Introduction to Logic PHIL 170

Eric Pacuit

University of Maryland, College Park pacuit.org epacuit@umd.edu

November 23, 2015

Announcements

- read Chapter 11 (and Chapter 12).
- Do the practice problems!
- Schedule
 - 1. Mon., 11/23: Ch. 11 (Deductions for Predicate Logic)
 - 2. Wed., 11/25: Ch. 11 (Deductions for Predicate Logic)
 - 3. Mon., 11/30: Ch. 11 (Deductions for Predicate Logic)
 - 4. Wed., 12/2: Ch. 11, course summary
 - 5. Mon., 12/7: Concluding remarks (general perspectives)
 - 6. Wed., 12/9: Concluding remarks (general perspectives)
- Midterm #3: Quiz (12/1, 11.59pm), Lab Truth-Trees and Lab -Derivations (12/2, 11.59pm)
- ▶ Final Exam: Wed., Dec 16, 8:00am 10:00am, LEF 2205

Final Exam

- Basic concepts: Logical connectives, tautology, contradictory, contingent formula, valid/invalid arguments, truth-value function, interpretations
- Translations into predicate logic
- Determine if a pair of formulas are logically equivalent.
- Determine if an argument is valid or invalid. Find a counterexample if the argument is not valid.
 - Using truth-tables (you need to know the truth-table rules)
 - Using truth-trees (the decompositions rules will be provided)
- Find deductions in propositional logic/predicate logic (deduction rules will be provided).

- Tautology: A formula of predicate logic is a tautology just in case it is true on every interpretation.
- Contradictory Formula: A formula of predicate logic is a contradictory just in case it is false on every interpretation.
- Contingent Formula: A formula of predicate logic is contingent just in case it is true on some interpretations, and false on others.

- Tautology: A formula of predicate logic is a tautology just in case it is true on every interpretation.
- Contradictory Formula: A formula of predicate logic is a contradictory just in case it is false on every interpretation.
- Contingent Formula: A formula of predicate logic is contingent just in case it is true on some interpretations, and false on others.

An argument of predicate logic is **quantificationally valid** just in case there is no interpretation that makes all the premises of the argument true and the conclusion false.

An argument of predicate logic is **quantificationally valid** just in case there is no interpretation that makes all the premises of the argument true and the conclusion false.

An occurrence of a variable u in a formula is **bound** just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is **free** just in case it is not bound.

Substitution: $\varphi[u/x]$ is the formula φ in which every free occurrence of x is replaced with u.

An occurrence of a variable u in a formula is **bound** just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is **free** just in case it is not bound.

Substitution: $\varphi[u/x]$ is the formula φ in which every free occurrence of x is replaced with u.

•
$$P(x)[u/x] =$$

An occurrence of a variable u in a formula is **bound** just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is **free** just in case it is not bound.

Substitution: $\varphi[u/x]$ is the formula φ in which every free occurrence of x is replaced with u.

$$\blacktriangleright P(x)[u/x] = P(u)$$

An occurrence of a variable u in a formula is **bound** just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is **free** just in case it is not bound.

Substitution: $\varphi[u/x]$ is the formula φ in which every free occurrence of x is replaced with u.

Examples:

$$\blacktriangleright P(x)[u/x] = P(u)$$

• $(\forall x)P(x)[u/x] =$

An occurrence of a variable u in a formula is **bound** just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is **free** just in case it is not bound.

Substitution: $\varphi[u/x]$ is the formula φ in which every free occurrence of x is replaced with u.

Examples:

$$\blacktriangleright P(x)[u/x] = P(u)$$

• $(\forall x)P(x)[u/x] = (\forall x)P(x)$

An occurrence of a variable u in a formula is **bound** just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is **free** just in case it is not bound.

Substitution: $\varphi[u/x]$ is the formula φ in which every free occurrence of x is replaced with u.

- $\blacktriangleright P(x)[u/x] = P(u)$
- $(\forall x)P(x)[u/x] = (\forall x)P(x)$
- $\blacktriangleright (\forall x) R(x, y)[u/y] =$

An occurrence of a variable u in a formula is **bound** just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is **free** just in case it is not bound.

Substitution: $\varphi[u/x]$ is the formula φ in which every free occurrence of x is replaced with u.

$$\blacktriangleright P(x)[u/x] = P(u)$$

- $\blacktriangleright (\forall x) P(x)[u/x] = (\forall x) P(x)$
- $\blacktriangleright (\forall x) R(x, y) [u/y] = (\forall x) R(x, u)$

An occurrence of a variable u in a formula is **bound** just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is **free** just in case it is not bound.

Substitution: $\varphi[u/x]$ is the formula φ in which every free occurrence of x is replaced with u.

$$\blacktriangleright P(x)[u/x] = P(u)$$

$$\blacktriangleright (\forall x) P(x)[u/x] = (\forall x) P(x)$$

$$(\forall x) R(x, y) [u/y] = (\forall x) R(x, u)$$

•
$$((\forall x)P(x) \& R(x,y))[u/x] =$$

An occurrence of a variable u in a formula is **bound** just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is **free** just in case it is not bound.

Substitution: $\varphi[u/x]$ is the formula φ in which every free occurrence of x is replaced with u.

- $\blacktriangleright P(x)[u/x] = P(u)$
- $(\forall x)P(x)[u/x] = (\forall x)P(x)$
- $\blacktriangleright (\forall x) R(x, y) [u/y] = (\forall x) R(x, u)$
- $((\forall x)P(x) \& R(x,y))[u/x] = ((\forall x)P(x) \& R(u,y))$

An occurrence of a variable u in a formula is **bound** just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is **free** just in case it is not bound.

Substitution: $\varphi[u/x]$ is the formula φ in which every free occurrence of x is replaced with u.

- $\blacktriangleright P(x)[u/x] = P(u)$
- $(\forall x)P(x)[u/x] = (\forall x)P(x)$
- $\blacktriangleright (\forall x) R(x, y) [u/y] = (\forall x) R(x, u)$
- $((\forall x)P(x) \& R(x,y))[u/x] = ((\forall x)P(x) \& R(u,y))$
- $\blacktriangleright \ (\forall x) R(x,y)[x/y] =$

An occurrence of a variable u in a formula is **bound** just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is **free** just in case it is not bound.

Substitution: $\varphi[u/x]$ is the formula φ in which every free occurrence of x is replaced with u.

- $\blacktriangleright P(x)[u/x] = P(u)$
- $(\forall x)P(x)[u/x] = (\forall x)P(x)$
- $\blacktriangleright (\forall x) R(x, y) [u/y] = (\forall x) R(x, u)$
- $((\forall x)P(x) \& R(x,y))[u/x] = ((\forall x)P(x) \& R(u,y))$
- $\blacktriangleright \ (\forall x)R(x,y)[x/y] = (\forall x)R(x,x)$

Truth-trees for predicate logic

 $\neg \psi$

 $\neg(\varphi \rightarrow \psi) \\ \varphi$ $\neg \psi$

Decomposition Rules for Quantifiers

$$\begin{array}{ll} (\exists u)\varphi & (\forall u)\varphi \\ \varphi[v/u] & \varphi[t/u] \end{array}$$

Provided v does not appear on the branch

$$\neg (\exists u)\varphi \qquad \neg (\forall u)\varphi (\forall u)\neg\varphi \qquad (\exists u)\neg\varphi$$

When is a branch completed?

For every decomposition rule, except the universal decomposition rule, when it is applied, check off the formula. *Universally quantified formulas are never checked off.*

admissible term: any constant or variable that has a **free occurrence** in a formula on the branch.

A truth-tree is **completed** once any formula on an open branch is either an atomic formula, the negation of an atomic formula, checked off, or a universally quantified formula that has been instantiated with every admissible term. Which arguments are quantificationally valid?

$$(\forall x)(H(x) \to M(x))$$
1.
$$H(s)$$

$$\therefore M(s)$$

$$(\forall x)(H(x) \to M(x))$$
2.
$$\neg H(a)$$

$$\therefore \neg M(a)$$

$$(\exists x)(S(x) \& C(x)) 3. (\exists x)(S(x) \& D(x))$$

 $\therefore (\exists x)(S(x) \& (D(x) \& C(x)))$

$$4. \frac{(\forall x)(P(x) \to Q(x))}{(\forall x)(Q(x) \to R(x))}$$
$$\therefore (\forall x)(P(x) \to R(x))$$

Deduction for Predicate Logic

Conjunction Introduction (&I)

Conjunction Elimination (&EL, &ER)

p1.	($\varphi \& \psi$)	
	:	
c.	φ	&EL: <i>p</i> 1

<i>р</i> 1.	$(\varphi \& \psi)$	
	:	
c.	ψ	&ER: <i>p</i> 1

Conditional Introduction (\rightarrow I)

<i>a</i> 1.	φ	Assumption	
	:		
p1.	ψ	Goal	
c.	$(\varphi \rightarrow \psi)$	\rightarrow I: $p1$	

p1.	ψ	
	:	
c.	$(\varphi ightarrow \psi)$	\rightarrow I: $p1$

Conditional Elimination (\rightarrow E)

p1.
$$\varphi$$
p2. $(\varphi \rightarrow \psi)$ \vdots c. ψ $\rightarrow E: p1, p2$

Disjunction Introduction (\lor IL, \lor IR)

Disjunction Elimination (\lor E)

<i>р</i> 1.	$(\varphi \lor \psi)$	Premise
<i>a</i> 1.	φ	Assumption
	:	
p2.	ρ	Goal
р2. а2.	ψ	Assumption
	÷	
<i>р</i> З.	ρ	Goal
C	0	∨E: <i>p</i> 1, <i>p</i> 2, <i>p</i> 3

Negation Introduction/Elimination $(\neg I, \neg E)$

Falsum Introduction/Elimination $(\perp I, \perp E)$

$$p1.$$
 φ $p2.$ $\neg \varphi$ \vdots c. \bot \bot L

Biconditional Introduction $(\leftrightarrow I)$

<i>р</i> 1.	φ	
p2.	ψ	
	÷	
c.	$(\varphi \leftrightarrow \psi)$	\leftrightarrow I: p1, p2

Biconditional Elimination $(\leftrightarrow E)$

p1.	$(\varphi \leftrightarrow \psi)$	
p2.	φ	
	÷	
с.	ψ	\leftrightarrow E: p1, p2

<i>p</i> 1.	$(\varphi \leftrightarrow \psi)$	
p2.	ψ	
	÷	
c.	φ	\leftrightarrow E : <i>p</i> 1, <i>p</i> 2

Universal Elimination ($\forall E$)

Universal Elimination ($\forall E$), Examples

- 1. $(\forall x)(\forall y)R(x,y)$ Premise
- 2. $(\forall u)(\forall v)Q(v, u)$ Premise

n. R(a, b) & Q(t, s) Goal

Universal Elimination (\forall E), Examples

- 1. $(\forall x)(\forall y)R(x,y)$ Premise
- 2. $(\forall u)(\forall v)Q(v, u)$ Premise

n. R(a,b) & Q(t,s) Goal

1.
$$(\forall x)(P(x) \rightarrow Q(x, x))$$
Premise2. $\neg Q(b, b)$ Premise \vdots \vdots $n.$ $n.$ $\neg(\forall x)P(x)$ Goal

Existential Introduction $(\exists I)$

1.
$$(\forall z)R(z,z)$$
Premise2. $(\forall y) \neg O(y,y)$ Premise \vdots \vdots n. $(\exists x)(\exists y)(R(x,y) \& \neg O(y,x))$ Goal

<i>p</i> 1.	$(\exists u)\varphi$	
<i>a</i> 1.	$\varphi[\mathbf{v}/\mathbf{u}]$	Assumption
	:	
p2.	ψ	Goal
c.	ψ	∃E: <i>p</i> 1, <i>p</i> 2

- 1. v is a variable,
- 2. v does not occur in φ
- 3. v does not occur in ψ
- 4. *v* does not occur free in any assumption on which line *p*2 depends, except, of course, in *a*1.

1.	$(\exists x)P(x)$	Premise
2.	$(\forall x)(P(x) \rightarrow Q(x))$	Premise
	:	
n.	$(\exists x)Q(x)$	Goal

- 1. v is a variable
- 2. v does not occur in φ
- 3. v does not occur in ψ
- 4. *v* does not occur free in any assumption on which line *p*2 depends, except, of course, in *a*1.

1.	P(a) ightarrow Q(a)) Premise
2.	$(\exists x)P(x)$	Premise
3.	P(a)	Assumption
4.	Q(a)	\rightarrow E:1,3
5.	Q(a)	∃E:2,4, <i>BAD</i> !

1. v is a variable

- 2. v does not occur in φ
- 3. v does not occur in ψ
- 4. *v* does not occur free in any assumption on which line *p*2 depends, except, of course, in *a*1.

1.	P(a) ightarrow Q(a)) Premise
2.	$(\exists x)P(x)$	Premise
	P(a)	Assumption
4.	Q(a)	\rightarrow E:1,3
5.	Q(a)	∃E:2,4, <i>BAD</i> !

- 1. v is a variable
- 2. v does not occur in φ
- 3. v does not occur in ψ
- 4. *v* does not occur free in any assumption on which line *p*2 depends, except, of course, in *a*1.

1.	$(\exists x)(\forall y)R(x,y)$) Premise
2.	$(\forall y)R(y,y)$	Assumption
3.	R(a,a)	$\forall E: 1, 3$
4.	<i>R</i> (<i>a</i> , <i>a</i>)	∃E:1,3, <i>BAD</i> !

- 1. v is a variable
- 2. v does not occur in φ
- 3. v does not occur in ψ
- 4. *v* does not occur free in any assumption on which line *p*2 depends, except, of course, in *a*1.

1.	$(\exists x)(\forall y)R(x,y)$) Premise
	$(\forall y)R(y,y)$	Assumption
3.	R(a, a)	$\forall E: 1, 3$
	<i>R</i> (<i>a</i> , <i>a</i>)	∃E:1,3, <i>BAD</i> !

- 1. v is a variable
- 2. v does not occur in φ
- 3. v does not occur in ψ
- 4. *v* does not occur free in any assumption on which line *p*2 depends, except, of course, in *a*1.

- 1. v is a variable
- 2. v does not occur in φ
- 3. v does not occur in ψ
- 4. *v* does not occur free in any assumption on which line *p*2 depends, except, of course, in *a*1.

Universal Introduction ($\forall I$)

- 1. v is a variable,
- 2. *v* does not occur in $(\forall u)\varphi$
- v does not occur free in any assumption on which line p1 depends.

1.	$(\forall x)A(x)$	Premise
2.	$(\forall x)B(x)$	Premise
	:	
n.	$(\forall x)(A(x) \& B(x))$	Goal

- 1. v is a variable,
- 2. *v* does not occur in $(\forall u)\varphi$
- 3. v does not occur free in any assumption on which line p1 depends.

1.	$(\forall x)P(x,x)$	Premise
2.	P(w,w)	$\forall E:1$
3.	$(\forall x)P(x,w)$	&I:2BAD!

- 1. v is a variable,
- 2. *v* does not occur in $(\forall u)\varphi$
- 3. v does not occur free in any assumption on which line p1 depends.

1.	$(\forall x)P(x,x)$	Premise
2.	P(w,w)	∀E:1
3.	$(\forall x)P(x,w)$	&I:2BAD!
4.	$(\forall y)(\forall x)P(x,y)$	&I:3BAD!

- 1. v is a variable,
- 2. v does not occur in $(\forall u)\varphi$
- 3. v does not occur free in any assumption on which line p1 depends.

1. $(\forall x)P(x,x)$ Premise 2. P(w,w) $\forall E:1$ 3. $(\forall x)P(x,x)$ &l:2

- 1. v is a variable,
- 2. v does not occur in $(\forall u)\varphi$
- 3. v does not occur free in any assumption on which line p1 depends.

1.	$(\forall x)(\forall y)P(x,y)$	Premise
2.	$(\forall y)P(w,y)$	∀E:1
3.	P(w,w)	∀E:2
4.	$(\forall x)P(x,x)$	∀I:3