Translate into Predicate Logic: Answers

1. Every clever student is ambitious.

$$
(\forall x)((C(x) \& S(x)) \rightarrow A(x))
$$

2. Every ambitious student is clever. $(\forall x)((A(x) \& S(x)) \rightarrow C(x))$
3. Every student is both clever and ambitious.

$$
(\forall x)(S(x) \rightarrow(C(x) \& A(x)))
$$

4. Every student is either clever or not ambitious.
$(\forall x)(S(x) \rightarrow(C(x) \vee \neg A(x)))$

Translation key:

$C(x)$	x is clever.
$S(x)$	x is a student.
$A(x)$	x is ambitious.
$P(x)$	x is a person.
$R(x)$	x is a professor.
$F(x)$	x is friendly.
$H(x)$	x is happy.
$E(x)$	x passes the exam.
$I(x)$	x fails the exam.
$T(x)$	x studies.

5. Every student who is ambitious is clever.
$(\forall x)(S(x) \rightarrow(A(x) \rightarrow C(x)))$
6. Every student who is clever is ambitious.
$(\forall x)(S(x) \rightarrow(C(x) \rightarrow A(x)))$
7. Some clever students are ambitious.
$(\exists x)((C(x) \& S(x)) \& A(x))$
8. Some clever students are not ambitious.
$(\exists x)((C(x) \& S(x)) \& \neg A(x))$
9. Not every clever student is ambitious.
$\neg(\forall x)((C(x) \& S(x)) \rightarrow A(x))$
10. Not every ambitious student is clever. $\neg(\forall x)((A(x) \& S(x)) \rightarrow C(x))$
11. Some ambitious students are not clever.
$(\exists x)((A(x) \& S(x)) \& \neg C(x))$
12. No ambitious student is clever.
$\neg(\exists x)((A(x) \& S(x)) \& C(x))$
13. No clever student is ambitious.
$\neg(\exists x)((C(x) \& S(x)) \& A(x))$
14. No student is either clever or ambitious.
$\neg(\exists x)(S(x) \&(C(x) \vee A(x)))$
15. No student is both clever and ambitious. $\neg(\exists x)(S(x) \&(C(x) \& A(x)))$
16. Every ambitious person is a clever student.
$(\forall x)((A(x) \& P(x)) \rightarrow(C(x) \& S(x)))$
17. No ambitious person is a clever student. $\neg(\exists x)((A(x) \& P(x)) \&(C(x) \& S(x)))$
18. Some ambitious persons are not clever students.
$(\exists x)((A(x) \& P(x)) \& \neg(C(x) \& S(x)))$
19. Not every ambitious person is a clever student.
$\neg(\forall x)((A(x) \& P(x)) \rightarrow(C(x) \& S(x)))$
20. Not all clever persons are students.
$\neg(\forall x)((C(x) \& P(x)) \rightarrow S(x))$
21. Unless every professor is friendly, no student is happy.
$\neg(\forall x)(R(x) \rightarrow F(x)) \rightarrow \neg(\exists x)(S(x) \& H(x))$
22. Every student is happy, only if every professor is friendly.
$(\forall x)(S(x) \rightarrow H(x)) \rightarrow(\forall y)(R(y) \rightarrow F(y))$
23. No student is unhappy, unless every professor is unfriendly. $\neg(\forall x)(R(x) \rightarrow \neg F(x)) \rightarrow \neg(\exists x)(S(x) \& \neg H(x))$
24. If everyone passes the exam, then everyone will be happy. $(\forall x) S(x) \rightarrow(\forall x) H(x)$
25. If anyone passes the exam, then everyone will be happy. $(\forall x)(S(x) \rightarrow(\forall y) H(y))$
26. If everyone fails the exam, then no one will be happy.
$(\forall x) I(x) \rightarrow \neg(\exists x) H(x)$
Translation key:

$C(x)$	x is clever.
$S(x)$	x is a student.
$A(x)$	x is ambitious.
$P(x)$	x is a person.
$R(x)$	x is a professor.
$F(x)$	x is friendly.
$H(x)$	x is happy.
$E(x)$	x passes the exam.
$I(x)$	x fails the exam.
$T(x)$	x studies.

27. If anyone fails the exam, then no one will be happy.
$(\forall x)(I(x) \rightarrow \neg(\exists y) H(y))$
28. The only students who pass the exam are the ones who study.
$\neg(\exists x)((S(x) \& E(x)) \& \neg T(x))$
