Introduction to Logic PHIL 170

Eric Pacuit

University of Maryland, College Park pacuit.org
epacuit@umd.edu
December 9, 2015

Announcements

- Final Exam: Wed., Dec 16, 8:00am - 10:00am, LEF 2205
- See the review sheet with sample problems for the final exam (available on the course website).
- The best way to study for the final exam is to work on the sample problems. Answers will be made available on Friday afternoon.
- Extra office hours: Monday, Dec. 14 (I'll be in my office most of the day).

Probability/Inductive Logic

Arguments
I need to be at UMD by 11am.
\therefore Lily needs to be at the bus-stop by 9 am.

Arguments

I need to be at UMD by 11am.
\therefore Lily needs to be at the bus-stop by 9 am.

Ann brought here laptop to first three lectures.
\therefore Ann will bring her laptop to today's lecture.

Arguments

I need to be at UMD by 11am.
\therefore Lily needs to be at the bus-stop by 9 am.

Ann brought here laptop to first three lectures.
\therefore Ann will bring her laptop to today's lecture.

Ann will have salad or steak.
Ann will not have steak.
\therefore Ann will have salad.

Arguments

I need to be at UMD by 11am.
\therefore Lily needs to be at the bus-stop by 9 am.

Ann brought here laptop to first three lectures.
\therefore Ann will bring her laptop to today's lecture.

Ann will have salad or steak.
Ann will not have steak.
\therefore Ann will have salad.

Every student in PHIL170 will get an A.
Ann is a student in PHIL170.
\therefore Ann will get an A.

Arguments

I need to be at UMD by 11 am .
\therefore Lily needs to be at the bus-stop by 9 am.

X Ann brought here laptop to first three lectures.
\therefore Ann will bring her laptop to today's lecture.

Ann will have salad or steak.
Ann will not have steak.
\therefore Ann will have salad.

Every student in PHIL170 will get an A.
Ann is a student in PHIL170.
\therefore Ann will get an A.

Arguments

$$
x \quad \frac{U}{\therefore L}
$$

$$
X \frac{\left(\left(L_{1} \& L_{2}\right) \& L_{3}\right)}{\therefore L_{4}}
$$

$$
A \vee S
$$

$$
\frac{\neg S}{\therefore A}
$$

$$
(\forall x)(S(x) \rightarrow A(x))
$$

$$
S(a)
$$

$$
\therefore A(a)
$$

Arguments

$$
X \quad \frac{U}{\therefore L}
$$

$$
: \frac{\left(\left(L_{1} \& L_{2}\right) \& L_{3}\right)}{\therefore L_{4}}
$$

$$
A \vee S
$$

$$
\neg S
$$

$$
\therefore A
$$

$$
(\forall x)(S(x) \rightarrow A(x))
$$

$$
\frac{S(a)}{\therefore A(a)}
$$

Probabilistic Truth-Tables

A	B	$\neg A$	$\neg B$	$A \vee B$	$A \& B$	$A \rightarrow B$	$A \vee \neg A$	\cdots
T	T	F	F	T	T	T	T	\cdots
T	F	F	T	T	F	F	T	\cdots
F	T	T	F	T	F	T	T	\cdots
F	F	T	T	F	T	T	T	\cdots

Probabilistic Truth-Tables

	A	B	$\neg A$	$\neg B$	$A \vee B$	$A \& B$	$A \rightarrow B$	$A \vee \neg A$	\cdots
p_{1}	T	T	F	F	T	T	T	T	\cdots
p_{2}	T	F	F	T	T	F	F	T	\cdots
p_{3}	F	T	T	F	T	F	T	T	\cdots
p_{4}	F	F	T	T	F	F	T	T	\cdots
where, $p_{1}+p_{2}+p_{3}+p_{4}=1$									

Probabilistic Truth-Tables

	A	B	$\neg A$	$\neg B$	$A \vee B$	$A \& B$	$A \rightarrow B$	$A \vee \neg A$	\cdots
p_{1}	T	T	F	F	T	T	T	T	\cdots
p_{2}	T	F	F	T	T	F	F	T	\cdots
p_{3}	F	T	T	F	T	F	T	T	\cdots
p_{4}	F	F	T	T	F	F	T	T	\cdots

$$
\operatorname{Pr}(\varphi)=\sum\left\{p_{i} \mid i \text { is a row that makes } \varphi \text { true }\right\}
$$

Probabilistic Truth-Tables

- $\operatorname{Pr}(\neg A)=1-\operatorname{Pr}(A)$
- $\operatorname{Pr}(A \vee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \& B)$
- If $A \rightarrow B$ is true, then $\operatorname{Pr}(A) \leq \operatorname{Pr}(B)$

Probabilistic Truth-Tables

	A	B	$\neg A$	$\neg B$	$A \vee B$	$A \& B$	$A \rightarrow B$	$A \vee \neg A$	\cdots
$\frac{1}{10}$	T	T	F	F	T	T	T	T	\cdots
$\frac{1}{20}$	T	F	F	T	T	F	F	T	\cdots
$\frac{2}{5}$	F	T	T	F	T	F	T	T	\cdots
$\frac{9}{20}$	F	F	T	T	F	F	T	T	\cdots

$\operatorname{Pr}(\varphi \mid \psi)$ is the probability of φ give that ψ is true

Probabilistic Truth-Tables

	A	B	$\neg A$	$\neg B$	$A \vee B$	$A \& B$	$A \rightarrow B$	$A \vee \neg A$	\cdots
$\frac{1}{10}$	T	T	F	F	T	T	T	T	\cdots
$\frac{1}{20}$	T	F	F	T	T	F	F	T	\cdots
$\frac{2}{5}$	F	T	T	F	T	F	T	T	\cdots
$\frac{9}{20}$	F	F	T	T	F	F	T	T	\cdots

$\operatorname{Pr}(B \mid A)$ is the probability of B give that A is true

Probabilistic Truth-Tables

Probabilistic Truth-Tables

	A	B	$\neg A$	$\neg B$	$A \vee B$	$A \& B$	$A \rightarrow B$	$A \vee \neg A$	\ldots
$\frac{2}{3}$	T	T	F	F	T	T	T	T	\ldots
$\frac{1}{3}$	T	F	F	T	T	F	F	T	\ldots
$\overline{5}$	F	T	T	F	T	F	T	T	\ldots
$\frac{9}{20}$	F	F	T	T	F	F	T	T	\ldots
$\operatorname{Pr}(B \mid A)=\frac{2}{3}$									

Probabilistic Truth-Tables

$$
\begin{array}{c|cc|ccccccc}
& A & B & \neg A & \neg B & A \vee B & A \& B & A \rightarrow B & A \vee \neg A & \cdots \\
\hline \frac{1}{10} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \cdots \\
\frac{1}{20} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \cdots \\
\frac{2}{5} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \cdots \\
\frac{9}{20} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \cdots \\
\operatorname{Cr}(A) & \operatorname{Pr}(A)=\frac{3}{20} \\
\operatorname{Pr}(A \vee B)=\frac{\frac{1}{10}+\frac{1}{20}}{\frac{1}{10}+\frac{2}{20}+\frac{2}{5}}=\frac{3}{\frac{20}{11}}=\frac{3}{11} \quad \operatorname{Pr}(A \mid A \vee \neg A)=\frac{3}{20}
\end{array}
$$

Probabilistic Truth-Tables

	A	B	$\neg A$	$\neg B$	$A \vee B$	$A \& B$	$A \rightarrow B$	$A \vee \neg A$..
$\frac{1}{10}$	T	T	F	F	T	T	T	T	.
$\frac{1}{20}$	T	F	F	T	T	F	F	T	.
$\frac{2}{5}$	F	T	T	F	T	F	T	T	.
$\frac{9}{20}$	F	F	T	T	F	F	T	T	\ldots
					$\operatorname{Pr}($	$=\frac{3}{20}$			
$\operatorname{Pr}(A \mid A \vee B)=\frac{\frac{1}{10}+\frac{1}{20}}{\frac{1}{10}+\frac{2}{20}+\frac{2}{5}}=\frac{\frac{3}{20}}{\frac{11}{20}}=\frac{3}{11} \quad \operatorname{Pr}(A \mid A \vee \neg A)=\frac{3}{20}$									

Probabilistic Truth-Tables

	A	B	$\neg A$	$\neg B$	$A \vee B$	$A \& B$	$A \rightarrow B$	$A \vee \neg A$
$\frac{1}{10}$	T	T	F	F	T	T	T	T
$\frac{1}{20}$	T	F	F	T	T	F	F	T
$\frac{2}{5}$	F	T	T	F	T	F	T	T
$\frac{9}{20}$	F	F	T	T	F	F	T	T
$\operatorname{Pr}(A \mid A \vee B)=\frac{\frac{1}{10}+\frac{1}{20}}{\frac{1}{10}+\frac{2}{20}+\frac{2}{5}}=\frac{\frac{3}{20}}{\frac{11}{20}}=\frac{3}{11} \quad \operatorname{Pr}(A \mid A \vee \neg A)=\frac{3}{20}$								

Arguments

Arguments

- Argument 1 and Argument 2 are not valid.
- Intuitively, Argument 1 is stronger than Argument 2:

$$
\operatorname{Pr}(A \mid A \vee B)>\operatorname{Pr}(A), \text { but } \operatorname{Pr}(A \mid A \vee \neg A)=\operatorname{Pr}(A)
$$

$$
\frac{P}{\therefore C}
$$

When is an argument inductively strong?

1. C is probable given $P: \operatorname{Pr}(C \mid P)$ is "high" (i.e., $\left.\operatorname{Pr}(C \mid P)>\frac{1}{2}\right)$
2. P is positively relevant to $C: \operatorname{Pr}(C \mid P)>\operatorname{Pr}(P)$
3. (The argument is not valid)

Differences between 1 \& 2

A (deductively) valid argument: $E \rightarrow(P \& Q) \models E \rightarrow P$

Differences between 1 \& 2

A (deductively) valid argument: $E \rightarrow(P \& Q) \vDash E \rightarrow P$

If E is a strong argument for $P \& Q$, then E is a strong argument for P.
If $\operatorname{Pr}(P \& Q \mid E)>\frac{1}{2}$, then $\operatorname{Pr}(P \mid E)>\frac{1}{2}$. In fact,

$$
\operatorname{Pr}(P \mid E) \geq \operatorname{Pr}(P \& Q \mid E)
$$

However, E may be positively relevant for $P \& Q$ without being positively relevant for P :

$$
\begin{aligned}
& \operatorname{Pr}(P \& Q \mid E)>P(P \& Q) \text { does not necessarily imply that } \\
& \operatorname{Pr}(P \mid E)>\operatorname{Pr}(P) .
\end{aligned}
$$

| P | Q | E | $P \& Q$ | $E \rightarrow(P \& Q)$ | $E \rightarrow P$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T | T |
| T | T | F | T | T | T |
| T | F | T | F | F | T |
| T | F | F | F | T | T |
| F | T | T | F | F | F |
| F | T | F | F | T | T |
| F | F | T | F | F | F |
| F | F | F | F | T | T |
| | | F | | | |
| | | $E(P \& Q) \models E \rightarrow P$ | | | |

	P	Q	E	$P \& Q$	$E \rightarrow(P \& Q)$	$E \rightarrow P$
p_{1}	T	T	T	T	T	T
p_{2}	T	T	F	T	T	T
p_{3}	T	F	T	F	F	T
p_{4}	T	F	F	F	T	T
p_{5}	F	T	T	F	F	F
p_{6}	F	T	F	F	T	T
p_{7}	F	F	T	F	F	F
p_{8}	F	F	F	F	T	T

	P	Q	E	$P \& Q$	$E \rightarrow(P \& Q)$	$E \rightarrow P$
$\frac{1}{52}$	T	T	T	T	T	T
0	T	T	F	T	T	T
$\frac{1}{52}$	T	F	T	F	F	T
$\frac{2}{52}$	T	F	F	F	T	T
$\frac{12}{52}$	F	T	T	F	F	F
0	F	T	F	F	T	T
$\frac{12}{52}$	F	F	T	F	F	F
	F	F	F	F	T	T

$\operatorname{Pr}(P \& Q \mid E)=\frac{1}{26}>\operatorname{Pr}(P \& Q)=\frac{1}{52}$, but $\operatorname{Pr}(P \mid E)=\operatorname{Pr}(P)=\frac{2}{26}$

Differences between 1 \& 2

A (deductively) valid argument: $E \rightarrow(P \& Q) \vDash E \rightarrow P$

If E is a strong argument for $P \& Q$, then E is a strong argument for P.
If $\operatorname{Pr}(P \& Q \mid E)>\frac{1}{2}$, then $\operatorname{Pr}(P \mid E)>\frac{1}{2}$. In fact,

$$
\operatorname{Pr}(P \mid E) \geq \operatorname{Pr}(P \& Q \mid E)
$$

However, E may be positively relevant for $P \& Q$ without being positively relevant for P :

$$
\begin{aligned}
& \operatorname{Pr}(P \& Q \mid E)>P(P \& Q) \text { does not necessarily imply that } \\
& \operatorname{Pr}(P \mid E)>\operatorname{Pr}(P) .
\end{aligned}
$$

Conjunction Fallacy

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

Conjunction Fallacy

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

Which is more probable?

Conjunction Fallacy

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

Which is more probable?

1. Linda is a bank teller.
2. Linda is a bank teller and is active in the feminist movement.

Conjunction Fallacy

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

Which is more probable?

1. Linda is a bank teller.
2. Linda is a bank teller and is active in the feminist movement.

Typically a large percentage of people asked say 2 is more probable than 1.
A. Tversky and D. Kahneman. Extensions versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review 90 (4): 293-315, 1983.

Conjunction Fallacy

$E \quad$ Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

Which is more probable?

1. Linda is a bank teller. P
2. Linda is a bank teller and is active in the feminist movement. $P \& Q$
$\operatorname{Pr}(P \mid E) \geq \operatorname{Pr}(P \& Q \mid E)$
But, E is positively relevant for $P \& Q$ (and less so than to P)

Non-Classical Logic

The set of parameters characterizing a logic can be divided in three subsets:

1. Choice of formal language
2. Choice of a semantics for the formal language
3. Choice of a definition of valid arguments in the language

Classical Logic "Parameters"

1. Syntax: if φ, ψ are sentences, then so are $\neg \varphi, \varphi \wedge \psi, \varphi \vee \psi$, and $\varphi \rightarrow \psi$
2. Semantics (truth-functionality): the truth-value of a sentence is a function of the truth-values of its components only
3. Semantics (bivalence): sentences are either true or false, with nothing in-between
4. Consequence: $\alpha_{1} \ldots \alpha_{n} / \beta$ is valid iff β is true in all models of $\alpha_{1}, \ldots, \alpha_{n}$

Classical Logic "Parameters"

1. Syntax: if φ, ψ are sentences, then so are $\neg \varphi, \varphi \wedge \psi, \varphi \vee \psi$, and $\varphi \rightarrow \psi$
2. Semantics (truth-functionality): the truth-value of a sentence is a function of the truth-values of its components only
3. Semantics (bivalence): sentences are either true or false, with nothing in-between
4. Consequence: $\alpha_{1} \ldots \alpha_{n} / \beta$ is valid iff β is true in all models of $\alpha_{1}, \ldots, \alpha_{n}$

Domains to which classical logic is applicable must satisfy these four assumptions.

Truth-functionality without bivalence: "unknown"

Many-valued logic

$$
\text { E.g., "Is } 2^{1257787}-1 \text { prime?" }
$$

Truth-functionality without bivalence: "unknown"

Many-valued logic

$$
\text { E.g., "Is } 2^{1257787}-1 \text { prime?" }
$$

P	$\neg P$
T	F
F	T
U	U

Truth-functionality without bivalence: "unknown"

Many-valued logic
E.g., "Is $2^{1257787}-1$ prime?"

P	$\neg P$	P Q $\mathrm{P} \& Q$		
T	F			
F	T	T	T	T
T	T	F	F	
F	F	T	F	
F	F	F		
U	F	F		
U	T	U		
F	U	F		
T	U	U		
U	U	U		

Truth-functionality without bivalence: "unknown"

 Many-valued logicE.g., "Is $2^{1257787}-1$ prime?"

P	$\neg P$					
T	F					
F	T					
U	U	$	$	P	Q	$P \& Q$
:---:	:---:	:---:				
T	T	T				
T	F	F				
F	T	F				
F	F	F				
U	F	F				
U						
U	T	F				
T	T	T				
T	F	T				
F	U	F				
F	T	T				
F	F	F				
T	U	U				
U	U	F				
U	U	U				
U	T	T				
F	U	U				
T	U	T				
U	U	U				

Truth-functionality without bivalence: "unknown" Many-valued logic
E.g., "Is $2^{1257787}-1$ prime?"

		P	Q	$P \& Q$	P	Q	$P \vee Q$	P	Q	$P \rightarrow Q$
P	$\neg P$	T	T	T	T	T	T	T	T	T
T	F	T		F	T	F	T	T	F	F
F	T	F		F	F	T	T	F	T	T
U	U	F	F	F	F	F	F	F	F	T
				F	U	F	U	U	F	U
		U		U	U	T	T	U	T	T
		F		F	F	U	U	F	U	T
			U	U	T		T		U	U
		U		U	U	U	U	U	U	U

Non-Truth-Functional Semantics

Intuitionistic logic

1. $\varphi \wedge \psi$ means "I have a proof of both φ and ψ "
2. $\varphi \vee \psi$ means "I have a proof of φ or a proof of ψ "
3. $\varphi \rightarrow \psi$ means "I have a construction that transforms a proof of φ into a proof of ψ "
4. $\neg \varphi$ means "Any proof of φ leads to a contradiction"

Clearly, $\varphi \vee \neg \varphi$ is not valid.

Introducing Modal Logic

Introducing Modal Logic

Prosecutor: "If Eric is guilty then he had an accomplice."

Introducing Modal Logic

Prosecutor: "If Eric is guilty then he had an accomplice." Defense: "I disagree!"

Introducing Modal Logic

Prosecutor: "If Eric is guilty then he had an accomplice." Defense: "I disagree!"
Judge: "I agree with the defense."

Introducing Modal Logic

Prosecutor: "If Eric is guilty then he had an accomplice." Defense: "I disagree!"
Judge: "I agree with the defense."

Prosecutor: $G \rightarrow A$
Defense: $\neg(G \rightarrow A)$
Judge: $\quad \neg(G \rightarrow A)$

Introducing Modal Logic

Prosecutor: "If Eric is guilty then he had an accomplice." Defense: "I disagree!"
Judge: "I agree with the defense."

Prosecutor: $G \rightarrow A$
Defense: $\neg(G \rightarrow A)$
Judge: $\quad \neg(G \rightarrow A) \Leftrightarrow G \wedge \neg A$, therefore G !

Introducing Modal Logic

Prosecutor: "If Eric is guilty then he had an accomplice." Defense: "I disagree!"
Judge: "I agree with the defense."
Prosecutor: $\square(G \rightarrow A)$ (It must be the case that \ldots) Defense: $\quad \neg \square(G \rightarrow A)$
Judge: $\quad \neg \square(G \rightarrow A)$ (What can the Judge conclude?)

Introducing Modal Logic

Prosecutor: "If Eric is guilty then he had an accomplice." Defense: "I disagree!"
Judge: "I agree with the defense."
Prosecutor: $\square(G \rightarrow A)$ (It must be the case that \ldots) Defense: $\quad \neg \square(G \rightarrow A)$
Judge: $\quad \neg \square(G \rightarrow A)$ (What can the Judge conclude?)

Introducing Modal Logic

Gradually, the study of the modalities themselves became dominant, with the study of "conditionals" developing into a separate topic.

What is a modal?

A modality is any word or phrase that can be applied to a statement S to create a new statement that makes an assertion that qualifies the truth of S.

What is a modal?

A modality is any word or phrase that can be applied to a statement S to create a new statement that makes an assertion that qualifies the truth of S.

John \qquad happy.

What is a modal?

A modality is any word or phrase that can be applied to a statement S to create a new statement that makes an assertion that qualifies the truth of S.

John \qquad happy.

- is necessarily
- is possibly

What is a modal?

A modality is any word or phrase that can be applied to a statement S to create a new statement that makes an assertion that qualifies the truth of S.

John \qquad happy.

- is necessarily
- is possibly
- is known/believed/certain (by Ann) to be

What is a modal?

A modality is any word or phrase that can be applied to a statement S to create a new statement that makes an assertion that qualifies the truth of S.

John \qquad happy.

- is necessarily
- is possibly
- is known/believed/certain (by Ann) to be
- is permitted to be
- is obliged to be

What is a modal?

A modality is any word or phrase that can be applied to a statement S to create a new statement that makes an assertion that qualifies the truth of S.

John \qquad happy.

- is necessarily
- is possibly
- is known/believed/certain (by Ann) to be
- is permitted to be
- is obliged to be
- is now
- will be

What is a modal?

A modality is any word or phrase that can be applied to a statement S to create a new statement that makes an assertion that qualifies the truth of S.

John \qquad happy.

- is necessarily
- is possibly
- is known/believed/certain (by Ann) to be
- is permitted to be
- is obliged to be
- is now
- will be
- can do something to ensure that he is

What is a modal?

A modality is any word or phrase that can be applied to a statement S to create a new statement that makes an assertion that qualifies the truth of S.

John \qquad happy.

- is necessarily
- is possibly
- is known/believed/certain (by Ann) to be
- is permitted to be
- is obliged to be
- is now
- will be
- can do something to ensure that he is

Modal Languages

Modal languages extend some logical language (e.g., propositional logic or first-order logic) with (at least) two new symbols ' \square ' and ' \diamond '.

Modal Languages

Modal languages extend some logical language (e.g., propositional logic or first-order logic) with (at least) two new symbols ' \square ' and ' \diamond '.
$\square \varphi$: "it is necessary that φ is true"
$\diamond \psi$: "it is possible that φ is true"

Modal Languages

Modal languages extend some logical language (e.g., propositional logic or first-order logic) with (at least) two new symbols ' \square ' and ' \diamond '.
$\square \varphi$: "it is knowing that φ is true"
$\diamond \psi$: "it is consistent with everything that is known that φ is true"

Modal Languages

Modal languages extend some logical language (e.g., propositional logic or first-order logic) with (at least) two new symbols ' \square ' and ' \diamond '.
$\square \varphi$: "it is will always be that φ is true"
$\diamond \psi$: "it is will sometimes be that φ is true"

Modal Languages

Modal languages extend some logical language (e.g., propositional logic or first-order logic) with (at least) two new symbols ' \square ' and ' \diamond '.
$\square \varphi$: "it is ought to be that φ is true"
$\diamond \psi$: "it is permissible that φ is true"

Modal Languages

Modal languages extend some logical language (e.g., propositional logic or first-order logic) with (at least) two new symbols ' \square ' and ' \diamond '.
$\square \varphi$: "it is \qquad that φ is true"
$\diamond \psi$: "it is \qquad that φ is true"
E.g., $\square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi), \square P \rightarrow \square \square P, \neg \square P \rightarrow \square \neg \square P$, $(\exists x) \square L(x)$ and $\square(\exists x) L(x)$.

Types of Modal Logics

tense: henceforth, eventually, hitherto, previously, now, tomorrow, yesterday, since, until, inevitably, finally, ultimately, endlessly, it will have been, it is being,...

Types of Modal Logics

tense: henceforth, eventually, hitherto, previously, now, tomorrow, yesterday, since, until, inevitably, finally, ultimately, endlessly, it will have been, it is being,...
epistemic: it is known to a that, it is common knowledge that

Types of Modal Logics

tense: henceforth, eventually, hitherto, previously, now, tomorrow, yesterday, since, until, inevitably, finally, ultimately, endlessly, it will have been, it is being,...
epistemic: it is known to a that, it is common knowledge that doxastic: it is believed that

Types of Modal Logics

tense: henceforth, eventually, hitherto, previously, now, tomorrow, yesterday, since, until, inevitably, finally, ultimately, endlessly, it will have been, it is being,...
epistemic: it is known to a that, it is common knowledge that
doxastic: it is believed that
deontic: it is obligatory/forbidden/permitted/unlawful that

Types of Modal Logics

tense: henceforth, eventually, hitherto, previously, now, tomorrow, yesterday, since, until, inevitably, finally, ultimately, endlessly, it will have been, it is being,...
epistemic: it is known to a that, it is common knowledge that
doxastic: it is believed that
deontic: it is obligatory/forbidden/permitted/unlawful that
dynamic: after the program/computation/action finishes, the program enables, throughout the computation

Types of Modal Logics

tense: henceforth, eventually, hitherto, previously, now, tomorrow, yesterday, since, until, inevitably, finally, ultimately, endlessly, it will have been, it is being,...
epistemic: it is known to a that, it is common knowledge that
doxastic: it is believed that
deontic: it is obligatory/forbidden/permitted/unlawful that
dynamic: after the program/computation/action finishes, the program enables, throughout the computation
geometric: it is locally the case that

Types of Modal Logics

tense: henceforth, eventually, hitherto, previously, now, tomorrow, yesterday, since, until, inevitably, finally, ultimately, endlessly, it will have been, it is being,...
epistemic: it is known to a that, it is common knowledge that
doxastic: it is believed that
deontic: it is obligatory/forbidden/permitted/unlawful that
dynamic: after the program/computation/action finishes, the program enables, throughout the computation
geometric: it is locally the case that
metalogic: it is valid/satisfiable/provable/consistent that

Self-Reference

The Liar

This sentence is false.

Truth Predicate

' S ' is true if, and only if, S

- $T(S) \leftrightarrow S$
- $F(S) \leftrightarrow \neg S$

S If sentence S is true, then Santa Claus exists.

S If sentence S is true, then Santa Claus exists.

1.	Sentence S is true.	Assumption			
2.	If sentence S is true, then Santa Claus exists.	' S is true' $\leftrightarrow S$			
3.	Santa Claus exists.	$\rightarrow \mathrm{E}: 1,2$		4.	If sentence S is true, then Santa Claus exists.
:---	:---				
5. Sentence S is true.	' S is true' $\leftrightarrow S$				

S If sentence S is true, then Santa Claus exists.

1.	Sentence S is true.	Assumption			
2.	If sentence S is true, then Santa Claus exists.	' S is true' $\leftrightarrow S$			
3.	Santa Claus exists.	$\rightarrow E: 1,2$		4.	If sentence S is true, then Santa Claus exists.
:---	:---				
5. Sentence S is true.	' S is true' $\leftrightarrow S$				

Since deductions are sound, the above deduction shows that 'sentence S is true' is true.
S If sentence S is true, then Santa Claus exists.

1.	Sentence S is true.	Assumption
2.	If sentence S is true, then Santa Claus exists.	' S is true' $\leftrightarrow S$
3.	Santa Claus exists.	$\rightarrow \mathrm{E}: 1,2$
	If sentence S is true, then Santa Claus exists.	$\rightarrow 1: 3$
	Sentence S is true.	' S is true' $\leftrightarrow S$

Since deductions are sound, the above deduction shows that 'sentence S is true' is true.

By Modus Ponens, Santa Claus exists!

Logic is Fun!

- Meta-theory: PHIL370 Intermediate Logic (Staff), PHIL470 Incompleteness and Undecidability (Pacuit)
- Probability/Inductive Logic: PHIL408? Bayesian Epistemology (Lyon), PHIL308?/408? Philosophy, Politics, Economics/Game and Decision Theory (Pacuit)
- Non-Classical Logic: PHIL478? Philosophical Logic (Horty, Pacuit)
- Self-Reference/Philosophy of Logic: PHIL308T A Philosopher's Toolkit (Rey), PHIL470 Incompleteness and Undecidability (Pacuit)

Deduction for Predicate Logic

Conjunction Introduction (\&I)

Conjunction Elimination (\&EL, \&ER)

$$
\begin{array}{lll}
\text { p1. } & (\varphi \& \psi) & \\
\vdots & \\
\text { c. } & \varphi & \& E L: p 1
\end{array}
$$

p1. $\quad(\varphi \& \psi)$
c. ψ
\&ER: $p 1$

Conditional Introduction $(\rightarrow \mathrm{I})$

p1. ψ
c. $\quad(\varphi \rightarrow \psi) \quad \rightarrow I: p 1$

Conditional Elimination $(\rightarrow \mathrm{E})$

$$
\begin{array}{lll}
p 1 . & \varphi & \\
\text { p2. } & (\varphi \rightarrow \psi) & \\
& \vdots & \\
\text { c. } & \psi & \rightarrow E: p 1, p 2
\end{array}
$$

Disjunction Introduction (VIL, VIR)

$$
\begin{array}{ll}
p 1 . & \varphi \\
& \vdots \\
\text { c. } & (\psi \vee \varphi) \quad \vee I L: p 1
\end{array}
$$

Disjunction Elimination (VE)

p1.	$(\varphi \vee \psi)$	Premise
a1.	φ	Assumption
	\vdots	
p2.	ρ	Goal
a2.	ψ	Assumption
	\vdots	
p3.	ρ	Goal
c.	ρ	$\vee E: p 1, p 2, p 3$

Negation Introduction/Elimination $(\neg \mathrm{I}, \neg \mathrm{E})$

a1. φ Assumption p1. \perp c. $\neg \varphi$	Goal	
		$\neg \mathrm{l}: p 1$

a1.	$\neg \varphi$	Assumption
\vdots		
p1.	\perp	Goal
c.	φ	$\neg \mathrm{E}: p 1$

Falsum Introduction/Elimination $(\perp \mathrm{I}, \perp \mathrm{E})$
$\begin{array}{lll}\text { p1. } & \varphi & \\ \text { p2. } & \neg \varphi & \\ & \vdots & \\ & & \\ \text { c. } & \perp & \perp 1: p 1, p 2\end{array}$

Biconditional Introduction $(\leftrightarrow \mid)$

$a 1$.	φ	Assumption	p1. φ		
	\vdots				
p1.	ψ	Goal	p2. ψ		
$a 2$.	ψ	Assumption			
	:	Goal	c.	$(\varphi \leftrightarrow \psi)$	$\leftrightarrow \mathrm{I}: p 1, p 2$
$p 2$.	φ				
c.	$(\varphi \leftrightarrow \psi)$	$\leftrightarrow \mid: p 1, p 2$			

Biconditional Elimination $(\leftrightarrow \mathrm{E})$

p1.	$(\varphi \leftrightarrow \psi)$	p1. $(\varphi \leftrightarrow \psi)$		
p2.	φ	p2.	ψ	
	\vdots		\vdots	
c. ψ	$\leftrightarrow \mathrm{E}: p 1, p 2$	c. φ	$\varphi \mathrm{E}: p 1, p 2$	

Universal Elimination/Introduction $(\forall \mathrm{E}, \forall \mathrm{I})$

p1. $\varphi[v / u]$

c. $\quad(\forall u) \varphi \quad \forall I: p 1$

1. v is a variable
2. v does not occur in $(\forall u) \varphi$
3. v does not occur free in any assumption on which line $p 1$ depends.

Existential Introduction/Elimination ($\exists \mathrm{I}, \exists \mathrm{E}$)

Truth-trees for predicate logic

$$
\left./_{\neg \varphi}^{\neg(\varphi \& \psi)}\right\rangle_{\neg \psi}
$$

$$
\begin{gathered}
\neg(\varphi \rightarrow \psi) \\
\varphi \\
\neg \psi
\end{gathered}
$$

$$
(\varphi \leftrightarrow \psi)
$$

$$
\left./\rangle_{\varphi} \quad\right\rangle_{\psi \varphi}
$$

$\stackrel{\neg \neg \varphi}{\varphi}$

Decomposition Rules for Quantifiers

$$
\begin{gathered}
(\exists u) \varphi \\
\varphi[v / u]
\end{gathered}
$$

$$
\begin{gathered}
(\forall u) \varphi \\
\varphi[t / u]
\end{gathered}
$$

Provided v does not appear on the branch

$$
\begin{aligned}
& \neg(\exists u) \varphi \\
& (\forall u) \neg \varphi
\end{aligned}
$$

$$
\begin{aligned}
& \neg(\forall u) \varphi \\
&(\exists u) \neg \varphi
\end{aligned}
$$

When is a branch completed?

For every decomposition rule, except the universal decomposition rule, when it is applied, check off the formula. Universally quantified formulas are never checked off.
admissible term: any constant or variable that has a free occurrence in a formula on the branch.

A truth-tree is completed once any formula on an open branch is either an atomic formula, the negation of an atomic formula, checked off, or a universally quantified formula that has been instantiated with every admissible term.

