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Abstract
Dynamic epistemic logic, broadly conceived, is the study of logics of information change. This is the first paper
in a two-part series introducing this research area. In this paper, I introduce the basic logical systems for rea-
soning about the knowledge and beliefs of a group of agents.

1. Introduction

The first to propose a (modal) logic of knowledge and belief was Jaako Hintikka in his
seminal book Knowledge and Belief: An Introduction to the Logic of the Two Notions,
published in 1962. However, the general study of formal semantics for knowledge and
belief (and their logic) really began to flourish in the 1990s with fundamental contribu-
tions from computer scientists (Fagin et al. 1995; Meyer and van der Hoek 1995)
and game theorists (Aumann 1999; Bonanno and Battigalli 1999). As a result, the field
of Epistemic Logic developed into an interdisciplinary area focused on explicating episte-
mic issues in, for example, game theory (Brandenburger 2007), economics (Samuelson
2004), computer security (Halpern and Pucella 2003; Ramanujam and Suresh 2005),
distributed and multiagent systems (Halpern and Moses 1990; van der Hoek and
Wooldridge 2003), and the social sciences (Parikh 2002; Gintis 2009). Nonetheless, the
field has not loss touch with its philosophical roots: See (Holliday 2012; Egré 2011;
Stalnaker 2006; van Benthem 2006a; and Sorensen 2002) for logical analyses aimed at
mainstream epistemology.
Inspired, in part, by issues in these different ‘application’ areas, a rich repertoire of epistemic

and doxastic attitudes have been identified and analyzed in the epistemic logic literature. The
challenge for a logician is not to argue that one particular account of belief or knowledge is
primary, but, rather, to explore the logical space of definitions and identify interesting relation-
ships between the different notions. I do not have the space for a comprehensive overview of
the many different logics of knowledge and belief. Instead, I will confine the discussion to three
logical frameworks needed for the survey of dynamic logics of knowledge and belief found in the
second paper.
The formal models introduced in this article can be broadly described as ‘possible worlds

models’, familiar in much of the philosophical logic literature. Let A be a finite set of agents
and At a (finite or countable) set of atomic sentences. Elements p2At are intended to
describe basic properties of the situation being modeled, such as ‘it is raining’ or ‘the red card
is on the table’. Setting aside any conceptual difficulties surrounding the use of ‘possible
worlds’,1 a nonempty set W of states, or possible worlds, will be used to represent different
possible scenarios or states of affairs. A valuation function associates with each atomic proposition
p a set of states where p is true: V : At ! ℘ Wð Þ.
In this article, I will introduce different logical systems that have been used to reason

about the knowledge and beliefs of a group of agents. My focus is on the underlying intuitions
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and a number of illustrative examples rather than the general logical theory of these systems
(e.g., issues of decidability, complexity, completeness and definability). Although I will
include pointers to this more technical material throughout this article, interested readers
are encouraged to consult two textbooks on modal logic (Blackburn et al. 2002; van
Benthem 2010) for a systematic presentation.
2. Knowledge

The model in this section is based on a very simple (and ubiquitous) idea: An agent is informed
that ’ is true when ’ is true throughout the agent’s current range of possibilities. In an
epistemic model, the agents’ ‘range of possibilities’ are described in terms of epistemic accessibility
relations Ri on the set of statesW (i.e., Ri�W�W). That is, given a relation Ri onW, the set
Ri(w) = {v|wRiv} is agent i’s ‘range of possibilities’ at state w.

Definition 2.1 (Epistemic Model) Let A be a finite set of agents and At a (finite or
countable) set of atomic propositions. An epistemic model is a tuple W ; Rif gi2A;V

� �
whereW 6¼∅, for each i 2 A, Ri�W�W is a relation, and V : At ! ℘ Wð Þ is a valuation
function.

Epistemic models are used to describe what the agents know about the situation being
modeled. A simple propositional modal language is often used to make this precise: Let LK
be the set of sentences generated by the following grammar:

’ :¼ p :’j j ’∧c jKi’

where p2At (the set of atomic propositions). The additional propositional connectives
(!,↔,∨) are defined as usual, and the dual of Ki, denoted Li, is :Ki:’. Following
the standard usage in the epistemic logic and game theory literature, the intended
interpretation of Ki’ is ‘agent i knows that ’’. An alternative interpretation (which is
more natural in many situations) is ‘agent i is informed that ’ is true’.
Each state of an epistemic model represents a possible scenario that can be described in the

formal language given above: If ’ 2 LK , thenM;w⊨’ means ’ is true in the situation rep-
resented by w. This can be made precise as follows:

Definition 2.2 (Truth for LK ) Let M ¼ W ; Rif gi2A;V
� �

be an epistemic model.
For each w2W, ’ is true at state w, denoted M;w⊨’, is defined by induction on the
structure of ’:

•M;w⊨p iff w 2V ðpÞ for p 2At
•M;w⊨:’ iff M;w =⊨’
•M;w⊨’∧c iff M;w⊨’ and M;w⊨c
•M;w⊨Ki’ iff for all v2W, if wRiv then M; v⊨’

It is important to recognize that Ki’ defines a set of states in which it is true that agent
i ‘knows’ that ’ (or agent i is ‘informed’ that ’). It does not explain why or how agent i
came to the conclusion that ’ is true. Indeed, there are different ways to understand
exactly how these models represent the agents’ knowledge (and later, beliefs). The crucial
© 2013 The Author Philosophy Compass (2013): 1–17, 10.1111/phc3.12059
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interpretative step is to explain what it means for a state v to be accessible for agent i
from state w.
The first, and most neutral, interpretation of wRiv is everything that agent i knows in

state w is true in state v. Under this interpretation, the agents’ knowledge is not
defined in terms of more primitive notions. Instead, an epistemic model represents the
‘implicit consequences’ of what the agents are assumed to know in the situation being
modeled.
A second use of epistemic models is to formalize a substantive theory of knowledge.

In this case, the agents’ knowledge is defined in terms of more primitive concepts
(which are built into the definition of the accessibility relation). For instance, suppose
that wRiv means that agent i has the same experiences and memories in both w and v (Lewis
1996). Another example is wRiv means that at state w, agent i cannot rule out state v
(according to i’s current observations and any other evidence she has obtained). In both cases,
what the agents know is defined in terms of more primitive notions (in terms of ‘same-
ness of experience and memory’ or a ‘ruling-out’ operation).
Finally, epistemic models have been used to make precise informal notions of

knowledge found in both the computer science and game theory literature. For exam-
ple, consider a system of processors executing some distributed program. When design-
ing such a distributed program, it is natural to use statements of the form ‘if processor i
knows that the message was delivered, then . . .’. The notion of knowledge being used
here can be given a concrete interpretation as follows: A possible world, or global
state, is a complete description of the system at a fixed moment. At each possible
world, processors are associated with a local view, defined in terms of the values of
the variables that the processor has access to. Then, a global state s is accessible for
processor i from another global state s0 provided i has the same local view in both s
and s0. A similar approach can be used to analyze game-theoretic situations. For exam-
ple, in a poker game, the states are the different distribution of cards. Then, a state v is
accessible for player i from state w provided i has the same information in both states
(eg., i was dealt the same cards in both states). In both cases, the goal is to develop a
useful model of knowledge based on a concrete definition of possible worlds and the
epistemic accessibility relation rather than a general analysis of ‘knowledge’.
The issues raised above are important conceptual and methodological considerations,

and they help us understand the scope of an epistemic analysis using the logical system
introduced in this section. However, the general distinctions should not be overstated as
they tend to fade when analyzing specific examples. Consider the following running
example: Suppose that there are two coins each sitting in different drawers and two
agents, Ann (a) and Bob (b). We are interested in describing what Ann and Bob know
about the two coins. Of course, there are many facts about the coins that we may want
to represent (eg., the exact position of the coins in the drawer, what type of coins are in
the drawers: Are they nickels? Are they quarters?, etc.), but to keep things simple
consider four atomic propositions: For i= 1, 2, let Hi denote ‘the coin in drawer i is
facing heads up’ and Ti denote ‘the coin in drawer i is facing tails up’. Suppose that
Ann looked at the coin in drawer 1 and Bob looked at the coin in drawer 2. Given
what Ann and Bob have observed, we can represent their knowledge about the coins
in the diagram below: Suppose that both coins are facing heads up (so w1 is the actual
state). We draw an edge labeled with a (respectively b) between two states if a
(respectively b) cannot distinguish them (based on their observations). Of course, each
state cannot be distinguished from itself; however, in order to minimize the clutter in
the diagram, I do not draw these reflexive edges.
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The reader is invited to verify that KaH1∧KbH2 is true at state w1, as expected. However,
much more is true at state w1. In particular, while Ann does not know which way the coin is
facing in the second drawer, she does know that Bob knows whether the coin is facing heads
up or tails up (i.e., Ka(KbH2∨KbT2) is true at w1). Thus, states in an epistemic model also
describe the agents’ higher order knowledge: the information about what the other agents know
about each other. The implicit assumption underlying the above model is that the agents
correctly observe the face of the coin when they look in the drawer and they take it for granted
that the other agent correctly perceived the other coin. This is a substantive assumption about
what the agents know about each other and can be dropped by adding states to the model:

Now, at state w1 in the above model, Ann considers it possible that Bob does not know
the position of the coin in the second drawer (so, Ka(KbH2∨KbT2) is not true at w1). Of
course, there are other implicit assumptions built into the modified model. Indeed, it is
not hard to see that one always finds implicit assumptions in a finite epistemic model. This
raises an intriguing question: Are there epistemic models that make no, or at least as few as
possible, implicit assumptions about what each agent knows about the other agents’
knowledge? This question has been extensively discussed in the literature on the epistemic
foundations of game theory – see the discussion and references in Samuelson (2004) and
Roy and Pacuit (2011) for more on this topic.
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In the above example, the agents’ accessibility relation satisfied a number of additional
properties. In particular, the relations are reflexive (for each w, wRiw), transitive (for each
w, v, s if wRiv and vRis then wRis) and Euclidean (for each w, v, s if wRiv and wRis then vRis).
It is not hard to see that relations that are reflexive and Euclidean must also be symmetric
(for all w, v if wRiv then vRiw). Relations that are reflexive, transitive and symmetric are called
equivalence relations. Assuming that the agents’ accessibility relations are equivalence relations
(in the remainder of this article and in part II, we use the notation ~ i instead of Ri when
the accessibility relations are equivalence relations) is a substantive assumption about the na-
ture of the informational attitude being represented in these models. In fact, by using standard
techniques from the mathematical theory of modal logic, I can be much more precise about
what properties of knowledge are being assumed. In particular, modal correspondence theory
rigorously relates properties of the relation in an epistemic model with modal formulas
(cf. Blackburn et al. 2002, Chapter 3).2 Table 1 lists some key formulas in the language
LK with their corresponding property.
Viewed as a description, even an idealized one, of knowledge, the properties in Table 1 have

drawn many criticisms. The underlying assumption of logical omniscience, witnessed by the
validity of the first axiom (each agent’s knowledge is closed under known logical consequences)
and the validity of the inference rule, called necessitation, from ’ infer Ki’ (each agent knows all
validities),3 has generated the most extensive criticisms (Stalnaker 1991) and responses (Halpern
and Pucella 2011). Furthermore, the two introspection principles have also been the subject
of intense discussion (cf. Williamson 2000; Egré and Bonnay 2009). These discussions are
fundamental to the theory of knowledge and its formalization, but here I choose to bracket
them, and, instead, take epistemic models for what they are: precise descriptions of what the
(modeler takes the) agents (to) know about the situation being modeled.

3. Adding Belief

A characteristic feature of a rational agent is her beliefs, and the ability to correct them when
they turn out to be wrong. There are many different formal representations of beliefs – see
(Huber 2011) and (Halpern 2003) for overviews.
A simple modification of the above epistemic models allows us to represent both

the agents’ knowledge and ‘beliefs’: An epistemic doxastic model is a tuple
hW ; RK

i

� �
i2A; RB

i

� �
i2A;V i where both RK

i and RB
i are relations on W. Truth of a belief

operator Bi’ is defined precisely as in Definition 2.2, replacing Ri with RB
i . This points to

a logical analysis of both informational attitudes with various ‘bridge principles’ relating
knowledge and belief (such as knowing something implies believing it or if an agent believes
’ then the agent knows that she believes it). However, we do not discuss this line of re-
search4 here since these models are not our preferred ways of representing the agents’
beliefs (see, for example, Halpern 1996; Stalnaker 2006 for a discussion).
Table 1. Formulas of LK and their corresponding properties.

Name Formula Property

K axiom Ki (’!c)! (Ki’!Kic) —
Truth axiom Ki’!’ Reflexive
Positive introspection Ki’!ΚiKi’ Transitive
Negative introspection :Ki’!Ki:Ki’ Euclidean
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3.1. MODELS OF BELIEF VIA PLAUSIBILITY

A key aspect of beliefs not yet represented in the epistemic doxastic models sketched
above is that they are revisable in the presence of new information. In this section, I
introduce models that describe both the knowledge and beliefs of a group of agents
together with the key modal language that have been used to reason about these struc-
tures. Building on the extensive literature on the theory of belief revision initiated with
the classic paper (Alchourrón et al. 1985), these models will be used in part 2 to study
dynamic logics of belief. Before we get started, it is worth stressing that, as in the previous
section, the models introduced below are intended to describe the knowledge and beliefs of a
group of agents without committing to any specific psychological or philosophical theory of
knowledge and/or beliefs.
Taking a cue from Adam Grove’s classic paper (Grove 1988), the key idea is to endow

epistemic ranges with a plausibility ordering for each agent: a pre-order (reflexive and
transitive) w⪯ iv that says ‘agent i considers world w at least as plausible as v’. As a conve-
nient notation, for X�W, we set Min⪯i

Xð Þ ¼ v 2 X v⪯iw for all w 2 Xj gf , the set of
minimal elements of X according to ⪯ i. This is the subset of X that agent i considers the
‘most plausible’. Thus, while the ~ i partitions the set of possible worlds according to i’s
‘hard information’, the plausibility ordering ⪯ i represents i’s ‘soft information’ about
which of the possible worlds agent i considers more ‘plausible’. The models defined
below have been extensively studied by logicians (van Benthem 2007; van Ditmarsch
2005; Baltag and Smets 2006), game theorists (Board 2004) and computer scientists
(Boutilier 1992; Lamarre and Shoham 1994).

Definition 3.1 (Epistemic Plausability Model) Let A be a finite set of agents and At a
(finite or countable) set of atomic propositions. An epistemic plausibility model is a tuple
M ¼ W ; �if gi2A; ⪯if gi2A;V

� �
where W ; �if gi2A;V

� �
is an epistemic model and, for

each i 2 A, ⪯ i is a well-founded5 reflexive and transitive relation on W satisfying, for
all w, v2W:

1. plausibility implies possibility: if w⪯i v then w�i v.
2. Locally connected: if w�i v then either w⪯i v or v⪯i w.

Remark 3.2. Note that if w =�i v then, since � i is symmetric, we also have v=�iw, and so by
property 1, w =⪯i v and v ⪯i w. Thus, we have the following equivalence: w� iv iff w⪯ iv or
v⪯ iw. In what follows, unless otherwise stated, I assume that � i is defined as follows: w� iv iff
w⪯ iv or v⪯ iw.

In order to reason about these structures, extend the basic epistemic language LK
with a conditional belief operator: Let LKB be the set of sentences generated by the
following grammar:

’ :¼ p :’j j ’∧c j B’
i c j Ki’

where p2At (the set of atomic propositions) and i 2 A. The same conventions apply as
above with the additional convention that we write Bi’ for B>

i ’.
Let [w]i={v|w� iv} be the equivalence class of w under � i, called i’s information cell at w.

Then, local connectedness implies that ⪯ i totally orders [w]i and well-foundedness implies
that Min⪯i

w½ �i∩X
� �

is nonempty if [w]i∩X 6¼∅.
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Definition 3.3 (Truth forLKB) Suppose thatM ¼ W ; �if gi2A; ⪯if gi2A;V
� �

is an episte-
mic plausibility model. The definition of truth for formulas from LK is given in Definition
2.2. The conditional belief operator is defined as follows:

•M;w⊨B’
i c iff for all v 2 Min⪯i

½w�i∩〚’〛M
� �

, M; v⊨c

where 〚’〛M ¼ w M;w ⊨’j gf .

Thus,c is believed conditional on’, if i’s most plausible’-worlds (i.e., the states satisfying ’
that i has not ruled out and considers most plausible) all satisfy c. Then, the definition of plain
belief (which is defined to be B>) is:

M;w⊨Bi’ iff for each v 2 Min⪯i
w½ �i

� �
;M; v⊨’

Recall the example of Ann and Bob, and the two coins in separate drawers. The following
epistemic plausibility model describes a possible configuration of beliefs before the agents
observe their respective coins: I draw an arrow from v to w if w⪯ v (to keep the clutter down,
I do not include all arrows. The remaining arrows can be inferred by transitivity and reflexivity).

Suppose that both coins are facing tails up, so w1 is the actual state. Following the conven-
tion from Remark 3.2, we have [w1]a= [w1]b={w1,w2,w3,w4}, and so, neither Ann nor Bob
knows this fact. Furthermore, both Ann and Bob believe that both coins are facing heads up
(i.e., w1⊨Ba(H1∧H2)∧Bb(H1∧H2) since Min⪯a

w1½ �a
� � ¼ Min⪯b

w1½ �b
� � ¼ w4f g ). How-

ever, Ann and Bob do have different conditional beliefs. Ann believes that the position of
the coins in the two drawers are independent; and so, she believes that H2 is true even under
the supposition that T1 is true (and vice versa for the other coin:w1⊨BT1

a H2∧BT2
a H1). On the

other hand, Bob believes that the coins are somehow correlated; and so, under the supposi-
tion that T1 is true, Bob believes that the coin in the second drawer must also be facing tails
up (and vice versa for the other coin: w1⊨BT1

b T2∧BT2
b T1).

So, conditional beliefs describe an agent’s disposition to change his or her beliefs in the
presence of (perhaps surprising) evidence.6 This is reflected in the logic of the conditional belief
operator. An immediate observation is that Bi(’!c) does not imply B’

i c .7 Another, more
fundamental, observation is that conditioning is nonmonotonic in the sense that B’

i a !
B’∧c
i a is not valid. Nonetheless, weaker forms of monotonicity do hold. These and other key

logical principles of conditional belief are shown in Table 2.
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Table 2. Key principles of conditional belief.

Success: B’
i ’

Knowledge entails belief Ki’ ! Bc
i ’

Full introspection: B’
i c ! KiB

’
i c and :B’

i c ! Ki:B’
i c

Cautious monotonicity: B’
i a∧B

’
i bð Þ ! B’∧b

i a

Rational monotonicity: B’
i a∧:B’

i :bð Þ ! B’∧b
i a

Dynamic Epistemic Logic I: Modeling Knowledge and Beliefs
The reader is invited to check that all of the formulas in Table 2 are valid in any epistemic
plausibility model. The full introspection principles are valid since we assume that each agent’s
plausibility ordering is uniform. That is, each agent i has a single plausibility order over the set of
all possible worlds, which totally orders each of i’s information cells.8 The intuition is that all the
worlds that an agent i has ruled out at state w (based on her observations and/or background
knowledge) are considered the least plausible overall. A more general semantics is needed if
one wants to drop the assumption of full introspection and that knowledge entails belief. Spe-
cifically, the key idea is to define the agent’s plausibility ordering as a ternary relation where
x⪯w

i y means i considers x at least as plausible as y in state w. So, agents may have different
plausibility orderings at different states. The logic of these more general structures has been
studied by Oliver Board (2004) (see also an earlier paper by John Burgess 1981).
The other principles highlight the close connection with the AGM postulates of rational

belief revision (Alchourrón et al. 1985).9 While success and cautious monotonicity are often
taken to be constitutive of believing something under the supposition that ’ is true, rational
monotonicity has generated quite a bit of discussion. The most well-known criticism comes
from Robert Stalnaker (1994a) who suggests the following counterexample: Suppose that
Ann initially believes that the composer Verdi is Italian I(v) and Bizet and Satie are French
(F(b)∧F(s)). Conditioning on the fact that Verdi and Bizet are compatriots (C(v,b)),10

Ann still believes that Satie is French (BC v;bð Þ
a F sð Þ is true since supposing that Verdi and Bizet

are compatriots does not conflict with the belief that Satie is French). Under the supposition
that Verdi and Bizet are compatriots, Ann thinks it is (doxastically) possible that Verdi and
Satie are compatriots (:BC(v,b):C(v,s) is true since C(v,b) is consistent with all three being
French). Rational monotonicity gives us that Ann believes Satie is French under the
supposition that C(v,b)∧C(v,s) (i.e., BC(v,b)∧C(v,s)F(s) must be true). However, supposing
that C(v,b)∧C(v,s) is true implies all three composers are compatriots, and this could be
because they are all Italian. Much has been written in response to this counterexample. How-
ever, a detailed analysis of this literature would take us too far away from the main objective of
this section: a concise introduction to the main formal models of knowledge and belief.
I conclude this section by discussing two additional notions of belief. To that end, we need

some additional notation: The plausibility relation ⪯ i can be lifted to subsets ofW as follows11:

X⪯iY iff x⪯iy for all x 2 X and y 2 Y

Exend the languageLKBwith two belief operators:Br
i (‘robust belief’) andB

s
i (‘strong belief’).

LetLþ
KB be the resulting language. Semantics for this language is given by adding the following

clauses to Definition 3.3.

•Robust belief 12: M;w⊨B r
i ’ iff for all v if v⪯ iw then M; v⊨’. Thus, ’ is robustly be-

lieved if ’ is true in all states the agent considers at least as plausible as the current state.
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This stronger notion of belief has also been called certainty by some authors (Shoham and
Leyton-Brown (2009), Section 13.7).

• Strong belief: M;w⊨Bs
i’ iff there is a v with w� iv and M; v⊨’ and x M;jf

x⊨ ’g ∩ w½ �i ⪯i x M; x ⊨ :’j g ∩ w½ �i
�

(recall that [w]i is the equivalence class of
w under � i). This notion has been studied by (Stalnaker 1994b; Battigalli and
Siniscalchi 2002).

The following example illustrates the logical relationships between the various notions of
belief and knowledge we have discussed. Consider the following plausibility model with four
states for a single agent (since there is only one agent, I do not use subscripts):

Note that the set of minimal states is {v2}, so if v22V(p), then the agent believes p (Bp is
true at all states). Suppose that w is the ‘actual world’ and consider the following truth assign-
ments of an atomic proposition p.

•V(p) = {v0,w,v2}. Then M;w⊨Brp , but M;w⊭Bsp , so robust belief need not imply
strong belief.

•V(p) = {v2}. ThenM;w⊨Bsp, butM;w⊭Brp, so strong belief need not imply robust belief.
•V(p) = {v0,v2,w,v2}. ThenM;w⊨Kp∧B sp∧B rp∧Bp (in fact, it is easy to see that knowledge
implies belief, robust belief and strong belief).

Note that, unlike beliefs, conditional beliefs may be inconsistent (i.e., B’
i ⊥may be true at

some state). In such a case, agent i cannot (on pain of inconsistency) revise by ’, but this will
happen only if the agent has hard information that ’ is false. Indeed, Ki:’ is logically
equivalent to B’

i ⊥ (over the class of epistemic plausibility models). This suggests the follow-
ing (dynamic) characterization of an agent’s hard information as unrevisable beliefs:

•M;w⊨Ki’ iff M;w⊨Bc
i ’ for all c.

Robust and strong belief can be similarly characterized by restricting the set of formulas
that an agent can condition on:

•M;w⊨Br
i’ iffM;w⊨Bc

i ’ for all c withM;w⊨c: That is, the agent robustly believes ’
iff she continues to believe ’ given any true formula.

•M;w⊨Bs
i’ iffM;w⊨Bi’ andM;w⊨Bc

i ’ for all c withM;w⊨:Ki c ! :’ð Þ: That is,
the agent strongly believes ’ iff she believes ’ and continues to believe ’ given any ev-
idence (truthful or not) that is not known to contradict ’.

Finally, there is an elegant axiomatization of epistemic plausibility models in a modal
language containing knowledge operators and robust belief operators using the following
characterizations of conditional and strong belief (Baltag and Smets 2009):
� B

� B

© 2013
Philoso
’
i c :¼ Li’ ! Li ’∧Br

i ’ ! cð Þ� �

s
i’ :¼ Li’∧Ki ’ ! Br

i’
� �
As discussed above, each Ki satisfies logical omniscience, veracity and both positive and
negative introspection. Robust belief, Br

i , shares all of these properties except negative
The Author Philosophy Compass (2013): 1–17, 10.1111/phc3.12059
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introspection. Modal correspondence theory can again be used to characterize the remaining
properties (see Table 3).
3.2. MODELS OF BELIEF VIA PROBABILITY

The logical frameworks introduced in the previous section represent an agent’s ‘all-out’ or
‘full’ beliefs. However, there is a large body of literature within (formal) epistemology and
game theory that works with a quantitative conception of belief. Graded beliefs have also been
subjected to sophisticated logical analyses (see, for example, Fagin et al. 1990; Fagin and
Halpern 1994; Heifetz and Mongin 2001; Zhou 2009; Goldblatt 2010).
The dominant approach to formalizing graded beliefs is (subjective) probability theory. A

probability measure on a setW is a function assigning a positive real number to (some) subsets of
W such that p(W) = 1 and for disjoint subsets E,F⊆W (E∩F=∅) p(E∪F) =p(E) + p(F).
For simplicity, I assume in this section that W is finite. Then, the definition of a probability
measure can be simplified: a probability measure on a finite set W is a function p :W! [0,1]
such that for each E⊆W, p(E) =

P
w2E p(w) and p(W) = 1. Nothing that follows hinges on

the assumption that W is finite, but if W is infinite, then there are a number of important
mathematical details that add some complexity to the forthcoming definitions.13 Conditional
probability is defined in the usual way: pðE Fj Þ ¼ p E∩Fð Þ

p Fð Þ if p(F)> 0 (p(E|F) is undefined when
p(F) = 0).
The model we study in this section is very close to the epistemic plausibility of Definition 3.1

with probability measures in place of plausibility orderings:

Definition 3.4 (Epistemic ProbabilityModel) Suppose thatA is a finite set of agents,At is a
(finite or countable) set of atomic propositions and W is a finite set of states. An epistemic
probability model is a tuple M ¼ W ; �if gi2A; pif g; i 2 A;V

� �
where W ; �if gi2A;V

� �
is an

epistemic model and, for each i 2 A, pi is a probability measure onW. We also assume that each
pi is weakly regular

14 in the sense that for each w2W, pi([w]i)> 0.

The probability measures pi represent agent i’s prior beliefs about the likelihood of each
element of W. Agents then receive private information, represented by the equivalence
relations � i and update their initial beliefs with that information. A variety of modal
languages have been proposed to reason about graded beliefs. In this section, we focus on
a very simple language containing a knowledge modality Ki’ (‘i is informed that ’ is true’)
andBq

i’ (‘i believes ’ is true to degree at least q’ or ‘i’s degree of belief in ’ is at least q’) where
q is a rational number. More formally, let Lprob

KB be the smallest set of formulas generated by
the following grammar:

p :’j j ’∧c j Bq
i’ j Ki’

where q 2 Q (the set of rational numbers), i 2 A and p2At.
Table 3. Properties of robust belief and knowledge.

Knowledge entails robust belief Ki’ ! Br
i’

Local connectedness Ki ’∨Br
ic

� �
∧Ki c∨Br

i’
� �� � ! Ki’∨Kic
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Definition 3.5 (Truth for Lprob
KB ) Suppose that M ¼ W ; �if gi2A; ; pif gi2A;V

� �
is an

epistemic probability model. The definition of truth for formulas from LK is given in
Definition 2.2. The belief operator is defined as follows:

•M;w ⊨ Bq
i’ iff pi 〚’〛M w½ �i

�� �
≥q

�

where 〚’〛M ¼ w M; w ⊨ ’j gf .

Note that since we assume for each w2W, pi([w]i)> 0, the above definition is always well
defined. The logic of these models is very similar to the qualitative version presented in the
previous section. In particular, knowledge entails belief Ki’ ! Bq

i’ð Þ, and the full introspec-
tion principles ( Bq

i’ ! KiB
q
i’ and :Bq

i’ ! Ki:Bq
i’ ) are both valid. As before, full

introspection can be dropped by assuming agents have different probability measures at
different states. 15

The graded notion of belief has much in common with its qualitative version. In particu-
lar,Bq

i satisfies both positive and negative introspection (these both follow from full introspec-
tion, the fact that knowledge entails belief and logical omniscience: if ’!c is valid then so
is Bq

i’ ! Bq
ic). There is also an analog to the success axiom (although we cannot state it in

our language since we do not have conditional belief operators in Lprob
KB ):

pi 〚’〛M 〚Bq
i’〛Mj Þ ≥qð

It is a simple (and instructive!) exercise to verify that the above property is true in any
epistemic probability model. In addition to principles describing what the agents know
and believe about their own beliefs, there are principles that ensure the different Bq

i operators
fit together in the right way (see Table 4).
A distinctive feature of the complete logic of epistemic probability models is the following

inference rule reflecting the completeness (in the topological sense) of the real numbers:

Archimedian Rule: If c ! Bp
i’ is valid for each p< q, then c ! Bq

i’ is valid.

I conclude this section with some brief comments about probability zero events and the
relationship between knowledge (Ki’) and belief with probability one B1

i ’
� �

. Note that
it is possible that in an epistemic probability model, there are states w and v with w� iv
and pi(v) = 0. In such a case, agent i is sure that state v is not that actual state, but does
not consider v impossible (i.e., i cannot ‘rule out’ v according to her information). In partic-
ular, this means that B1

i ’ ! Ki’ is not valid. The following example illustrates these issues:
The numbers in the lower half of the circle indicate Ann and Bob’s initial probability for
that state (Ann’s probability is on the left and Bob’s is on the right, so, for example,
pa w1ð Þ ¼ 1

4 and pb w1ð Þ ¼ 1
2).
Table 4. Principles of probalistic belief.

B0
i ’

B1
i >
Bq
i ’∧cð Þ∧Bp

i ’∧:cð Þ ! Bqþp
i ’; qþ p ≤ 1

:Bq
i ’∧cð Þ∧:Bp

i ’∧:cð Þ ! :Bqþp
i ’; qþ p ≤ 1

Bq
i’ ! :Bp

i :’; qþ p > 1
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The following observations illustrate the notions introduced above:

•Ann does not know the direction the coin is facing in the second drawer and believes that
H2 and T2 are equally likely: M;w1⊨:KaH2∧:KaT2∧B

1
2
aH2∧B

1
2
aT2.

•Bob does not know the direction the coin is facing in the first drawer, but believes it is
more likely facing heads up: M;w1⊨:KbH1∧:KbT1∧B

4
5

bH1∧B
1
5

bT1.
16

•Ann does not know that Bob knows whether H2, but she is certain that he knows
whether H2 (in the sense that she assigns probability one to him knowing whether):
M;w1⊨:Ka KbH2∨KbT2ð Þ∧B1

a KbH2∨KbT2ð Þ.
Of course, epistemic probability models provide a more fine-grained representation of the

agents’ beliefs than their qualitative counterparts. However, the relationship between the two
models is subtle and touches on many issues beyond the scope of this article.17

4. Group Notions

Both game theorists and logicians have extensively discussed different notions of knowledge
and belief for a group, such as common knowledge and belief. These notions have played a
fundamental role in the analysis of distributed algorithms (Halpern and Moses 1990) and so-
cial interactions (Chwe 2001). In this section, I introduce and formally define various group
informational attitudes. I can only scratch the surface of the extensive literature discussing the
numerous logical and philosophical issues that arise here (see Vanderschraaf and Sillari (2009)
for an in-depth discussion of this literature18).
Consider the statement ‘everyone in group G knows that ’’. With finitely many agents,

this can be easily defined in the epistemic language LKB:

KG’ :¼ ⋀
i2G

Ki’

where G � A. The first nontrivial informational attitude for a group that we study is common
knowledge. If’ is common knowledge for the groupG, then not only does everyone in the group
know that’ is true but also this fact is completely transparent to all members of the group. There
are different ways to make precise what it means for something to be ‘completely transparent’ to
a group of agents.19 The approach I follow here is to iterate the everyone knows operator:
© 2013 The Author Philosophy Compass (2013): 1–17, 10.1111/phc3.12059
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’ ∧ KG’ ∧ KGKG’ ∧ KGKGKG’ ∧ ⋯

The above formula is an infinite conjunction and, so, is not a formula in our epistemic
language LKB (by definition, there can be at most finitely many conjunctions in any formula).
In fact, using standard modal logic techniques, one can show that there is no formula ofLKB that
is logically equivalent to the above infinite conjunction. Thus, we must extend our basic
epistemic language with a modal operator CG’ with the intended meaning ‘’ is common
knowledge among the group G’. The idea is to define CG’ to be true precisely when ’ is true,
everyone in G knows that ’ is true, everyone in G knows that everyone in G knows that ’ is
true, and so on ad infinitum.20

Before giving the details of this definition, consider KGKGKG’. This formula says that
‘everyone from groupG knows that everyone from groupG knows that everyone from group
G knows that ’’. When will this be true at a state w in an epistemic model? First some notation:
a path of length n for G in an epistemic model is a sequence of states (w0,w1, . . .,wn) where for each
l=0, . . ., n� 1, we have wl� iwl+1 for some i2G (for example w0� 1w1� 2w2� 1w3 is a path
of length 3 for {1,2}). Thus,KGKGKG’ is true at state w iff every path of length 3 forG starting
at w leads to a state where ’ is true. This suggests the following definition:

Definition 4.1 Interpretation of CG Let M ¼ W ; �if gi2A;V
� �

be an epistemic model21

and w2W. The truth of formulas of the form CG’ is

M;w⊨CG’ iff for all v 2 W ; if wRC
Gv thenM; v⊨’

where RC
G :¼ ∪i2G�ið Þ� is the reflexive transitive closure22 of ∪i2G�i.

It is well known that for any relation R onW, if wR*v then there is a finite R-path starting
at w ending in v. Thus, we have M;w⊨CG’ iff every finite path for G from w ends with a
state satisfying ’. The logical analysis is more complicated in languages with a common
knowledge operator; however, the formulas given in Table 5 can be said to characterize23

common knowledge.
The first formula captures the ‘self-evident’ nature of common knowledge: if ’ is com-

mon knowledge then everyone in the group knows this.
The approach to defining common knowledge outlined above can be viewed as a recipe

for defining common (robust/strong) belief. For example, suppose wRB
i v iff v 2 Min⪯i

w½ �i
� �

and define RB
G to be the transitive closure24 of ∪i2GRB

i . Then, common belief of ’, denoted
CB

G’, is defined in the usual way:

M;w⊨CB
G’ iff for each v 2 W ; if wRB

Gv then M; v⊨’

While common belief also validates the fixed-point and induction axiom, its logic does
differ from the logic of common knowledge. The most salient difference is that common
Table 5. Principles of common knowledge.

Fixed point CG’!ΚGCG’
Induction (’∧CG(’!ΚG’))!CG’
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knowledge satisfies negative introspection (:CG’!CG:CG’ is valid) while common
belief does not (:CB

G’ ! CB
G:CB

G’ is not valid). See Bonanno (1996) and Lismont and
Mongin (1994, 2003) for more information about the logic of common belief. A probabilis-
tic variant of common belief was introduced by Monderer and Samet (1989).
I conclude by briefly discussing another notion of ‘group knowledge’: distributed knowledge.

Intuitively, ’ is distributed knowledge among a group of agents if ’ would be known if all
the agents in the group put all their information together. Formally, given an epistemic
model (beliefs do not play a role here)M ¼ W ; �if gi2A;V

� �
, letRD

G ¼ ∩i2G�i, then define

M;w⊨DG’ iff for all v 2 W ; if wRD
Gv then M; v⊨’:

Note that DG’ is not simply equivalent to∧i2GKi’ as illustrated by the following exam-
ple (as usual reflexive arrows are not depicted in the diagram):

There is distributed knowledge at w1 that q is true (agent a knows that p is true and agent b
knows that p! q is true); however, neither agent individually knows that q is true. The logical
analysis of distributed knowledge has raised a number of interesting technical and conceptual
issues (see Fagin et al. 1995; Roelofsen 2007; van Benthem 2011; Gerbrandy 1999; Baltag
and Smets 2010).
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Notes
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1 Note that there is nothing ‘metaphysical’ attached to the term ‘possible world’ here. Indeed, the notion of a
‘possible state’ (i.e., a ‘possible world’) plays a key role in many computer science applications, such as in the
semantics of programming languages and the specification of (multiagent) systems. Nonetheless, the basic modeling choices
are not without controversy. The ‘conceptual difficulties’ are related to issues raised by Jon Barwise and John Perry in their
development of situation semantics (Barwise and Perry 1983) and issues surrounding the underlying assumption of logical
omniscience (Stalnaker 1991; Parikh 2005).
© 2013 The Author Philosophy Compass (2013): 1–17, 10.1111/phc3.12059
Philosophy Compass © 2013 John Wiley & Sons Ltd



Dynamic Epistemic Logic I: Modeling Knowledge and Beliefs
2 To be more precise, the key notion here is frame definability: A frame is a pair hW,Ri whereW is a nonempty set and R
a relation on W. A modal formula is valid on a frame if it is valid in every model based on that frame. It can be shown
that some modal formulas have first-order correspondents P where for any frame hW,Ri, the relation R has property P iff ’
is valid on hW,Ri.
3 It is important to distinguish the valid inference rule if ’ is valid then so is Ki’ from the formula ’!Ki’. The latter is
certainly not valid as it trivializes the notion of knowledge (anything that is true is known) while necessitation is a rule in
every normal modal logic.
4 One key issue runs as follows: Suppose that p is something agent i certain of, but is false: i.e., :p∧Bip is true. Then,
since Ki satisfies the veracity axiom, :Kip must be true. By negative introspection, this implies Ki:Kip is true. Since
knowledge implies belief, we have Bi:Kip is true. Since Bip is true and belief implies believing it is known, we have
BiKip is true. But this means Bi(Kip∧:Kip) is true, which contradicts the assumption that Bi is consistent (i.e., :Bi⊥
is valid). Thus, there is a conflict between standard assumptions of knowledge and belief, and certain bridge principles
relating knowledge and belief. Of course, one may question the validity of these bridge principles (especially the assump-
tion that believing something implies believing that one knows it). See Halpern (1996) and van der Hoek (1993) for
extended analyses.
5 Well-foundedness is a standard assumption in the literature. It is only needed to ensure that for any nonempty set X,
Min⪯i Xð Þ is nonempty. This is important only when W is infinite – and there are ways around this in current logics of
belief revision. Moreover, the condition of connectedness can also be lifted, but it is used here for convenience.
6 See Leitgeb (2007) for an extensive discussion about a number of philosophical issues surrounding how to interpret
conditional beliefs qua belief.
7 Suppose that there are two states w and v with p true only at w and q true only at v. Then p! q is true at v and q is false
at w. Suppose that v⪯ iw. Then, Bi(p! q) is true at w, but Bpq is not true at w. This example shows that conditional belief
does not reduce to belief in a material conditional. This is, of course, not surprising. A much more interesting question is
about the relationship between a conditional belief and a belief in an (indicative) conditional. There is a broad literature on
this issue. A good entrée into the field is (Leitgeb 2010a).
8 In general, each agent’s plausibility ordering will not be a total relation as states in different information cells cannot be
compared by the plausibility ordering.
9 This close connection should not come as a surprise, since epistemic plausibility models are essentially the sphere
models of Grove (1988).
10 Note that in this example, I(v), F(b) and F(s) are all atomic propositions andC(i,j) is defined to be (I(i)∧ I(j))∨ (F(i)∧F(j)).
11 This is only one of many possible choices here (cf. Liu 2011, Chapter 4), but it is the most natural in this setting.
12 In the dynamic doxastic logic literature, this notion is often called safe belief. However, this terminology conflicts with
Timothy Williamson’s notion of ‘safety’ (Williamson 2000).
13 See Halpern (2003), Chapter 1 and Billingsley (1995) for details.
14 A probability measure is regular provided p(E)> 0 for each (measurable) subset E.
15 Formally, replace each probability measure pi with functions Pi :W!Δ(W ) where Δ(W ) is the class of probability
measures on W.
16 To see, for example, that M;w1⊨B

4
5

bH1 , we need to calculate the following conditional probability:

pb 〚H1〛M w1½ �b
	
¼ pb w1; ;w3; ;w5; ;w6f g w1; ;w2f g

	
¼ pb w1f gð Þ

pb w1 ;;w2f gð Þ ¼ 1=2
1=2þ1=8 ¼ 4

5

���

���



.

17 It is tempting to identify ‘more plausible’ with ‘more probable’. There are a number of reasons why this is not a good
idea. The difficulty here boils down to a deep foundational problem: Can a rational agent’s full beliefs be defined in terms
of her graded beliefs and/or vice versa? A second, more conceptual, observation is that the two models represent differ-
ent aspects of the agents’ states of belief. To illustrate the difference, suppose that Ann is flipping a biased coin. It may be
much more likely to land heads, but landing heads and tails are both plausible outcomes, whereas landing on its side is not
a plausible outcome. Furthermore, landing on its side is more plausible than hovering in the air for 10minutes. So, the
plausibility ordering describes the agents’ all-out judgements about the priority between the states, which is not directly
represented in a probability measure.A good overview of the main philosophical issues is found in Christensen (2007).
See Hawthorne and Bovens (1999), Leitgeb (2010b) and Arló-Costa and Pedersen (2012) for discussions that are partic-
ularly relevant to the logical frameworks introduced in this paper.
18 The textbooks Fagin et al. (1995) and van Benthem (2011) also provide illuminating discussions of key logical issues.
19 Barwise (1988) discusses three main approaches: (i) the iterated view; (ii) the fixed-point view; and (iii) the shared
situation view. In this paper, I only discuss the first approach.
20 It is worth pointing out that this is not what David Lewis had in mind when he first formalized common knowledge
(Lewis 1973). For Lewis, the infinite conjunction is a necessary but not a sufficient condition for common knowledge.
See Cubitt and Sugden (2003) for an illuminating discussion and a reconstruction of Lewis’ notion of common knowl-
edge. Nonetheless, following Aumann (1976), the definition given in this section has become standard in the game
theory and epistemic logic literature.
21 The same definition will of course hold for epistemic plausibility and epistemic probability models.
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22 The reflexive transitive closure of a relation R is the smallest relations R* containing R that is reflexive and transitive.
23 Techniques similar to the previously mentioned correspondence theory can be applied here to make this precise: see van
Benthem (2006b) for a discussion.
24 Since beliefs need not be factive, we do not force RB

G to be reflexive.
Works Cited

Alchourrón, C. E., P. Gärdenfors, and D. Makinson. ‘On the Logic of Theory Change: Partial Meet Contraction and
Revision Functions.’ Journal of Symbolic Logic 50 (1985): 510–530.

Arló-Costa, H. and A. P. Pedersen. ‘Belief and Probability: A General Theory of Probability Cores.’ Journal of Approx-
imate Reasoning 53(3) (2012): 293–315.

Aumann, R. ‘Agreeing to Disagree.’ The Annals of Statistics 4 (1976): 1236–1239.
———. ‘Interactive Epistemology I: Knowledge.’ International Journal of Game Theory 28 (1999): 263–300.
Baltag, A. and S. Smets. ‘Conditional Doxastic Models: A Qualitative Approach to Dynamic Belief Revision.’ Proceedings
of WOLLIC 2006, Electronic Notes in Theoretical Computer Science. Eds. G. Mints and R. de Queiroz. Elsevier, Volume
165. 2006. 5–21.

———. ‘ESSLLI 2009 Course: Dynamic Logics for Interactive Belief Revision.’ (2009). Slides available at http://
alexandru.tiddlyspot.com.

———. ‘Correlated Knowledge, an Epistemic-Logic View on Quantum Entanglement.’ International Journal of Theoret-
ical Physics 49(12) (2010): 3005–3021.

Barwise, J. ‘Three Views of Common Knowledge.’ TARK ’88: Proceedings of the 2nd Conference on Theoretical Aspects of
Reasoning About Knowledge. San Francisco, CA, USA: Morgan Kaufmann Publishers, 1988. 365–379.

Barwise, J. and J. Perry. Situations and Attitudes. CSLI Publications, Stanford, 1983.
Battigalli, P. and M. Siniscalchi. ‘Strong Belief and Forward Induction Reasoning.’ Journal of Economic Theory 105 (2002):
356–391.

van Benthem, J. ‘Epistemic Logic and Epistemology: The State of Their Affairs.’ Philosophical Studies 128 (2006a): 49–76.
———. ‘Modal Frame Correspondences and Fixed-Points.’ Studia Logica 83(1-3) (2006b): 133–155.
———. ‘Dynamic Logic for Belief Revision.’ Journal of Applied Non-classical Logics 17(2) (2007): 129–155.
———. Logical Dynamics of Information and Interaction. Cambridge University Press, Cambridge, 2011.
———. Modal Logic for Open Minds. CSLI Publications, Stanford, 2010.
Billingsley, P. Probability and Measure. Wiley, Hoboken, 1995.
Blackburn, P., M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, Cambridge, 2002.
Board, O. ‘Dynamic Interactive Epistemology.’ Games and Economic Behavior 49 (2004): 49–80.
Bonanno, G. ‘On the Logic of Common Belief.’ Mathematical Logical Quarterly 42 (1996): 305–311.
Bonanno, G. and P. Battigalli. ‘Recent Results on Belief, Knowledge and the Epistemic Foundations of Game Theory.’
Research in Economics 53(2) (1999): 149–225.

Boutilier, C. ‘Conditional Logics for Default Reasoning and Belief Revision.’ Ph. D. thesis, University of Toronto, 1992.
Brandenburger, A. ‘The Power of Paradox: SomeRecent Developments in Interactive Epistemology.’ International Journal of
Game Theory 35 (2007): 465–492.

Burgess, J. ‘Quick Completeness Proofs for Some Logics of Conditionals.’Notre Dame Journal of Formal Logic 22 (1981): 76–84.
Christensen, D. Putting Logic in its Place: Formal Constraints on Rational Belief. Oxford University Press, 2007.
Chwe, M. S.-Y. Rational Ritual. Princeton University Press, 2001.
Cubitt, R. P. and R. Sugden. ‘Common Knowledge, Salience and Convention: A Reconstruction of David Lewis’
Game Theory.’ Economics and Philosophy 19(2) (2003): 175–210.

van Ditmarsch, H. ‘Prolegomena to Dynamic Logic for Belief Revision.’ Synthese: Knowledge, Rationality, and Action
147 (2005): 229–275.

Egré, P. ‘Epistemic Logic.’ The Continuum Companion to Philosophical Logic. Eds. L. Horsten and R. Pettigrew.
Continuum, London 2011.

Egré, P. and D. Bonnay. ‘Inexact Knowledge with Introspection.’ Journal of Philosophical Logic 38(2) (2009): 179–228.
Fagin, R. and J. Halpern. ‘Reasoning about Knowledge and Probability.’ Journal of the ACM 41(2) (1994): 340–367.
Fagin, R., J. Halpern, and N. Megiddo. ‘A Logic for Reasoning About Probabilities.’ Information and Computation 87(1)
(1990): 78–128.

Fagin, R., J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. The MIT Press, Boston, 1995.
Gerbrandy, J. ‘Bisimulations on Planet Kripke.’ Ph. D. thesis, University of Amsterdam, 1999.
Gintis, H. The Bounds of Reason: Game Theory and the Unification of the Behavioral Sciences. Princeton University Press,
Princeton, 2009.
© 2013 The Author Philosophy Compass (2013): 1–17, 10.1111/phc3.12059
Philosophy Compass © 2013 John Wiley & Sons Ltd



Dynamic Epistemic Logic I: Modeling Knowledge and Beliefs
Goldblatt, R. ‘Deductive Systems for Coalgebras over Measurable Spaces.’ Journal of Logic and Computation 20(5) (2010):
1069–1100.

Grove, A. ‘Two Modelings for Theory of Change.’ Journal of Philosophical Logic 17 (1988): 157–179.
Halpern, J. ‘Should Knowledge Entail Belief?’ Journal of Philosophical Logic 25(5) (1996): 483–494.
———. Reasoning about Uncertainty. The MIT Press, Boston, 2003.
Halpern, J. and Y. Moses. ‘Knowledge and Common Knowledge in a Distributed Environment.’ Journal of the ACM 37(3)
(1990): 549–587.

Halpern, J. and R. Pucella. ‘Modeling Adversaries in a Logic for Security Protocol Analysis.’ Formal Aspects of Security. 2003.
———. ‘Dealing with Logical Omniscience: Expressiveness and Pragmatics.’ Artificial Intelligence 175(1) (2011): 220–235.
Hawthorne, J. and L. Bovens. ‘The Preface, the Lottery, and the Logic of Beleif.’ Mind 108 (1999): 241–264.
Heifetz, A. and P. Mongin. ‘Probability Logic for Type Spaces.’ Games and Economic Behavior 35 (2001): 31–53.
Hintikka, J. Knowledge and Belief: An Introduction to the Logic of the Two Notions. Cornell University Press, 1962.
van der Hoek, W. and M. Wooldridge. ‘Cooperation, Knowledge, and Time: Alternating-Time Temporal Epistemic
Logic and its Applications.’ Studia Logica 75(1) (2003): 125–157.

van der Hoek, W. ‘Systems for Knowledge and Belief.’ Journal of Logic and Computation 3(2) (1993): 173–195.
Holliday, W. H. ‘Epistemic Logic and Epistemology.’Handbook of Formal Philosophy. Eds. V. Hendricks and S. O. Hansson.
Springer, 2012.

Huber, F. ‘Formal Representations of Belief’. The Stanford Encyclopedia of Philosophy. Winter 2011 ed. Ed. E. N. Zalta. 2011.
Lamarre, P. and Y. Shoham. ‘Knowledge, Certainty, Belief and Conditionalisation.’ Proceedings of the International
Conference on Knowledge Representation and Reasoning, 1994. 415–424.

Leitgeb, H. ‘Beliefs in Conditionals vs. Conditional Beliefs.’ Topoi 26(1) (2007): 115–132.
———. ‘On on the Ramsey Test without Triviality.’ Notre Dame Journal of Formal Logic 51(1) (2010a): 21–54.
———. ‘Reducing Belief Simpliciter to Degrees of Belief.’ Technical report, Bristol. Manuscript, 2010b.
Lewis, D. Counterfactuals. Oxford: Blackwell Publishers, 1973.
———. ‘Elusive Knowledge.’ Australasian Journal of Philosophy 74(4) (1996): 549–567.
Lismont, L. and P. Mongin. ‘On the Logic of Common Belief and Common Knowledge.’ Theory and Decision 37(1)
(1994): 75–106.

———. ‘Strong Completeness Theorems for Weak Logics of Common Belief.’ Journal of Philosophical Logic 32(2) (2003):
115–137.

Liu, F. Reasoning about Preference Dynamics. Springer-Verlag, 2011.
Meyer, J.-J. andW. van der Hoek. Epistemic Logic for AI and Computer Science. CambridgeUniversity Press, Cambridge, 1995.
Monderer, D. and D. Samet. ‘Approximating Common Knowledge with Common Beliefs.’ Games and Economic
Behavior 1(2) (1989): 170–190.

Parikh, R. ‘Social Software.’ Synthese 132 (2002): 187–211.
———. ‘WHAT DoWe Know, and What Do WE Know?’ Proceedings of Theoretical Aspects of Rationality and Knowledge.
Ed. R. van der Meyden. National University of Singapore, 2005.

Ramanujam, R. and S. Suresh. ‘Deciding Knowledge Properties of Security Protocols.’ Proceedings of Theoretical Aspects of
Rationality and Knowledge, 2005. 219–235.

Roelofsen, F. ‘Distributed Knowledge.’ Journal of Applied Non-Classical Logics 17(2) (2007): 255–273.
Roy, O. and E. Pacuit. ‘Substantive Assumptions in Interaction: A Logical Perspective.’ Synthese 190(5) (2011): 891–908.
Samuelson, L. ‘Modeling Knowledge in Economic Analysis.’ Journal of Economic Literature 57 (2004): 367–403.
Shoham, Y. and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge
University Press, Cambridge, 2009.

Sorensen, R. ‘Formal Problems about Knowledge.’ Oxford Handbook of Epistemology. Ed. P. K. Moser. 2002.
Stalnaker, R. ‘The Problem of Logical Omniscience I.’ Synthese 89 (1991): 425–440.
———. ‘Nonmonotonic Consequence Relations.’ Fundamenta Informaticae 21 (1994a): 7–21.
———. ‘On the Evaluation of Solution Concepts.’ Theory and Decision 37(42) (1994b).
———. ‘On Logics of Knowledge and Belief.’ Philosophical Studies 128 (2006): 169–199.
Vanderschraaf, P. and G. Sillari. ‘Common Knowledge.’ The Stanford Encyclopedia of Philosophy. Spring 2009 ed. Ed. E. N.
Zalta. 2009.

Williamson, T. Knowledge and its Limits. Oxford University Press, Oxford, 2000.
Zhou, C. ‘A Complete Deductive System for Probability Logic.’ Journal of Logic and Computation 19(6) (2009): 1427–1454.
© 2013 The Author Philosophy Compass (2013): 1–17, 10.1111/phc3.12059
Philosophy Compass © 2013 John Wiley & Sons Ltd


