \mathbf{s}^{\prime}$, then $\mathcal{A}, \mathbf{s}^{\prime} \models \psi$

2.3 Deductions in First Order Logic

An axiom system for first-order logic consists of the following four axioms (there are others, this is the one from Enderton's Introduction to Mathematical Logic):

1. All tautologies
2. $(\forall x) \varphi \rightarrow \varphi[x / t]$, where τ is substitutable for x in φ
3. $(\forall x)(\varphi \rightarrow \psi) \rightarrow((\forall x) \varphi \rightarrow(\forall x) \psi)$
4. $\varphi \rightarrow(\forall x) \varphi$, where x does not occur free in φ

Definition 2.11 (Generalization) Given a formula φ, a generalization of φ is a formula of the form $\left(\forall x_{1}\right) \cdots\left(\forall x_{n}\right) \varphi$.

Definition 2.12 (Tautology) A tautology (in FOL) is any formula obtained by replacing each atomic proposition with a first-order formula.

Definition 2.13 (Deduction) We write $\Gamma \vdash \varphi$ iff there is a finite sequence of formulas $\varphi_{1}, \ldots, \varphi_{n}$ such that $\varphi_{n}=\varphi$, each φ_{i} is either a generalization of one of the above axioms, is an element of Γ, or follows from earlier formulas on the list by modus ponens. We write $\vdash \varphi$ instead of $\emptyset \vdash \varphi$. \triangleleft

Example . $\vdash \exists x(\alpha \wedge \beta) \rightarrow \exists x \alpha \wedge \exists x \beta$.

1. $\forall x(\neg \alpha \rightarrow \neg(\alpha \wedge \beta)) \quad$ Instance of Axiom 1
2. $\forall x(\neg \alpha \rightarrow \neg(\alpha \wedge \beta)) \rightarrow(\forall x \neg \alpha \rightarrow \forall x \neg(\alpha \wedge \beta)) \quad$ Instance of Axiom 3
3. $\forall x \neg \alpha \rightarrow \forall x \neg(\alpha \wedge \beta)$

MP 1,2
4. $\quad(\forall x \neg \alpha \rightarrow \forall x \neg(\alpha \wedge \beta)) \rightarrow(\neg \forall x \neg(\alpha \wedge \beta) \rightarrow \neg \forall x \neg \alpha) \quad$ Instance of Axiom 1
5. $\neg \forall x \neg(\alpha \wedge \beta) \rightarrow \neg \forall x \neg \alpha \quad$ MP 3,4
6. $\exists x(\alpha \wedge \beta) \rightarrow \exists x \alpha \quad$ Definition of ‘ \exists ’
7. $\forall x(\neg \beta \rightarrow \neg(\alpha \wedge \beta)) \quad$ Instance of Axiom 1
8. $\forall x(\neg \beta \rightarrow \neg(\alpha \wedge \beta)) \rightarrow(\forall x \neg \beta \rightarrow \forall x \neg(\alpha \wedge \beta)) \quad$ Instance of Axiom 3
9. $\forall x \neg \beta \rightarrow \forall x \neg(\alpha \wedge \beta)$

MP 7,8
10. $(\forall x \neg \beta \rightarrow \forall x \neg(\alpha \wedge \beta)) \rightarrow(\neg \forall x \neg(\alpha \wedge \beta) \rightarrow \neg \forall x \neg \beta) \quad$ Instance of Axiom 1
11. $\neg \forall x \neg(\alpha \wedge \beta) \rightarrow \neg \forall x \neg \beta \quad$ MP 9,10
12. $\exists x(\alpha \wedge \beta) \rightarrow \exists x \beta \quad$ Definition of ' \exists '
13. $(\exists x(\alpha \wedge \beta) \rightarrow \exists x \alpha) \rightarrow((\exists x(\alpha \wedge \beta) \rightarrow \exists x \beta)$
$\rightarrow(\exists x(\alpha \wedge \beta) \rightarrow(\exists x \alpha \wedge \exists x \beta))) \quad$ Instance of Axiom 1
14. $\quad(\exists x(\alpha \wedge \beta) \rightarrow \exists x \beta) \rightarrow(\exists x(\alpha \wedge \beta) \rightarrow(\exists x \alpha \wedge \exists x \beta)) \quad$ MP 6,13
15. $\exists x(\alpha \wedge \beta) \rightarrow(\exists x \alpha \wedge \exists x \beta) \quad$ MP 12,14

2.4 Basic Model Theory

- A set of formulas T is inconsistent provided $T \vdash \perp$ (where \perp is a formula of the form $\mathbf{0} \neq \mathbf{S}(\mathbf{0})$. A set of formulas T is consistent if it is not inconsistent.
- Suppose that T is a set of sentences. Then $C n(T)=\{\varphi \mid T \vdash \varphi\}$ is the set of (first-order) consequences of T.
- Suppose that \mathcal{A} is a first-order model. Then, $\operatorname{Th}(\mathcal{A})=\{\varphi \mid \varphi$ is a sentence and $\mathcal{A} \models \varphi\}$ is the theory of \mathcal{A}. For example, $\operatorname{Th}\left(\mathcal{N}_{S}\right)$ is the set of sentences of \mathcal{L}_{S} true in \mathcal{N}_{S}; and $\operatorname{Th}(\mathcal{N})$ is the set of sentences of \mathcal{L}_{A} true in \mathcal{N} (the theory of true arithmetic).
- A set of sentences T is satisfiable if there is a model \mathcal{A} such that $\mathcal{A} \models T$ (where $\mathcal{A} \models T$ means $\mathcal{A} \models \varphi$ for each $\varphi \in T$).
- A theory is a set of sentences. (Sometimes

A theory is (effectively) axiomatizable provided there is recursive set A of sentences (and possibly rules) such that $C n(A)=T$. A theory T is finitely axiomatizable provided there is a finite set A of sentences (and possibly rules) such that $C n(A)=T$.
A theory T (in the language \mathcal{L}) is negation-complete provided for every sentence of φ in \mathcal{L}, either $T \vdash \varphi$ or $T \vdash \neg \varphi$.
A theory T is decidable provided the set $\operatorname{Cn}(T)$ is recursive.
Some useful observations and Theorems:

- If \mathcal{L} is a first-order language constructed from a signature of size κ (where κ is a cardinal), then $|\mathcal{L}|=\max \left\{\aleph_{0}, \kappa\right\}$ (\aleph_{0} is the first countable cardinal). Thus, there are countably many formulas of \mathcal{L}_{A}.
- The set \mathcal{L} of well-formed formulas (wff) is recursive.
- If T is effectively axiomatizable, then $C n(T)$ is semidecidable.
- If T is effectively axiomatizable and negation-complete, then $C n(T)$ is decidable.
- Model Construction Theorem. Every consistent set of formulas has a model.
- Compactness Theorem. If every finite subset of T is satisfiable, then T is satisfiable.
- Löwenheim-Skolem Theorem. If T has a model, then T has a countable model. A model \mathcal{A} is countable provided the domain of \mathcal{A} is countable (i.e., $|\mathcal{A}|$ is countable). The upward Löwenheim-Skolem Theorem states that if T has a model, then it has a model of any infinite cardinality κ.

Two structures \mathcal{A} and \mathcal{B} are elementarily equivalent, denoted $\mathcal{A} \equiv \mathcal{B}$, provided for every sentence $\varphi, \mathcal{A} \models \varphi$ iff $\mathcal{B} \models \varphi$ (i.e., $\operatorname{Th}(\mathcal{A})=\operatorname{Th}(\mathcal{B})$).

Definition 2.14 (Isomorphism) Suppose that \mathcal{A} and \mathcal{B} are two models. A function $f:|\mathcal{A}| \rightarrow|\mathcal{B}|$ is an isomorphism provided

- f is a bijection
- For all constants $c \in \mathcal{C}, f\left(c^{\mathcal{A}}\right)=c^{\mathcal{B}}$
- $f\left(F^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=F^{\mathcal{B}}\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)$
- For all $\left(a_{1}, \ldots, a_{n}\right) \in P^{\mathcal{A}}$ iff $\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right) \in P^{\mathcal{B}}\right.$

We write $\mathcal{A} \cong \mathcal{B}$ when there is an isomorphism from \mathcal{A} to \mathcal{B}.

Isomorphism Theorem. For any two first-order models if $\mathcal{A} \cong \mathcal{B}$, then $\mathcal{A} \equiv \mathcal{B}$.
There are examples of structures that are elementarily equivalent but not isomorphic (e.g., $(\mathbb{R},<)$ and $(\mathbb{Q},<)$ cannot be distinguished by a first-order formula, but are not isomorphic since there is no bijection function from \mathbb{R} to \mathbb{Q}.)

Suppose that \mathcal{A} is a first-order structure. A set $X \subseteq|\mathcal{A}|$ is definable (in the language \mathcal{L}) provided there is a formula $\varphi(x)$ with one free variable such that

$$
X=\{a|\mathcal{A}|=\varphi(a)\}
$$

This definition can be readily adapted to k-ary relations $X \subseteq|\mathcal{A}|^{k}$.
Example. \mathbb{N} is not definable in the structure $(\mathbb{R},<)$. Suppose it is defined by $\varphi(x)$ in the firstorder language with equality and $<$. Consider $h: \mathbb{R} \rightarrow \mathbb{R}$ defined as $h(r)=r^{3}$. Then, h is a isomorphism between $(\mathbb{R},<)$ and itself (it is an automorphism). Thus, by the Isomorphism Theorem, $(\mathbb{R},<) \mid=\varphi(r)$ iff $(\mathbb{R},<) \vDash \varphi(h(r))$. But, then $\sqrt[3]{2} \notin \mathbb{N}$ implies $(\mathbb{R},<) \neq \varphi(\sqrt[3]{2})$ iff $(\mathbb{R},<) \not \models \varphi(h(\sqrt[3]{2}))$ iff $(\mathbb{R},<) \not \models \varphi(2)$, which is a contradiction since $2 \in \mathbb{N}$.

