Introduction to Logic PHIL 170

Eric Pacuit

University of Maryland, College Park pacuit.org
epacuit@umd.edu

November 23, 2015

Announcements

- read Chapter 11 (and Chapter 12).
- Do the practice problems!
- Schedule

1. Mon., 11/23: Ch. 11 (Deductions for Predicate Logic)
2. Wed., 11/25: Ch. 11 (Deductions for Predicate Logic)
3. Mon., 11/30: Ch. 11 (Deductions for Predicate Logic)
4. Wed., 12/2: Ch. 11, course summary
5. Mon., 12/7: Concluding remarks (general perspectives)
6. Wed., 12/9: Concluding remarks (general perspectives)

- Midterm \#3: Quiz (12/1, 11.59pm), Lab - Truth-Trees and Lab Derivations (12/2, 11.59pm)
- Final Exam: Wed., Dec 16, 8:00am - 10:00am, LEF 2205

Final Exam

- Basic concepts: Logical connectives, tautology, contradictory, contingent formula, valid/invalid arguments, truth-value function, interpretations
- Translations into predicate logic
- Determine if a pair of formulas are logically equivalent.
- Determine if an argument is valid or invalid. Find a counterexample if the argument is not valid.
- Using truth-tables (you need to know the truth-table rules)
- Using truth-trees (the decompositions rules will be provided)
- Find deductions in propositional logic/predicate logic (deduction rules will be provided).
- Tautology: A formula of predicate logic is a tautology just in case it is true on every interpretation.
- Contradictory Formula: A formula of predicate logic is a contradictory just in case it is false on every interpretation.
- Contingent Formula: A formula of predicate logic is contingent just in case it is true on some interpretations, and false on others.
- Tautology: A formula of predicate logic is a tautology just in case it is true on every interpretation.
- Contradictory Formula: A formula of predicate logic is a contradictory just in case it is false on every interpretation.
- Contingent Formula: A formula of predicate logic is contingent just in case it is true on some interpretations, and false on others.

An argument of predicate logic is quantificationally valid just in case there is no interpretation that makes all the premises of the argument true and the conclusion false.

An argument of predicate logic is quantificationally valid just in case there is no interpretation that makes all the premises of the argument true and the conclusion false.

Free, Bound Variables and Substitutions

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.

Substitution: $\varphi[u / x]$ is the formula φ in which every free occurrence of x is replaced with u.

Free, Bound Variables and Substitutions

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.

Substitution: $\varphi[u / x]$ is the formula φ in which every free occurrence of x is replaced with u.

Examples:

- $P(x)[u / x]=$

Free, Bound Variables and Substitutions

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.

Substitution: $\varphi[u / x]$ is the formula φ in which every free occurrence of x is replaced with u.

Examples:

- $P(x)[u / x]=P(u)$

Free, Bound Variables and Substitutions

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.

Substitution: $\varphi[u / x]$ is the formula φ in which every free occurrence of x is replaced with u.

Examples:

- $P(x)[u / x]=P(u)$
- $(\forall x) P(x)[u / x]=$

Free, Bound Variables and Substitutions

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.

Substitution: $\varphi[u / x]$ is the formula φ in which every free occurrence of x is replaced with u.

Examples:

- $P(x)[u / x]=P(u)$
- $(\forall x) P(x)[u / x]=(\forall x) P(x)$

Free, Bound Variables and Substitutions

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.

Substitution: $\varphi[u / x]$ is the formula φ in which every free occurrence of x is replaced with u.

Examples:

- $P(x)[u / x]=P(u)$
- $(\forall x) P(x)[u / x]=(\forall x) P(x)$
- $(\forall x) R(x, y)[u / y]=$

Free, Bound Variables and Substitutions

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.

Substitution: $\varphi[u / x]$ is the formula φ in which every free occurrence of x is replaced with u.

Examples:

- $P(x)[u / x]=P(u)$
- $(\forall x) P(x)[u / x]=(\forall x) P(x)$
- $(\forall x) R(x, y)[u / y]=(\forall x) R(x, u)$

Free, Bound Variables and Substitutions

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.

Substitution: $\varphi[u / x]$ is the formula φ in which every free occurrence of x is replaced with u.

Examples:

- $P(x)[u / x]=P(u)$
- $(\forall x) P(x)[u / x]=(\forall x) P(x)$
- $(\forall x) R(x, y)[u / y]=(\forall x) R(x, u)$
- $((\forall x) P(x) \& R(x, y))[u / x]=$

Free, Bound Variables and Substitutions

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.

Substitution: $\varphi[u / x]$ is the formula φ in which every free occurrence of x is replaced with u.

Examples:

- $P(x)[u / x]=P(u)$
- $(\forall x) P(x)[u / x]=(\forall x) P(x)$
- $(\forall x) R(x, y)[u / y]=(\forall x) R(x, u)$
- $((\forall x) P(x) \& R(x, y))[u / x]=((\forall x) P(x) \& R(u, y))$

Free, Bound Variables and Substitutions

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.

Substitution: $\varphi[u / x]$ is the formula φ in which every free occurrence of x is replaced with u.

Examples:

- $P(x)[u / x]=P(u)$
- $(\forall x) P(x)[u / x]=(\forall x) P(x)$
- $(\forall x) R(x, y)[u / y]=(\forall x) R(x, u)$
- $((\forall x) P(x) \& R(x, y))[u / x]=((\forall x) P(x) \& R(u, y))$
- $(\forall x) R(x, y)[x / y]=$

Free, Bound Variables and Substitutions

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.

Substitution: $\varphi[u / x]$ is the formula φ in which every free occurrence of x is replaced with u.

Examples:

- $P(x)[u / x]=P(u)$
- $(\forall x) P(x)[u / x]=(\forall x) P(x)$
- $(\forall x) R(x, y)[u / y]=(\forall x) R(x, u)$
- $((\forall x) P(x) \& R(x, y))[u / x]=((\forall x) P(x) \& R(u, y))$
- $(\forall x) R(x, y)[x / y]=(\forall x) R(x, x)$

Truth-trees for predicate logic

$$
\left./_{\neg \varphi}^{\neg(\varphi \& \psi)}\right\rangle_{\neg \psi}
$$

$$
\begin{gathered}
\neg(\varphi \rightarrow \psi) \\
\varphi \\
\neg \psi
\end{gathered}
$$

$$
(\varphi \leftrightarrow \psi)
$$

$$
/\rangle_{\varphi} \quad \searrow_{\neg \varphi}
$$

$\stackrel{\neg \neg \varphi}{\varphi}$

Decomposition Rules for Quantifiers

$$
\begin{aligned}
& (\exists u) \varphi \\
& \varphi[v / u]
\end{aligned}
$$

$$
\begin{gathered}
(\forall u) \varphi \\
\varphi[t / u]
\end{gathered}
$$

Provided v does not appear on the branch

$$
\begin{aligned}
& \neg(\exists u) \varphi \\
& (\forall u) \neg \varphi
\end{aligned}
$$

$$
\begin{aligned}
& \neg(\forall u) \varphi \\
&(\exists u) \neg \varphi
\end{aligned}
$$

When is a branch completed?

For every decomposition rule, except the universal decomposition rule, when it is applied, check off the formula. Universally quantified formulas are never checked off.
admissible term: any constant or variable that has a free occurrence in a formula on the branch.

A truth-tree is completed once any formula on an open branch is either an atomic formula, the negation of an atomic formula, checked off, or a universally quantified formula that has been instantiated with every admissible term.

Which arguments are quantificationally valid?

3. $\begin{aligned} & (\exists x)(S(x) \& C(x)) \\ & \frac{(\exists x)(S(x) \& D(x))}{\therefore(\exists x)(S(x) \&(D(x) \& C(x)))}\end{aligned}$
$(\forall x)(H(x) \rightarrow M(x))$
2. $\neg H(a)$
$\therefore \neg M(a)$
4. $\begin{gathered}(\forall x)(P(x) \rightarrow Q(x)) \\ \frac{(\forall x)(Q(x) \rightarrow R(x))}{\therefore(\forall x)(P(x) \rightarrow R(x))}\end{gathered}$

Deduction for Predicate Logic

Conjunction Introduction (\&I)

Conjunction Elimination (\&EL, \&ER)

$$
\begin{array}{lll}
\text { p1. } & (\varphi \& \psi) & \\
\vdots & \\
\text { c. } & \varphi & \& E L: p 1
\end{array}
$$

p1. $\quad(\varphi \& \psi)$
c. ψ
\&ER: $p 1$

Conditional Introduction $(\rightarrow \mathrm{I})$

p1. ψ
c. $\quad(\varphi \rightarrow \psi) \quad \rightarrow I: p 1$

Conditional Elimination $(\rightarrow \mathrm{E})$

$$
\begin{array}{lll}
p 1 . & \varphi & \\
\text { p2. } & (\varphi \rightarrow \psi) & \\
& \vdots & \\
\text { c. } & \psi & \rightarrow E: p 1, p 2
\end{array}
$$

Disjunction Introduction (VIL, VIR)

$$
\begin{array}{ll}
p 1 . & \varphi \\
& \vdots \\
\text { c. } & (\psi \vee \varphi) \quad \vee I L: p 1
\end{array}
$$

Disjunction Elimination (VE)

p1.	$(\varphi \vee \psi)$	Premise
a1.	φ	Assumption
	\vdots	
p2.	ρ	Goal
a2.	ψ	Assumption
	\vdots	
p3.	ρ	Goal
c.	ρ	$\vee E: p 1, p 2, p 3$

Negation Introduction/Elimination $(\neg \mathrm{I}, \neg \mathrm{E})$

a1. φ Assumption p1. \perp c. $\neg \varphi$	Goal	
		$\neg \mathrm{l}: p 1$

a1.	$\neg \varphi$	Assumption
\vdots		
p1.	\perp	Goal
c.	φ	$\neg \mathrm{E}: p 1$

Falsum Introduction/Elimination $(\perp \mathrm{I}, \perp \mathrm{E})$

p1.	φ	
p2.	$\neg \varphi$	
	\vdots	
c.	\perp	$\perp 1: p 1, p 2$

$$
\text { p1. } \quad \perp
$$

c. $\quad \varphi \quad \perp \mathrm{E}: p 1$

Biconditional Introduction $(\leftrightarrow \mid)$

$a 1$.	φ	Assumption	p1. φ		
	\vdots				
$p 1$.	ψ	Goal	p2. ψ		
a2.	ψ	Assumption			
		Goal	c.	$(\varphi \leftrightarrow \psi)$	$\leftrightarrow \mathrm{I}: p 1, p 2$
$p 2$.	φ				
c.	$(\varphi \leftrightarrow \psi)$	$\leftrightarrow \mid: p 1, p 2$			

Biconditional Elimination $(\leftrightarrow \mathrm{E})$

p1.	$(\varphi \leftrightarrow \psi)$	p1. $(\varphi \leftrightarrow \psi)$		
p2.	φ	p2.	ψ	
	\vdots		\vdots	
c. ψ	$\leftrightarrow \mathrm{E}: p 1, p 2$	c. φ	$\varphi \mathrm{E}: p 1, p 2$	

Universal Elimination ($\forall \mathrm{E}$)

Universal Elimination $(\forall E)$, Examples

$$
\begin{array}{lll}
\text { 1. } & (\forall x)(\forall y) R(x, y) & \text { Premise } \\
\text { 2. } & (\forall u)(\forall v) Q(v, u) & \text { Premise } \\
& \vdots & \\
\text { n. } & R(a, b) \& Q(t, s) & \text { Goal }
\end{array}
$$

Universal Elimination $(\forall E)$, Examples

$$
\begin{array}{lll}
\text { 1. } & (\forall x)(\forall y) R(x, y) & \text { Premise } \\
\text { 2. } & (\forall u)(\forall v) Q(v, u) & \text { Premise } \\
& \vdots & \\
\text { n. } & R(a, b) \& Q(t, s) & \text { Goal }
\end{array}
$$

1.	$(\forall x)(P(x) \rightarrow Q(x, x))$	Premise
2.	$\neg Q(b, b)$	Premise
	\vdots	
n.	$\neg(\forall x) P(x)$	Goal

Existential Introduction (키)

$$
\begin{array}{lll}
p 1 . & \varphi[\tau / x] \\
& \vdots \\
\text { c. } & (\exists x) \varphi \quad \exists 1: p 1
\end{array}
$$

1. $(\forall x) P(x)$ Premise
 n. $(\exists x) P(x)$ Goal

1.	$(\forall z) R(z, z)$	Premise
2.	$(\forall y) \neg O(y, y)$	Premise
\vdots		
n.	$(\exists x)(\exists y)(R(x, y) \& \neg O(y, x))$	Goal

$p 1$.	$(\exists u) \varphi$	
a1.	$\varphi[v / u]$	Assumption
	\vdots	
p2.	ψ	Goal
c.	ψ	$\exists \mathrm{E}: ~ p 1, p 2$

1. v is a variable,
2. v does not occur in φ
3. v does not occur in ψ
4. v does not occur free in any assumption on which line $p 2$ depends, except, of course, in a1.

5. v is a variable
6. v does not occur in φ
7. v does not occur in ψ
8. v does not occur free in any assumption on which line $p 2$ depends, except, of course, in a1.

1.	$P(a) \rightarrow Q(a)$	Premise
2.	$(\exists x) P(x)$	Premise
3.	$P(a)$	Assumption
4.	$Q(a)$	$\rightarrow \mathrm{E}: 1,3$
5.	$Q(a)$	$\exists \mathrm{E}: 2,4, B A D!$

1. v is a variable
2. v does not occur in φ
3. v does not occur in ψ
4. v does not occur free in any assumption on which line $p 2$ depends, except, of course, in a1.

1.	$P(a) \rightarrow Q(a)$	Premise
2.	$(\exists x) P(x)$	Premise
3.	$P(a)$	Assumption
4.	$Q(a)$	$\rightarrow \mathrm{E}: 1,3$
5.	$Q(a)$	$\exists \mathrm{E}: 2,4, B A D!$

1. v is a variable
2. v does not occur in φ
3. v does not occur in ψ
4. v does not occur free in any assumption on which line $p 2$ depends, except, of course, in a1.

1.	$(\exists x)(\forall y) R(x, y)$	Premise
2.	$(\forall y) R(y, y)$	Assumption
3.	$R(a, a)$	$\forall \mathrm{E}: 1,3$
4.	$R(a, a)$	$\exists \mathrm{E}: 1,3, B A D!$

1. v is a variable
2. v does not occur in φ
3. v does not occur in ψ
4. v does not occur free in any assumption on which line $p 2$ depends, except, of course, in a1.

1.	$(\exists x)(\forall y) R(x, y)$	Premise
2.	$(\forall y) R(y, y)$	Assumption
3.	$R(a, a)$	$\forall \mathrm{E}: 1,3$
4.	$R(a, a)$	$\exists \mathrm{E}: 1,3, B A D!$

1. v is a variable
2. v does not occur in φ
3. v does not occur in ψ
4. v does not occur free in any assumption on which line $p 2$ depends, except, of course, in a1.

1.	$(\exists x) P(x)$	Premise	
2.	$(\exists x) Q(x)$	Premise	
3.	$P(v)$	Assumption	
4.	$Q(v)$	Assumption 5.	$P(v) \& Q(v)$
6.	$(\exists x)(P(x) \& Q(x))$	\&I: 3,4	
7.	$(\exists x)(P(x) \& Q(x))$	$\exists \mathrm{E}: 5$	
8.	$(\exists x)(P(x) \& Q(x))$	$\exists \mathrm{E}: 1,7$	

1. v is a variable
2. v does not occur in φ
3. v does not occur in ψ
4. v does not occur free in any assumption on which line $p 2$ depends, except, of course, in a1.

	$(\exists x) P(x)$	Premise
2.	$(\exists x) Q(x)$	Premise
3.	$P(v)$	Assumption
4.	$Q(v)$	Assumption
5.	$P(v) \& Q(v)$	\&1: 3, 4
6.	$(\exists x)(P(x) \& Q(x))$	ㅋ.1:5
7.	$(\exists x)(P(x) \& Q(x))$	ヨE:2, 6 BAD!
8.	$(\exists x)(P(x) \& Q(x))$	ヨE: 1, 7

Universal Introduction ($\forall \mathrm{I}$)

$$
\begin{array}{lll}
p 1 . & \varphi[v / u] \\
& \vdots \\
\text { c. } & (\forall u) \varphi & \forall I: p 1
\end{array}
$$

1. v is a variable,
2. v does not occur in $(\forall u) \varphi$
3. v does not occur free in any assumption on which line $p 1$ depends.

4. v is a variable,
5. v does not occur in $(\forall u) \varphi$
6. v does not occur free in any assumption on which line $p 1$ depends.
7. $(\forall x) P(x, x)$ Premise
8. $P(w, w) \quad \forall \mathrm{E}: 1$
9. $(\forall x) P(x, w) \& \mid: 2 B A D!$
10. v is a variable,
11. v does not occur in $(\forall u) \varphi$
12. v does not occur free in any assumption on which line $p 1$ depends.

1.	$(\forall x) P(x, x)$	Premise
2.	$P(w, w)$	$\forall \mathrm{E}: 1$
3.	$(\forall x) P(x, w)$	\&।: $2 B A D!$
4.	$(\forall y)(\forall x) P(x, y)$	\&। $: 3 B A D!$

1. v is a variable,
2. v does not occur in $(\forall u) \varphi$
3. v does not occur free in any assumption on which line $p 1$ depends.

$$
\begin{array}{lll}
\text { 1. } & (\forall x) P(x, x) & \text { Premise } \\
\text { 2. } & P(w, w) & \forall \mathrm{E}: 1 \\
\text { 3. } & (\forall x) P(x, x) & \& I: 2
\end{array}
$$

1. v is a variable,
2. v does not occur in $(\forall u) \varphi$
3. v does not occur free in any assumption on which line $p 1$ depends.

1.	$(\forall x)(\forall y) P(x, y)$	Premise
2.	$(\forall y) P(w, y)$	$\forall \mathrm{E}: 1$
3.	$P(w, w)$	$\forall \mathrm{E}: 2$
4.	$(\forall x) P(x, x)$	$\forall \mathrm{I}: 3$

