Introduction to Logic PHIL 170

Eric Pacuit

University of Maryland, College Park pacuit.org epacuit@umd.edu

December 2, 2015

Announcements

- read Chapter 11 (and Chapter 12).
- Do the practice problems!
- Schedule
 - 1. Wed., 12/2: Ch. 11, more deductions, course summary
 - 2. Mon., 12/7: Concluding remarks (general perspectives)
 - 3. Wed., 12/9: Concluding remarks (general perspectives)
- ▶ Lab Truth-Trees and Lab Derivations (12/2, 11.59pm)
- In-class quiz in sections: A deduction similar to the practice problems in Chapter 11.
- Chapter 11 Quize & Problem Set, due 12/8, 11.59pm
- ▶ Final Exam: Wed., Dec 16, 8:00am 10:00am, LEF 2205
- See the review sheet with sample problems for the final exam (available on the course website).

- Tautology: A formula of predicate logic is a tautology just in case it is true on every interpretation.
- Contradictory Formula: A formula of predicate logic is a contradictory just in case it is false on every interpretation.
- Contingent Formula: A formula of predicate logic is contingent just in case it is true on some interpretations, and false on others.

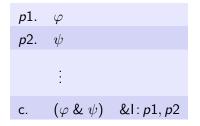
- Tautology: A formula of predicate logic is a tautology just in case it is true on every interpretation.
- Contradictory Formula: A formula of predicate logic is a contradictory just in case it is false on every interpretation.
- Contingent Formula: A formula of predicate logic is contingent just in case it is true on some interpretations, and false on others.

An argument of predicate logic is **quantificationally valid** just in case there is no interpretation that makes all the premises of the argument true and the conclusion false.

An argument of predicate logic is **quantificationally valid** just in case there is no interpretation that makes all the premises of the argument true and the conclusion false.

Deduction for Predicate Logic

Conjunction Introduction (&I)



Conjunction Elimination (&EL, &ER)

p1.	($\varphi \& \psi$)	
	:	
c.	φ	&EL: <i>p</i> 1

p1.	$(\varphi \& \psi)$	
	:	
c.	ψ	&ER: <i>p</i> 1

Conditional Introduction (\rightarrow I)

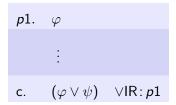
<i>a</i> 1.	φ	Assumption
	:	
<i>p</i> 1.	ψ	Goal
c.	$(\varphi \rightarrow \psi)$	\rightarrow I: $p1$

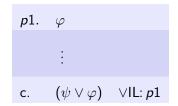
p1.	ψ	
	:	
	:	
c.	$(\varphi ightarrow \psi)$	\rightarrow I: $p1$

Conditional Elimination (\rightarrow E)

p1.
$$\varphi$$
p2. $(\varphi \rightarrow \psi)$ \vdots c. ψ $\rightarrow E: p1, p2$

Disjunction Introduction (\lor IL, \lor IR)

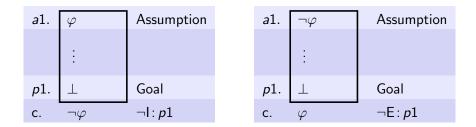




Disjunction Elimination (\lor E)

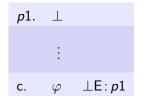
<i>р</i> 1.	$(\varphi \lor \psi)$	Premise
<i>a</i> 1.	φ	Assumption
	:	
p2.	ρ	Goal
р2. а2.	ψ	Assumption
	÷	
<i>р</i> З.	ρ	Goal
C	0	∨E: <i>p</i> 1, <i>p</i> 2, <i>p</i> 3

Negation Introduction/Elimination $(\neg I, \neg E)$

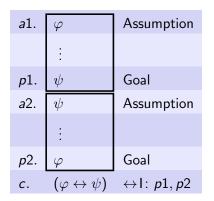


Falsum Introduction/Elimination $(\perp I, \perp E)$

$$p1.$$
 φ $p2.$ $\neg \varphi$ \vdots c. \bot \bot L



Biconditional Introduction $(\leftrightarrow I)$



<i>р</i> 1.	φ	
p2.	ψ	
	÷	
c.	$(\varphi \leftrightarrow \psi)$	\leftrightarrow I: p1, p2

Biconditional Elimination $(\leftrightarrow E)$

p1.	$(\varphi \leftrightarrow \psi)$	
p2.	φ	
	÷	
c.	ψ	\leftrightarrow E: p1, p2

p1.	$(\varphi \leftrightarrow \psi)$	
p2.	ψ	
	:	
	•	
c.	φ	\leftrightarrow E: p1, p2

Universal Elimination/Introduction ($\forall E, \forall I$)

p1.
$$(\forall x)\varphi$$

:
c. $\varphi[\tau/x] \quad \forall E: p1$

$$p1. \quad \varphi[v/u]$$

$$\vdots$$

$$c. \quad (\forall u)\varphi \quad \forall I: p1$$

- 1. v is a variable
- 2. *v* does not occur in $(\forall u)\varphi$
- v does not occur free in any assumption on which line p1 depends.

Existential Introduction/Elimination ($\exists I, \exists E$)

p1.
$$\varphi[\tau/x]$$

:
c. $(\exists x)\varphi \quad \exists I: p1$

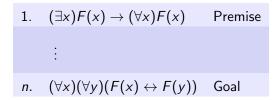
<i>p</i> 1.	$(\exists u)\varphi$	
<i>a</i> 1.	$\varphi[\mathbf{v}/\mathbf{u}]$	Assumption
	:	
	•	
p2.	ψ	Goal
c.	ψ	∃E: <i>p</i> 1, <i>p</i> 2

- 1. v is a variable,
- 2. v does not occur in φ
- 3. v does not occur in ψ
- v does not occur free in any assumption on which line p2 depends (except in a1)

Example 1

: $n. \quad (\forall x) P(x) \lor (\exists x) \neg P(x)$ Goal

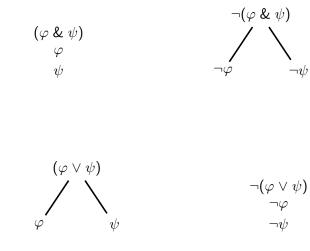
Example 2



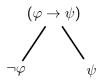
Example 3

1.
$$((\exists w)V(w) \& (\exists w)C(w)) \lor ((\forall w)\neg V(w) \& (\forall w)\neg C(w))$$
 Premise
:
n. $((\exists w)V(w) \leftrightarrow (\exists w)C(w))$ Goal

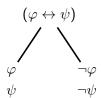
Truth-trees for predicate logic

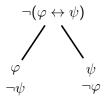


 $\neg \psi$



 $\neg(\varphi \rightarrow \psi) \\ \varphi$ $\neg \psi$





Decomposition Rules for Quantifiers

$$\begin{array}{ll} (\exists u)\varphi & (\forall u)\varphi \\ \varphi[v/u] & \varphi[t/u] \end{array}$$

Provided v does not appear on the branch

$$\neg (\exists u)\varphi \qquad \neg (\forall u)\varphi (\forall u)\neg\varphi \qquad (\exists u)\neg\varphi$$

When is a branch completed?

For every decomposition rule, except the universal decomposition rule, when it is applied, check off the formula. *Universally quantified formulas are never checked off.*

admissible term: any constant or variable that has a **free occurrence** in a formula on the branch.

A truth-tree is **completed** once any formula on an open branch is either an atomic formula, the negation of an atomic formula, checked off, or a universally quantified formula that has been instantiated with every admissible term.