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Announcements

I read Chapter 10.

I Do the practice problems!

I Solutions for the translations available on the website.

I Lab is due on Wednesday, Nov. 18 at 11.59pm.
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I Tautology: A formula of predicate logic is a tautology just in case
it is true on every interpretation.

I Contradictory Formula: A formula of predicate logic is a
contradictory just in case it is false on every interpretation.

I Contingent Formula: A formula of predicate logic is contingent
just in case it is true on some interpretations, and false on others.
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Are the following formulas a tautology, contradictory or contingent?

1. (∀x)P(x) ∨ ¬(∀x)P(x)

: Tautology

2. (∀x)(P(x) ∨ ¬P(x))

: Tautology

3. (∀x)P(x) ∨ (∀x)¬P(x)

: Contingent

4. (P(a) & ¬(∃x)P(x))

: Contradictory

5. (P(a) & (∀x)¬P(x))

: Contradictory

6. (P(a) & (∃x)¬P(x))

: Contingent

7. (∃x)(P(x) & ¬(∃y)P(y))

: Contradictory

8. ¬(∃x)(R(x , x) & ¬(∃y)R(x , y))

: Tautology
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An argument of predicate logic is quantificationally valid just in case
there is no interpretation that makes all the premises of the argument
true and the conclusion false.
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Which arguments are quantificationally valid?

1.

(∀x)(H(x) → M(x))

H(s)

∴ M(s)

2.

(∀x)(H(x) → M(x))

¬H(a)

∴ ¬M(a)

3.

(∃x)(S(x) & C (x))

(∃x)(S(x) & D(x))

∴ (∃x)(S(x) & (D(x) & C (x)))

4.

(∀x)(P(x) → Q(x))

(∀x)(Q(x) → R(x))

∴ (∀x)(P(x) → R(x))
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Truth-trees for predicate logic
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(ϕ & ψ)
ϕ

ψ

¬(ϕ & ψ)

¬ϕ ¬ψ

(ϕ ∨ ψ)

ϕ ψ

¬(ϕ ∨ ψ)
¬ϕ
¬ψ
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(ϕ→ ψ)

¬ϕ ψ

¬(ϕ→ ψ)
ϕ

¬ψ

(ϕ↔ ψ)

ϕ

ψ

¬ϕ
¬ψ

¬(ϕ↔ ψ)

ϕ

¬ψ
ψ
¬ϕ

¬¬ϕ
ϕ

Eric Pacuit 7



Decomposition Rules for Quantifiers

(∃u)ϕ

ϕ[v/u]

Provided v does not
appear on the branch

(∀u)ϕ t

ϕ[t/u]

Provided v does not
appear on the branch
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Decomposition Rules for Quantifiers, continued

¬(∃u)ϕ

(∀u)¬ϕ

¬(∀u)ϕ t

(∃u)¬ϕ
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When is a branch completed?
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An occurrence of a variable u in a formula is bound just in case that
occurrence is in the scope of a quantifier that has u as its variable of
quantification. An occurrence of a variable is free just in case it is not
bound.

P(x , y)

Free variables: x , y , Bound variables: none
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Universally quantified formulas are never checked off.

admissible term: any constant or variable that has a free occurrence
in a formula on the branch.

A truth-tree is completed once any formula on an open branch is either
an atomic formula, the negation of an atomic formula, checked off, or a
universally quantified formula that has been instantiated with every
admissible term.
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Important Point

If the formula we are considering is in fact valid, then our procedure will
eventually close the tree in a finite number of steps, confirming the
validity.

However, if the formula is not valid, our procedure will
sometimes indicate a counterexample after finitely many steps, but it
could also be the case that our procedure will never terminate, thus
yielding no effective answer at all.

(∀x)(∃y)S(x , y)
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