Introduction to Logic

Eric Pacuit

University of Maryland, College Park pacuit.org epacuit@umd.edu

November 30, 2015

Announcements

- read Chapter 11 (and Chapter 12).
- ▶ Do the practice problems!
- Schedule
 - 1. Mon., 11/30: Ch. 11 (Deductions for Predicate Logic)
 - 2. Wed., 12/2: Ch. 11, course summary
 - 3. Mon., 12/7: Concluding remarks (general perspectives)
 - 4. Wed., 12/9: Concluding remarks (general perspectives)
- ► Midterm #3: Quiz (12/1, 11.59pm), Lab Truth-Trees and Lab Derivations (12/2, 11.59pm)
- ▶ In-class quiz in sections: A deduction similar to the practice problems in Chapter 11.
- ▶ Final Exam: Wed., Dec 16, 8:00am 10:00am, LEF 2205

Final Exam

- Basic concepts: Logical connectives, tautology, contradictory, contingent formula, valid/invalid arguments, truth-value function, interpretations
- ► Translations into predicate logic, determine if a formula is true in a model.
- ▶ Determine if a pair of formulas are logically equivalent.
- ▶ Determine if an argument is valid or invalid. Find a counterexample if the argument is not valid.
 - Using truth-tables (you need to know the truth-table rules)
 - Using truth-trees (the decompositions rules will be provided)

► Find deductions in propositional logic/predicate logic (deduction rules will be provided).

- ► **Tautology**: A formula of predicate logic is a tautology just in case it is true on every interpretation.
- ► Contradictory Formula: A formula of predicate logic is a contradictory just in case it is false on every interpretation.
- ► Contingent Formula: A formula of predicate logic is contingent just in case it is true on some interpretations, and false on others.

- ► **Tautology**: A formula of predicate logic is a tautology just in case it is true on every interpretation.
- ► Contradictory Formula: A formula of predicate logic is a contradictory just in case it is false on every interpretation.
- ► Contingent Formula: A formula of predicate logic is contingent just in case it is true on some interpretations, and false on others.

An argument of predicate logic is **quantificationally valid** just in case there is no interpretation that makes all the premises of the argument true and the conclusion false.

An argument of predicate logic is **quantificationally valid** just in case there is no interpretation that makes all the premises of the argument true and the conclusion false.

Suppose that the domain D is the set of integers.

P(x)	x is a positive integer	
N(x)	x is a negative integers	
G(x,y)	x is greater than y	

Translate and determine if the resulting formula is true or false in the above interpretation.

- 1. Every positive number is greater than every negative number
- 2. Some positive number is greater than every number
- 3. For every positive number there is a greater positive number
- 4. For every negative number there is a greater negative number
- 5. Some positive number is greater than some negative number

Suppose that the domain D is the set of integers.

P(x)	x is a positive integer		
N(x)	x is a negative integers		
G(x,y)	x is greater than y		

Translate and determine if the resulting formula is true or false in the above interpretation.

1. Every positive number is greater than every negative number

$$(\forall x)(P(x) \rightarrow (\forall y)(N(y) \rightarrow G(x,y)).$$
 True

Suppose that the domain D is the set of integers.

P(x)	x is a positive integer		
N(x)	x is a negative integers		
G(x,y)	x is greater than y		

Translate and determine if the resulting formula is true or false in the above interpretation.

2. Some positive number is greater than every number

$$(\exists x)(P(x) \& (\forall y)G(x,y))$$
 False

Suppose that the domain D is the set of integers.

P(x)	x is a positive integer		
N(x)	x is a negative integers		
G(x,y)	x is greater than y		

Translate and determine if the resulting formula is true or false in the above interpretation.

3. For every positive number there is a greater positive number

$$(\forall x)(\exists y)((P(x) \& P(y)) \rightarrow G(y,x))$$
 True

Suppose that the domain D is the set of integers.

P(x)	x is a positive integer	
N(x)	x is a negative integers	
G(x,y)	x is greater than y	

Translate and determine if the resulting formula is true or false in the above interpretation.

4. For every negative number there is a greater negative number

$$(\forall x)(N(x) \rightarrow (\exists y)(N(y) \& G(y,x)))$$
 False

Suppose that the domain D is the set of integers.

P(x)	x is a positive integer	
N(x)	x is a negative integers	
G(x,y)	x is greater than y	

Translate and determine if the resulting formula is true or false in the above interpretation.

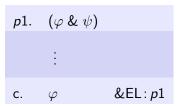
5. Some positive number is greater than some negative number

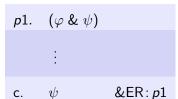
$$(\exists x)(P(x) \& (\exists y)(N(y) \& G(x,y))$$
 True

Deduction for Predicate Logic

Conjunction Introduction (&I)

Conjunction Elimination (&EL, &ER)





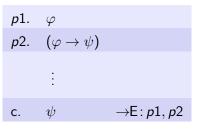
Conditional Introduction $(\rightarrow I)$

a1.	φ	Assumption	
	:		
p1.	ψ	Goal	
c.	$(\varphi \to \psi)$	→l : <i>p</i> 1	

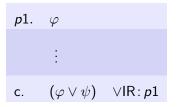
$$p1.$$
 ψ
$$\vdots$$

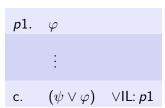
$$c. \quad (\varphi \to \psi) \quad \to \exists p1$$

Conditional Elimination $(\rightarrow E)$

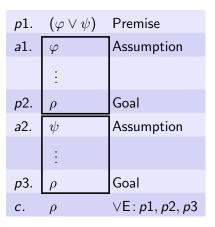


Disjunction Introduction (VIL, VIR)

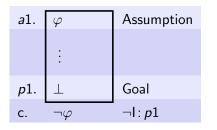


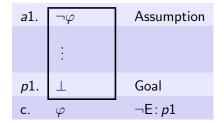


Disjunction Elimination $(\vee E)$



Negation Introduction/Elimination $(\neg I, \neg E)$





Falsum Introduction/Elimination $(\bot I, \bot E)$

$$\begin{array}{cccc} p1. & \varphi & & & \\ p2. & \neg \varphi & & & \\ & \vdots & & & \\ c. & \bot & \bot I: p1, p2 & & \end{array}$$

Biconditional Introduction $(\leftrightarrow I)$

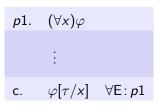
a1.	φ	Assumption	
	:		
p1.	ψ	Goal	
<i>p</i> 1. <i>a</i> 2.	ψ	Assumption	
	:		
p2.	φ	Goal	
с.	$(\varphi \leftrightarrow \psi)$	\leftrightarrow l: $p1, p2$	

Biconditional Elimination $(\leftrightarrow E)$

p1.	$(\varphi \leftrightarrow \psi)$	
p2.	φ	
	:	
C.	ψ	\leftrightarrow E : $p1$, $p2$

```
\begin{array}{ccc} \rho 1. & (\varphi \leftrightarrow \psi) \\ \rho 2. & \psi \\ & \vdots \\ c. & \varphi & \leftrightarrow \mathsf{E} : \rho 1, \rho 2 \end{array}
```

Universal Elimination $(\forall E)$



Universal Elimination ($\forall E$), Examples

1.	$(\forall x)(\forall y)R(x,y)$	Premise
2.	$(\forall u)(\forall v)Q(v,u)$	Premise
	:	
n.	R(a,b) & Q(t,s)	Goal

Universal Elimination ($\forall E$), Examples

```
1. (\forall x)(\forall y)R(x,y) Premise

2. (\forall u)(\forall v)Q(v,u) Premise

\vdots

n. R(a,b) \& Q(t,s) Goal
```

```
1. (\forall x)(P(x) \rightarrow Q(x,x)) Premise

2. \neg Q(b,b) Premise

\vdots

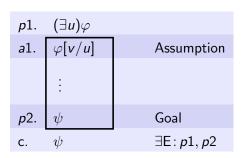
n. \neg (\forall x)P(x) Goal
```

Existential Introduction (∃I)

$$p1.$$
 $\varphi[\tau/x]$ \vdots \vdots $c.$ $(\exists x)\varphi$ $\exists I: p1$

1.
$$(\forall x)P(x)$$
 Premise
:
n. $(\exists x)P(x)$ Goal

1.	$(\forall z)R(z,z)$	Premise
2.	$(\forall y) \neg O(y,y)$	Premise
	:	
n.	$(\exists x)(\exists y)(R(x,y) \& \neg O(y,x))$	Goal



- 1. v is a variable.
- 2. v does not occur in φ
- 3. v does not occur in ψ
- 4. *v* does not occur free in any assumption on which line *p*2 depends, except, of course, in *a*1.

1.	$(\exists x)P(x)$	Premise
2.	$(\forall x)(P(x) \rightarrow Q(x))$	Premise
	<u>:</u>	
n.	$(\exists x)Q(x)$	Goal

- 1. v is a variable
- 2. v does not occur in φ
- 3. v does not occur in ψ
- 4. *v* does not occur free in any assumption on which line *p*2 depends, except, of course, in *a*1.

1.	P(a) o Q(a)) Premise
2.	$(\exists x)P(x)$	Premise
3.	P(a)	Assumption
4.	Q(a)	→E:1,3
5.	$\overline{Q(a)}$	∃E: 2, 4, <i>BAD</i> !

- 1. v is a variable
- 2. v does not occur in φ
- 3. v does not occur in ψ
- 4. *v* does not occur free in any assumption on which line *p*2 depends, except, of course, in *a*1.

1.	P(a) o Q(a)	Premise
2.	$(\exists x)P(x)$	Premise
3.	P(a)	Assumption
4.	P(a) Q(a)	\rightarrow E:1,3
	Q(a)	∃E: 2, 4, <i>BAD</i> !

- 1. v is a variable
- 2. v does not occur in φ
- 3. v does not occur in ψ
- 4. *v* does not occur free in any assumption on which line *p*2 depends, except, of course, in *a*1.

1.	$(\exists x)(\forall y)R(x,y)$	Premise
2.	$(\forall y)R(y,y)$	Assumption
		∀E:1,3
	R(a,a)	∃E:1,3, <i>BAD</i> !

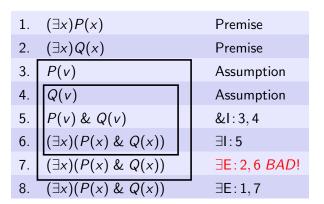
- 1. v is a variable
- 2. v does not occur in φ
- 3. v does not occur in ψ
- 4. *v* does not occur free in any assumption on which line *p*2 depends, except, of course, in *a*1.

1.	$(\exists x)(\forall y)R(x,y)$	Premise
2.	$(\forall y)R(y,y)$	Assumption
3.	R(a,a)	∀E:1,3
	R(a,a)	∃E:1,3, <i>BAD</i> !

- 1. v is a variable
- 2. v does not occur in φ
- 3. v does not occur in ψ
- 4. *v* does not occur free in any assumption on which line *p*2 depends, except, of course, in *a*1.

1.	$(\exists x)P(x)$	Premise
2.	$(\exists x)Q(x)$	Premise
3.	P(v)	Assumption
4.	Q(v)	Assumption
5.	P(v) & Q(v)	&I:3,4
6.	$(\exists x)(P(x) \& Q(x))$	∃I:5
7.	$(\exists x)(P(x) \& Q(x))$	∃E:2,6 <i>BAD</i> !
8.	$(\exists x)(P(x) \& Q(x))$	∃E:1,7

- 1. v is a variable
- 2. v does not occur in φ
- 3. v does not occur in ψ
- 4. *v* does not occur free in any assumption on which line *p*2 depends, except, of course, in *a*1.



Universal Introduction $(\forall I)$

```
p1. \varphi[v/u] : : C. (\forall u)\varphi \forall I: p1
```

- 1. v is a variable,
- 2. v does not occur in $(\forall u)\varphi$
- 3. *v* does not occur free in any assumption on which line *p*1 depends.

1.	$(\forall x)A(x)$	Premise
2.	$(\forall x)B(x)$	Premise
	:	
n.	$(\forall x)(A(x) \& B(x))$	Goal

- 1. v is a variable,
- 2. v does not occur in $(\forall u)\varphi$
- 3. v does not occur free in any assumption on which line p1 depends.

1.	$(\forall x)P(x,x)$	Premise
2.	P(w, w)	∀E:1
3.	$(\forall x)P(x,w)$	&I:2 <i>BAD</i> !

- 1. v is a variable,
- 2. v does not occur in $(\forall u)\varphi$
- 3. v does not occur free in any assumption on which line p1 depends.

1.	$(\forall x)P(x,x)$	Premise
2.	P(w, w)	∀E:1
3.	$(\forall x)P(x,w)$	&I:2 <i>BAD</i> !
4.	$(\forall y)(\forall x)P(x,y)$	&I:3 <i>BAD</i> !

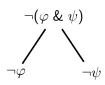
- 1. v is a variable,
- 2. v does not occur in $(\forall u)\varphi$
- 3. v does not occur free in any assumption on which line p1 depends.

1.	$(\forall x)P(x,x)$	Premise
2.	P(w, w)	∀E:1
3.	$(\forall x)P(x,x)$	&I:2

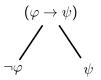
- 1. v is a variable,
- 2. v does not occur in $(\forall u)\varphi$
- 3. v does not occur free in any assumption on which line p1 depends.

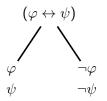
1.	$(\forall x)(\forall y)P(x,y)$	Premise
2.	$(\forall y)P(w,y)$	∀E:1
3.	P(w, w)	∀E:2
4.	$(\forall x)P(x,x)$	∀I:3

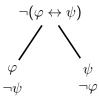
Truth-trees for predicate logic



$$\neg(\varphi \lor \psi)$$
$$\neg\varphi$$
$$\neg\psi$$







$$\neg \neg \varphi$$

Decomposition Rules for Quantifiers

$$(\exists u)\varphi \qquad (\forall u)\varphi$$
$$\varphi[v/u] \qquad \varphi[t/u]$$

Provided *v* does not appear on the branch

$$\neg(\exists u)\varphi \qquad \qquad \neg(\forall u)\varphi$$
$$(\forall u)\neg\varphi \qquad \qquad (\exists u)\neg\varphi$$

When is a branch completed?

For every decomposition rule, except the universal decomposition rule, when it is applied, check off the formula. *Universally quantified formulas* are never checked off.

admissible term: any constant or variable that has a free occurrence in a formula on the branch.

A truth-tree is **completed** once any formula on an open branch is either an atomic formula, the negation of an atomic formula, checked off, or a universally quantified formula that has been instantiated with every admissible term.