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Announcements

I read Chapter 11 (and Chapter 12).

I Do the practice problems!

I Schedule

1. Wed., 12/2: Ch. 11, more deductions, course summary
2. Mon., 12/7: Concluding remarks (general perspectives)
3. Wed., 12/9: Concluding remarks (general perspectives)

I Lab - Truth-Trees and Lab - Derivations (12/2, 11.59pm)

I In-class quiz in sections: A deduction similar to the practice
problems in Chapter 11.

I Chapter 11 Quize & Problem Set, due 12/8, 11.59pm

I Final Exam: Wed., Dec 16, 8:00am - 10:00am, LEF 2205

I See the review sheet with sample problems for the final exam
(available on the course website).
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Basic Concepts

I Tautology: A formula of predicate logic is a tautology just in case
it is true on every interpretation.

I Contradictory Formula: A formula of predicate logic is a
contradictory just in case it is false on every interpretation.

I Contingent Formula: A formula of predicate logic is contingent
just in case it is true on some interpretations, and false on others.
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Basic Concepts

An argument of predicate logic is quantificationally valid just in case
there is no interpretation that makes all the premises of the argument
true and the conclusion false.
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Deduction for Predicate Logic
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Conjunction Introduction (&I)

p1. ϕ

p2. ψ

...

c. (ϕ & ψ) &I : p1, p2
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Conjunction Elimination (&EL, &ER)

p1. (ϕ & ψ)

...

c. ϕ &EL: p1

p1. (ϕ & ψ)

...

c. ψ &ER: p1
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Conditional Introduction (→ I)

a1. ϕ Assumption

...

p1. ψ Goal

c. (ϕ→ ψ) →I : p1

p1. ψ

...

c. (ϕ→ ψ) →I : p1
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Conditional Elimination (→ E)

p1. ϕ

p2. (ϕ→ ψ)

...

c. ψ →E: p1, p2
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Disjunction Introduction (∨IL, ∨IR)

p1. ϕ

...

c. (ϕ ∨ ψ) ∨IR : p1

p1. ϕ

...

c. (ψ ∨ ϕ) ∨IL: p1
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Disjunction Elimination (∨E)

p1. (ϕ ∨ ψ) Premise

a1. ϕ Assumption

...

p2. ρ Goal

a2. ψ Assumption

...

p3. ρ Goal

c . ρ ∨E: p1, p2, p3
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Negation Introduction/Elimination (¬I,¬E)

a1. ϕ Assumption

...

p1. ⊥ Goal

c. ¬ϕ ¬I : p1

a1. ¬ϕ Assumption

...

p1. ⊥ Goal

c. ϕ ¬E: p1
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Falsum Introduction/Elimination (⊥I,⊥E)

p1. ϕ

p2. ¬ϕ

...

c. ⊥ ⊥I : p1, p2

p1. ⊥

...

c. ϕ ⊥E: p1
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Biconditional Introduction (↔ I)

a1. ϕ Assumption

...

p1. ψ Goal

a2. ψ Assumption

...

p2. ϕ Goal

c . (ϕ↔ ψ) ↔ I : p1, p2

p1. ϕ

p2. ψ

...

c. (ϕ↔ ψ) ↔ I : p1, p2
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Biconditional Elimination (↔E)

p1. (ϕ↔ ψ)

p2. ϕ

...

c. ψ ↔E : p1, p2

p1. (ϕ↔ ψ)

p2. ψ

...

c. ϕ ↔E : p1, p2
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Universal Elimination/Introduction (∀E, ∀I)

p1. (∀x)ϕ

...

c. ϕ[τ/x ] ∀E: p1

p1. ϕ[v/u]

...

c. (∀u)ϕ ∀I : p1

1. v is a variable

2. v does not occur in (∀u)ϕ

3. v does not occur free in
any assumption on which
line p1 depends.
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Existential Introduction/Elimination (∃I, ∃E)

p1. ϕ[τ/x ]

...

c. (∃x)ϕ ∃I : p1

p1. (∃u)ϕ

a1. ϕ[v/u] Assumption

...

p2. ψ Goal

c. ψ ∃E: p1, p2

1. v is a variable,

2. v does not occur in ϕ

3. v does not occur in ψ

4. v does not occur free in any
assumption on which line p2
depends (except in a1)
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Example 1

...

n. (∀x)P(x) ∨ (∃x)¬P(x) Goal
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Example 2

1. (∃x)F (x) → (∀x)F (x) Premise

...

n. (∀x)(∀y)(F (x) ↔ F (y)) Goal
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Example 3

1. ((∃w)V (w) & (∃w)C (w)) ∨ ((∀w)¬V (w) & (∀w)¬C (w)) Premise

...

n. ((∃w)V (w) ↔ (∃w)C (w)) Goal

Eric Pacuit 19



Truth-trees for predicate logic
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(ϕ & ψ)
ϕ

ψ

¬(ϕ & ψ)

¬ϕ ¬ψ

(ϕ ∨ ψ)

ϕ ψ

¬(ϕ ∨ ψ)
¬ϕ
¬ψ
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(ϕ→ ψ)

¬ϕ ψ

¬(ϕ→ ψ)
ϕ

¬ψ

(ϕ↔ ψ)

ϕ

ψ

¬ϕ
¬ψ

¬(ϕ↔ ψ)

ϕ

¬ψ
ψ
¬ϕ

¬¬ϕ
ϕ
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Decomposition Rules for Quantifiers

(∃u)ϕ

ϕ[v/u]

Provided v does not
appear on the branch

(∀u)ϕ t

ϕ[t/u]

Provided v does not
appear on the branch

¬(∃u)ϕ

(∀u)¬ϕ

Provided v does not
appear on the branch

¬(∀u)ϕ t

(∃u)¬ϕ

Provided v does not
appear on the branch
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When is a branch completed?

For every decomposition rule, except the universal decomposition rule,
when it is applied, check off the formula. Universally quantified formulas
are never checked off.

admissible term: any constant or variable that has a free occurrence
in a formula on the branch.

A truth-tree is completed once any formula on an open branch is either
an atomic formula, the negation of an atomic formula, checked off, or a
universally quantified formula that has been instantiated with every
admissible term.
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