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Announcements

I read Chapter 10.

I Do the practice problems!

I Quiz is due Friday Nov. 13 at 11.59pm.

I Lab is due on Monday, Nov. 16 at 11.59pm.

I In-class quiz in Sections. Translations (see the examples on ELMS)
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Quantifiers

Variables: lower case letters (u through z , possibly with subscripts) are
going to be used as individual variables.

Quantifier symbols: ∀ indicates we are talking about all or every
individual under consideration; ∃ indicates some or at least one of the
individuals under consideration.

Quantifier: Combine quantifier symbol with an individual constant (and
parentheses to make it easier to read). E.g., (∀x), (∀y), (∃x), (∃y).

I (∀x)(P(x) → Q(x))

I (∀x)(P(y) → Q(y))

I (∀x)P(x) ∨ ¬(∀x)P(x)

I (∀x)(∀y)R(x , y)

I (∀x)(∃y)R(x , y)
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Domain of discourse: {John,Mary,Bob}

Expression Interpretation

j John

m Mary

b Bob

L(x , y) x likes y

Mary likes John. L(m, j)

Bob likes himself. L(b, b)

Mary and John like each other: L(m, j) & L(j ,m)

Everyone likes Mary. L(j ,m) & (L(m,m) & L(b,m))

Someone likes Mary. L(j ,m) ∨ (L(m,m) ∨ L(b,m))

Everyone likes someone.
(L(j , j) ∨ L(j ,m) ∨ L(j , b)) & (L(m, j) ∨ L(m,m) ∨ L(m, b)) &
(L(b, j) ∨ L(b,m) ∨ L(b, b))
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every A is B (∀x)(A(x) → B(x))

some A is B (∃x)(A(x) & B(x))

no A is B ¬(∃x)(A(x) & B(x))

some A is not B (∃x)(A(x) & ¬B(x))

every A is a non-B (∀x)(A(x) → ¬B(x))

not every A is B ¬(∀x)(A(x) → B(x))
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All logicians are mathematicians.

(∀x)(L(x) → M(x))

Some logicians are mathematicians.

(∃x)(L(x) & M(x))

No logician is a mathematician.

¬(∃x)(L(x) & M(x))

Some logicians are not mathematicians.

(∃x)(L(x) & ¬M(x))

Every logician is not a mathematician.

(∀x)(L(x) → ¬M(x))

Not every logician is a mathematician.

¬(∀x)(L(x) → M(x))

L(x) x is a logician

M(x) x is a mathematician
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Domain of discourse: {a,b}
I (a) = a

I (b) = b

I (P) = {〈a〉, 〈b〉}
I (Q) = {〈a,b〉, 〈b,b〉, 〈b, a〉}

(∀x)(P(x) & (∀y)Q(x , y))

(P(x) & (∀y)Q(x , y))

P(x) (∀y)Q(x , y)

Q(x , y)
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I (P) = {〈a〉, 〈b〉}
I (Q) = {〈a,b〉, 〈b,b〉, 〈b, a〉}

(∀x)(P(x) & (∀y)Q(x , y)): F

(P(a) & (∀y)Q(a, y)): F

P(a): T (∀y)Q(a, y): F

Q(a, a): F Q(a, b): T

(P(b) & (∀y)Q(b, y)): T

P(b): T (∀y)Q(b, y): T

Q(b, a): T Q(b, b): T

a/x

a/y b/y

b/x

a/y b/y
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Interpretations

An interpretation I for a domain of discourse assigns:

I an element of the domain of discourse to each individual constant;

I a truth value (i.e., T or F) to each 0-place predicate;

I a set of n-place tuples to each n-place predicate (for n > 0); and

I an element of the domain of discourse to each individual variable
(called an assignment of values to variables)

If I is an interpretation, then I [a/u] is the interpretation that is just like I
except the variable u is assigned the element a.
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Truth/Falsity

I If ϕ is of the form ψ(τ1, . . . , τn) where ψ is an n-place predicate
letter (with n > 0), and τ1, . . . , τn are n terms, then ϕ is true on I
just in case 〈I (τ1), . . . , I (τn)〉 is in I (ψ), and false otherwise.

I If ϕ is of the form (∀u)ψ, then ϕ is true on I just in case, for each
member a of the domain of discourse, ψ is true on I [a/u], and false
otherwise.

I If ϕ is of the form (∃u)ψ, then ϕ is true on I just in case, there is
at least one member a of the domain of discourse such that ψ is
true on I [a/u], and false otherwise.

Read the example on pg. 144.
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I Tautology: A formula of predicate logic is a tautology just in case
it is true on every interpretation.

I Contradictory Formula: A formula of predicate logic is a
contradictory just in case it is false on every interpretation.

I Contingent Formula: A formula of predicate logic is contingent
just in case it is true on some interpretations, and false on others.
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Are the following formulas a tautology, contradictory or contingent?

1. (∀x)P(x) ∨ ¬(∀x)P(x)

2. (∀x)(P(x) ∨ ¬P(x))

3. (∀x)P(x) ∨ (∀x)¬P(x)
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Tautologies

(∀x)P(x) ∨ ¬(∀x)P(x)

(∀x) P(x)

P(x)

¬ (∀x)P(x)

(∀x) P(x)

P(x)

(∀x) (P(x) ∨ ¬P(x))

P(x) ∨ ¬P(x)

P(x) ¬ P(x)

P(x)
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Contingent Formula

(∀x)P(x) ∨ (∀x)¬P(x)

(∀x) P(x)

P(x)

(∀x) ¬P(x)

¬ P(x)

P(x)
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An argument of predicate logic is quantificationally valid just in case
there is no interpretation that makes all the premises of the argument
true and the conclusion false.
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Which arguments are quantificationally valid?

1.

(∀x)(H(x) → M(x))

H(s)

∴ M(s)

2.

(∀x)(H(x) → M(x))

¬H(a)

∴ ¬M(a)

3.

(∃x)(S(x) & C (x))

(∃x)(S(x) & D(x))

∴ (∃x)(S(x) & (D(x) & C (x)))

4.

(∀x)(P(x) → Q(x))

(∀x)(Q(x) → R(x))

∴ (∀x)(P(x) → R(x))
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Truth-trees for predicate logic

Eric Pacuit 15



(ϕ & ψ)
ϕ

ψ

¬(ϕ & ψ)

¬ϕ ¬ψ

(ϕ ∨ ψ)

ϕ ψ

¬(ϕ ∨ ψ)
¬ϕ
¬ψ
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(ϕ→ ψ)

¬ϕ ψ

¬(ϕ→ ψ)
ϕ

¬ψ

(ϕ↔ ψ)

ϕ

ψ

¬ϕ
¬ψ

¬(ϕ↔ ψ)

ϕ

¬ψ
ψ
¬ϕ

¬¬ϕ
ϕ

Eric Pacuit 16



Decomposition Rules for Quantifiers

(∃u)ϕ

ϕ[v/u]

Provided v does not
appear on the branch

(∀u)ϕ t

ϕ[t/u]

Provided v does not
appear on the branch
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Decomposition Rules for Quantifiers, continued

¬(∃u)ϕ

(∀u)¬ϕ

¬(∀u)ϕ t

(∃u)¬ϕ
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When is a branch completed?
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An occurrence of a variable u in a formula is bound just in case that
occurrence is in the scope of a quantifier that has u as its variable of
quantification. An occurrence of a variable is free just in case it is not
bound.

P(x , y)

Free variables: x , y , Bound variables: none
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An occurrence of a variable u in a formula is bound just in case that
occurrence is in the scope of a quantifier that has u as its variable of
quantification. An occurrence of a variable is free just in case it is not
bound.

(∀x)(R(x) → (∃y)P(x , y))

Free variables: none, Bound variables: x , y
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An occurrence of a variable u in a formula is bound just in case that
occurrence is in the scope of a quantifier that has u as its variable of
quantification. An occurrence of a variable is free just in case it is not
bound.

(∀x) ( R( x ) → (∃y) P( x , y ) )

Free variables: none, Bound variables: x , y
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An occurrence of a variable u in a formula is bound just in case that
occurrence is in the scope of a quantifier that has u as its variable of
quantification. An occurrence of a variable is free just in case it is not
bound.

(∀x)Q(z)

Free variables: z , Bound variables: none
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An occurrence of a variable u in a formula is bound just in case that
occurrence is in the scope of a quantifier that has u as its variable of
quantification. An occurrence of a variable is free just in case it is not
bound.

(∀x)P(x) & Q(x)

Free variables: first x , Bound variables: second x
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An occurrence of a variable u in a formula is bound just in case that
occurrence is in the scope of a quantifier that has u as its variable of
quantification. An occurrence of a variable is free just in case it is not
bound.

(∀x) P( x ) & Q( x )

Free variables: first x , Bound variables: second x
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Universally quantified formulas are never checked off.

admissible term: any constant or variable that has a free occurrence
in a formula on the branch.

A truth-tree is completed once any formula on an open branch is either
an atomic formula, the negation of an atomic formula, checked off, or a
universally quantified formula that has been instantiated with every
admissible term.
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Which arguments are quantificationally valid?

1.

(∀x)(H(x) → M(x))

H(s)

∴ M(s)

2.

(∀x)(H(x) → M(x))

¬H(a)

∴ ¬M(a)

3.

(∃x)(S(x) & C (x))

(∃x)(S(x) & D(x))

∴ (∃x)(S(x) & (D(x) & C (x)))

4.

(∀x)(P(x) → Q(x))

(∀x)(Q(x) → R(x))

∴ (∀x)(P(x) → R(x))
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Important Point

If the formula we are considering is in fact valid, then our procedure will
eventually close the tree in a finite number of steps, confirming the
validity.

However, if the formula is not valid, our procedure will
sometimes indicate a counterexample after finitely many steps, but it
could also be the case that our procedure will never terminate, thus
yielding no effective answer at all.

(∀x)(∃y)S(x , y)
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