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Announcements

I Final Exam: Wed., Dec 16, 8:00am - 10:00am, LEF 2205

I See the review sheet with sample problems for the final exam
(available on the course website).

I The best way to study for the final exam is to work on the sample
problems. Answers will be made available on Friday afternoon.

I Extra office hours: Monday, Dec. 14 (I’ll be in my office most of the
day).
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Probability/Inductive Logic

Eric Pacuit 2



Arguments

7

I need to be at UMD by 11am.

∴ Lily needs to be at the bus-stop by 9am.

7

Ann brought here laptop to first three lectures.

∴ Ann will bring her laptop to today’s lecture.

3

Ann will have salad or steak.

Ann will not have steak.

∴ Ann will have salad.

3

Every student in PHIL170 will get an A.

Ann is a student in PHIL170.

∴ Ann will get an A.
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Arguments

7 U

∴ L

7 ((L1 & L2) & L3)

∴ L4

3
A ∨ S

¬S
∴ A

3
(∀x)(S(x)→ A(x))

S(a)

∴ A(a)
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Probabilistic Truth-Tables

A B ¬A ¬B A ∨ B A & B A→ B A ∨ ¬A · · ·
1

10 T T F F T T T T · · ·

1
20 T F F T T F F T · · ·

2
5 F T T F T F T T · · ·

9
20 F F T T F T T T · · ·

Pr(A) =
1

10
+

1

20
=

3

20
Pr(¬A) =

2

5
+

9

20
=

17

20
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Probabilistic Truth-Tables

A B ¬A ¬B A ∨ B A & B A→ B A ∨ ¬A · · ·

p1 T T F F T T T T · · ·

p2 T F F T T F F T · · ·

p3 F T T F T F T T · · ·

p4 F F T T F F T T · · ·

where, p1 + p2 + p3 + p4 = 1
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Probabilistic Truth-Tables

A B ¬A ¬B A ∨ B A & B A→ B A ∨ ¬A · · ·

p1 T T F F T T T T · · ·

p2 T F F T T F F T · · ·

p3 F T T F T F T T · · ·

p4 F F T T F F T T · · ·

Pr(ϕ) =
∑
{pi | i is a row that makes ϕ true}
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Probabilistic Truth-Tables

I Pr(¬A) = 1− Pr(A)

I Pr(A ∨ B) = Pr(A) + Pr(B)− Pr(A & B)

I If A→ B is true, then Pr(A) ≤ Pr(B)
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Probabilistic Truth-Tables

A B ¬A ¬B A ∨ B A & B A→ B A ∨ ¬A · · ·
1

10 T T F F T T T T · · ·

1
20 T F F T T F F T · · ·

2
5 F T T F T F T T · · ·

9
20 F F T T F F T T · · ·

Pr(ϕ | ψ) is the probability of ϕ give that ψ is true
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Probabilistic Truth-Tables

A B ¬A ¬B A ∨ B A & B A→ B A ∨ ¬A · · ·
1

10 T T F F T T T T · · ·

1
20 T F F T T F F T · · ·

2
5 F T T F T F T T · · ·

9
20 F F T T F F T T · · ·

1
10

1
10 + 1

20

=
2
20
3
20

=
2

3

1
20

1
10 + 1

20

=
1
20
3
20

=
1

3
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Probabilistic Truth-Tables

A B ¬A ¬B A ∨ B A & B A→ B A ∨ ¬A · · ·
2
3 T T F F T T T T · · ·

1
3 T F F T T F F T · · ·

2
5 F T T F T F T T · · ·

9
20 F F T T F F T T · · ·

Pr(B | A) =
2

3
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3
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Arguments

Argument 1

A ∨ B

A

Argument 2

A ∨ ¬A
A

I Argument 1 and Argument 2 are not valid.

I Intuitively, Argument 1 is stronger than Argument 2:

Pr(A | A ∨ B) > Pr(A), but Pr(A | A ∨ ¬A) = Pr(A)
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P

∴ C

When is an argument inductively strong?

1. C is probable given P: Pr(C | P) is “high” (i.e., Pr(C | P) > 1
2)

2. P is positively relevant to C : Pr(C | P) > Pr(P)

3. (The argument is not valid)
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Differences between 1 & 2

A (deductively) valid argument: E → (P & Q) |= E → P

If E is a strong argument for P & Q, then E is a strong argument for P.

If Pr(P & Q | E ) > 1
2 , then Pr(P | E ) > 1

2 . In fact,

Pr(P | E ) ≥ Pr(P & Q | E )

However, E may be positively relevant for P & Q without being
positively relevant for P:

Pr(P & Q | E ) > P(P & Q) does not necessarily imply that
Pr(P | E ) > Pr(P).
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P Q E P & Q E → (P & Q) E → P
1

10 T T T T T T

1
10 T T F T T T

1
10 T F T F F T

1
10 T F F F T T

1
10 F T T F F F

1
10 F T F F T T

1
10 F F T F F F

1
10 F F F F T T

E → (P & Q) |= E → P
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P Q E P & Q E → (P & Q) E → P

p1 T T T T T T

p2 T T F T T T

p3 T F T F F T

p4 T F F F T T

p5 F T T F F F

p6 F T F F T T

p7 F F T F F F

p8 F F F F T T

Pr(P | E ) ≥ Pr(P & Q | E )

Eric Pacuit 9



P Q E P & Q E → (P & Q) E → P
1

52 T T T T T T

0 T T F T T T

1
52 T F T F F T

2
52 T F F F T T

12
52 F T T F F F

0 F T F F T T

12
52 F F T F F F

24
52 F F F F T T

Pr(P & Q | E ) = 1
26 > Pr(P & Q) = 1

52 , but Pr(P | E ) = Pr(P) = 2
26
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Differences between 1 & 2

A (deductively) valid argument: E → (P & Q) |= E → P

If E is a strong argument for P & Q, then E is a strong argument for P.

If Pr(P & Q | E ) > 1
2 , then Pr(P | E ) > 1

2 . In fact,

Pr(P | E ) ≥ Pr(P & Q | E )

However, E may be positively relevant for P & Q without being
positively relevant for P:

Pr(P & Q | E ) > P(P & Q) does not necessarily imply that
Pr(P | E ) > Pr(P).
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Conjunction Fallacy

Linda is 31 years old, single, outspoken, and very bright. She majored in
philosophy. As a student, she was deeply concerned with issues of
discrimination and social justice, and also participated in anti-nuclear
demonstrations.

Which is more probable?

1. Linda is a bank teller.

2. Linda is a bank teller and is active in the feminist movement.

Typically a large percentage of people asked say 2 is more probable than
1.

A. Tversky and D. Kahneman. Extensions versus intuitive reasoning: The conjunction
fallacy in probability judgment. Psychological Review 90 (4): 293 - 315, 1983.
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Conjunction Fallacy

E Linda is 31 years old, single, outspoken, and very bright. She
majored in philosophy. As a student, she was deeply concerned with
issues of discrimination and social justice, and also participated in
anti-nuclear demonstrations.

Which is more probable?

1. Linda is a bank teller. P

2. Linda is a bank teller and is active in the feminist movement. P & Q

Pr(P | E ) ≥ Pr(P & Q |E )

But, E is positively relevant for P & Q (and less so than to P)
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Non-Classical Logic
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The set of parameters characterizing a logic can be divided in three
subsets:

1. Choice of formal language

2. Choice of a semantics for the formal language

3. Choice of a definition of valid arguments in the language

Eric Pacuit 14



Classical Logic “Parameters”

1. Syntax: if ϕ,ψ are sentences, then so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, and
ϕ→ ψ

2. Semantics (truth-functionality): the truth-value of a sentence is a
function of the truth-values of its components only

3. Semantics (bivalence): sentences are either true or false, with
nothing in-between

4. Consequence: α1 . . . αn/β is valid iff β is true in all models of
α1, . . . , αn

Domains to which classical logic is applicable must satisfy these four
assumptions.

Eric Pacuit 15
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Truth-functionality without bivalence: “unknown”
Many-valued logic

E.g., “Is 21257787 − 1 prime?”

P ¬P
T F

F T

U U

P Q P & Q

T T T

T F F

F T F

F F F

U F F

U T U

F U F

T U U

U U U

P Q P ∨ Q

T T T

T F T

F T T

F F F

U F U

U T T

F U U

T U T

U U U

P Q P → Q

T T T

T F F

F T T

F F T

U F U

U T T

F U T

T U U

U U U
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Non-Truth-Functional Semantics
Intuitionistic logic

1. ϕ ∧ ψ means “I have a proof of both ϕ and ψ”

2. ϕ ∨ ψ means “I have a proof of ϕ or a proof of ψ”

3. ϕ→ ψ means “I have a construction that transforms a proof of ϕ
into a proof of ψ”

4. ¬ϕ means “Any proof of ϕ leads to a contradiction”

Clearly, ϕ ∨ ¬ϕ is not valid.

Eric Pacuit 17



Introducing Modal Logic

Prosecutor: “If Eric is guilty then he had an accomplice.”
Defense: “I disagree!”
Judge: “I agree with the defense.”

Prosecutor: G → A
Defense: ¬(G → A)
Judge: ¬(G → A)
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Introducing Modal Logic

Prosecutor: “If Eric is guilty then he had an accomplice.”
Defense: “I disagree!”
Judge: “I agree with the defense.”

Prosecutor: G → A
Defense: ¬(G → A)
Judge: ¬(G → A) ⇔ G ∧ ¬A, therefore G !
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Introducing Modal Logic

Prosecutor: “If Eric is guilty then he had an accomplice.”
Defense: “I disagree!”
Judge: “I agree with the defense.”

Prosecutor: 2(G → A) (It must be the case that . . . )
Defense: ¬2(G → A)
Judge: ¬2(G → A) (What can the Judge conclude?)
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Introducing Modal Logic

Gradually, the study of the modalities themselves became dominant, with
the study of “conditionals” developing into a separate topic.
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What is a modal?
A modality is any word or phrase that can be applied to a statement S
to create a new statement that makes an assertion that qualifies the
truth of S.

John happy.

I is necessarily
I is possibly
I is known/believed/certain (by Ann) to be
I is permitted to be
I is obliged to be
I is now
I will be
I can do something to ensure that he is
I · · ·
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What is a modal?
A modality is any word or phrase that can be applied to a statement S
to create a new statement that makes an assertion that qualifies the
truth of S.

John happy.

I is necessarily
I is possibly
I is known/believed/certain (by Ann) to be
I is permitted to be
I is obliged to be
I is now
I will be
I can do something to ensure that he is
I · · ·

Eric Pacuit 19



What is a modal?
A modality is any word or phrase that can be applied to a statement S
to create a new statement that makes an assertion that qualifies the
truth of S.

John happy.

I is necessarily
I is possibly

I is known/believed/certain (by Ann) to be
I is permitted to be
I is obliged to be
I is now
I will be
I can do something to ensure that he is
I · · ·

Eric Pacuit 19



What is a modal?
A modality is any word or phrase that can be applied to a statement S
to create a new statement that makes an assertion that qualifies the
truth of S.

John happy.

I is necessarily
I is possibly
I is known/believed/certain (by Ann) to be

I is permitted to be
I is obliged to be
I is now
I will be
I can do something to ensure that he is
I · · ·

Eric Pacuit 19



What is a modal?
A modality is any word or phrase that can be applied to a statement S
to create a new statement that makes an assertion that qualifies the
truth of S.

John happy.

I is necessarily
I is possibly
I is known/believed/certain (by Ann) to be
I is permitted to be
I is obliged to be

I is now
I will be
I can do something to ensure that he is
I · · ·

Eric Pacuit 19



What is a modal?
A modality is any word or phrase that can be applied to a statement S
to create a new statement that makes an assertion that qualifies the
truth of S.

John happy.

I is necessarily
I is possibly
I is known/believed/certain (by Ann) to be
I is permitted to be
I is obliged to be
I is now
I will be

I can do something to ensure that he is
I · · ·

Eric Pacuit 19



What is a modal?
A modality is any word or phrase that can be applied to a statement S
to create a new statement that makes an assertion that qualifies the
truth of S.

John happy.

I is necessarily
I is possibly
I is known/believed/certain (by Ann) to be
I is permitted to be
I is obliged to be
I is now
I will be
I can do something to ensure that he is

I · · ·

Eric Pacuit 19



What is a modal?
A modality is any word or phrase that can be applied to a statement S
to create a new statement that makes an assertion that qualifies the
truth of S.

John happy.

I is necessarily
I is possibly
I is known/believed/certain (by Ann) to be
I is permitted to be
I is obliged to be
I is now
I will be
I can do something to ensure that he is
I · · ·

Eric Pacuit 19



Modal Languages

Modal languages extend some logical language (e.g., propositional logic
or first-order logic) with (at least) two new symbols ‘2’ and ’3’.

2ϕ: “it is necessary that ϕ is true”

3ψ: “it is possible that ϕ is true”

More generally, 2(ϕ1, . . . , ϕn), 3(ϕ1, . . . , ϕn) are n-ary modalities.
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Modal Languages

Modal languages extend some logical language (e.g., propositional logic
or first-order logic) with (at least) two new symbols ‘2’ and ’3’.
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Modal Languages

Modal languages extend some logical language (e.g., propositional logic
or first-order logic) with (at least) two new symbols ‘2’ and ’3’.

2ϕ: “it is that ϕ is true”

3ψ: “it is that ϕ is true”

E.g., 2(ϕ→ ψ)→ (2ϕ→ 2ψ), 2P → 22P, ¬2P → 2¬2P,

(∃x)2L(x) and 2(∃x)L(x).
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Types of Modal Logics

tense: henceforth, eventually, hitherto, previously, now, tomorrow,
yesterday, since, until, inevitably, finally, ultimately, endlessly, it will have
been, it is being,. . .

epistemic: it is known to a that, it is common knowledge that

doxastic: it is believed that

deontic: it is obligatory/forbidden/permitted/unlawful that

dynamic: after the program/computation/action finishes, the program
enables, throughout the computation

geometric: it is locally the case that

metalogic: it is valid/satisfiable/provable/consistent that
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Self-Reference
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The Liar

This sentence is false.
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Truth Predicate

‘S ’ is true if, and only if, S

I T (S)↔ S

I F (S)↔ ¬S
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S If sentence S is true, then Santa Claus exists.

1. Sentence S is true. Assumption

2. If sentence S is true, then Santa Claus exists. ‘S is true’↔ S

3. Santa Claus exists. →E: 1, 2

4. If sentence S is true, then Santa Claus exists. →I : 3

5. Sentence S is true. ‘S is true’↔ S

Since deductions are sound, the above deduction shows that ‘sentence S
is true’ is true.

By Modus Ponens, Santa Claus exists!
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Logic is Fun!

I Meta-theory: PHIL370 Intermediate Logic (Staff), PHIL470
Incompleteness and Undecidability (Pacuit)

I Probability/Inductive Logic: PHIL408? Bayesian Epistemology
(Lyon), PHIL308?/408? Philosophy, Politics, Economics/Game and
Decision Theory (Pacuit)

I Non-Classical Logic: PHIL478? Philosophical Logic (Horty, Pacuit)

I Self-Reference/Philosophy of Logic: PHIL308T A Philosopher’s
Toolkit (Rey), PHIL470 Incompleteness and Undecidability (Pacuit)
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Deduction for Predicate Logic
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Conjunction Introduction (&I)

p1. ϕ

p2. ψ

...

c. (ϕ & ψ) &I : p1, p2
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Conjunction Elimination (&EL, &ER)

p1. (ϕ & ψ)

...

c. ϕ &EL: p1

p1. (ϕ & ψ)

...

c. ψ &ER: p1
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Conditional Introduction (→ I)

a1. ϕ Assumption

...

p1. ψ Goal

c. (ϕ→ ψ) →I : p1

p1. ψ

...

c. (ϕ→ ψ) →I : p1
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Conditional Elimination (→ E)

p1. ϕ

p2. (ϕ→ ψ)

...

c. ψ →E: p1, p2
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Disjunction Introduction (∨IL, ∨IR)

p1. ϕ

...

c. (ϕ ∨ ψ) ∨IR : p1

p1. ϕ

...

c. (ψ ∨ ϕ) ∨IL: p1
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Disjunction Elimination (∨E)

p1. (ϕ ∨ ψ) Premise

a1. ϕ Assumption

...

p2. ρ Goal

a2. ψ Assumption

...

p3. ρ Goal

c . ρ ∨E: p1, p2, p3
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Negation Introduction/Elimination (¬I,¬E)

a1. ϕ Assumption

...

p1. ⊥ Goal

c. ¬ϕ ¬I : p1

a1. ¬ϕ Assumption

...

p1. ⊥ Goal

c. ϕ ¬E: p1
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Falsum Introduction/Elimination (⊥I,⊥E)

p1. ϕ

p2. ¬ϕ

...

c. ⊥ ⊥I : p1, p2

p1. ⊥

...

c. ϕ ⊥E: p1

Eric Pacuit 35



Biconditional Introduction (↔ I)

a1. ϕ Assumption

...

p1. ψ Goal

a2. ψ Assumption

...

p2. ϕ Goal

c . (ϕ↔ ψ) ↔ I : p1, p2

p1. ϕ

p2. ψ

...

c. (ϕ↔ ψ) ↔ I : p1, p2
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Biconditional Elimination (↔E)

p1. (ϕ↔ ψ)

p2. ϕ

...

c. ψ ↔E : p1, p2

p1. (ϕ↔ ψ)

p2. ψ

...

c. ϕ ↔E : p1, p2
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Universal Elimination/Introduction (∀E, ∀I)

p1. (∀x)ϕ

...

c. ϕ[τ/x ] ∀E: p1

p1. ϕ[v/u]

...

c. (∀u)ϕ ∀I : p1

1. v is a variable

2. v does not occur in (∀u)ϕ

3. v does not occur free in
any assumption on which
line p1 depends.
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Existential Introduction/Elimination (∃I, ∃E)

p1. ϕ[τ/x ]

...

c. (∃x)ϕ ∃I : p1

p1. (∃u)ϕ

a1. ϕ[v/u] Assumption

...

p2. ψ Goal

c. ψ ∃E: p1, p2

1. v is a variable,

2. v does not occur in ϕ

3. v does not occur in ψ

4. v does not occur free in any
assumption on which line p2
depends (except in a1)
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Truth-trees for predicate logic
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(ϕ & ψ)
ϕ

ψ

¬(ϕ & ψ)

¬ϕ ¬ψ

(ϕ ∨ ψ)

ϕ ψ

¬(ϕ ∨ ψ)
¬ϕ
¬ψ
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(ϕ→ ψ)

¬ϕ ψ

¬(ϕ→ ψ)
ϕ

¬ψ

(ϕ↔ ψ)

ϕ

ψ

¬ϕ
¬ψ

¬(ϕ↔ ψ)

ϕ

¬ψ
ψ
¬ϕ

¬¬ϕ
ϕ
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Decomposition Rules for Quantifiers

(∃u)ϕ

ϕ[v/u]

Provided v does not
appear on the branch

(∀u)ϕ t

ϕ[t/u]

Provided v does not
appear on the branch

¬(∃u)ϕ

(∀u)¬ϕ

Provided v does not
appear on the branch

¬(∀u)ϕ t

(∃u)¬ϕ

Provided v does not
appear on the branch
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When is a branch completed?

For every decomposition rule, except the universal decomposition rule,
when it is applied, check off the formula. Universally quantified formulas
are never checked off.

admissible term: any constant or variable that has a free occurrence
in a formula on the branch.

A truth-tree is completed once any formula on an open branch is either
an atomic formula, the negation of an atomic formula, checked off, or a
universally quantified formula that has been instantiated with every
admissible term.
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