Introduction to Logic PHIL 170

Eric Pacuit

University of Maryland, College Park pacuit.org
epacuit@umd.edu

November 11, 2015

Announcements

- read Chapter 10.
- Do the practice problems!
- Quiz is due Friday Nov. 13 at 11.59pm.
- Lab is due on Monday, Nov. 16 at 11.59pm.
- In-class quiz in Sections. Translations (see the examples on ELMS)

Quantifiers

Variables: lower case letters (u through z, possibly with subscripts) are going to be used as individual variables.

Quantifiers

Variables: lower case letters (u through z, possibly with subscripts) are going to be used as individual variables.

Quantifier symbols: \forall indicates we are talking about all or every individual under consideration; \exists indicates some or at least one of the individuals under consideration.

Quantifiers

Variables: lower case letters (u through z, possibly with subscripts) are going to be used as individual variables.

Quantifier symbols: \forall indicates we are talking about all or every individual under consideration; \exists indicates some or at least one of the individuals under consideration.

Quantifier: Combine quantifier symbol with an individual constant (and parentheses to make it easier to read). E.g., $(\forall x),(\forall y),(\exists x),(\exists y)$.

Quantifiers

Variables: lower case letters (u through z, possibly with subscripts) are going to be used as individual variables.
Quantifier symbols: \forall indicates we are talking about all or every individual under consideration; \exists indicates some or at least one of the individuals under consideration.

Quantifier: Combine quantifier symbol with an individual constant (and parentheses to make it easier to read). E.g., $(\forall x),(\forall y),(\exists x),(\exists y)$.

- $(\forall x)(P(x) \rightarrow Q(x))$
- $(\forall x)(P(y) \rightarrow Q(y))$
- $(\forall x) P(x) \vee \neg(\forall x) P(x)$
- $(\forall x)(\forall y) R(x, y)$
- $(\forall x)(\exists y) R(x, y)$

Domain of discourse: \{John, Mary, Bob\}

Expression	Interpretation
j	John
m	Mary
b	Bob
$L(x, y)$	x likes y

Mary likes John. $\quad L(m, j)$
Bob likes himself. $L(b, b)$
Mary and John like each other: $\quad L(m, j) \& L(j, m)$
Everyone likes Mary. $L(j, m) \&(L(m, m) \& L(b, m))$
Someone likes Mary. $\quad L(j, m) \vee(L(m, m) \vee L(b, m))$
Everyone likes someone.
$(L(j, j) \vee L(j, m) \vee L(j, b)) \&(L(m, j) \vee L(m, m) \vee L(m, b)) \&$ $(L(b, j) \vee L(b, m) \vee L(b, b))$

Domain of discourse: \{John, Mary, Bob\}

Expression	Interpretation
j	John
m	Mary
b	Bob
$L(x, y)$	x likes y

Mary likes John. $\quad L(m, j)$
Bob likes himself. $L(b, b)$
Mary and John like each other: $\quad L(m, j) \& L(j, m)$
Everyone likes Mary. $L(j, m) \&(L(m, m) \& L(b, m)) \quad(\forall x) L(x, m)$
Someone likes Mary. $\quad L(j, m) \vee(L(m, m) \vee L(b, m))$
Everyone likes someone.
$(L(j, j) \vee L(j, m) \vee L(j, b)) \&(L(m, j) \vee L(m, m) \vee L(m, b)) \&$ $(L(b, j) \vee L(b, m) \vee L(b, b))$

Domain of discourse: \{John, Mary, Bob\}

Expression	Interpretation
j	John
m	Mary
b	Bob
$L(x, y)$	x likes y

Mary likes John. $\quad L(m, j)$
Bob likes himself. $L(b, b)$
Mary and John like each other: $\quad L(m, j) \& L(j, m)$
Everyone likes Mary. $L(j, m) \&(L(m, m) \& L(b, m)) \quad(\forall x) L(x, m)$
Someone likes Mary. $\quad L(j, m) \vee(L(m, m) \vee L(b, m)) \quad(\exists x) L(x, m)$
Everyone likes someone.
$(L(j, j) \vee L(j, m) \vee L(j, b)) \&(L(m, j) \vee L(m, m) \vee L(m, b)) \&$ $(L(b, j) \vee L(b, m) \vee L(b, b))$

Domain of discourse: \{John, Mary, Bob\}

Expression	Interpretation
j	John
m	Mary
b	Bob
$L(x, y)$	x likes y

Mary likes John. $\quad L(m, j)$
Bob likes himself. $L(b, b)$
Mary and John like each other: $\quad L(m, j) \& L(j, m)$
Everyone likes Mary. $L(j, m) \&(L(m, m) \& L(b, m)) \quad(\forall x) L(x, m)$
Someone likes Mary. $\quad L(j, m) \vee(L(m, m) \vee L(b, m)) \quad(\exists x) L(x, m)$
Everyone likes someone.
$(L(j, j) \vee L(j, m) \vee L(j, b)) \&(L(m, j) \vee L(m, m) \vee L(m, b)) \&$ $(L(b, j) \vee L(b, m) \vee L(b, b)) \quad(\forall x)(\exists y) L(x, y)$

every \mathbf{A} is B	$(\forall x)(A(x) \rightarrow B(x))$
some \mathbf{A} is B	$(\exists x)(A(x) \& B(x))$
no \mathbf{A} is B	$\neg(\exists x)(A(x) \& B(x))$
some \mathbf{A} is not B	$(\exists x)(A(x) \& \neg B(x))$
every \mathbf{A} is a non-B	$(\forall x)(A(x) \rightarrow \neg B(x))$
not every \mathbf{A} is B	$\neg(\forall x)(A(x) \rightarrow B(x))$

All logicians are mathematicians.

Some logicians are mathematicians.

$L(x)$	x is a logician
$M(x)$	x is a mathematician

No logician is a mathematician.

Some logicians are not mathematicians.

Every logician is not a mathematician.

Not every logician is a mathematician.

All logicians are mathematicians.
$(\forall x)(L(x) \rightarrow M(x))$

Some logicians are mathematicians.
$(\exists x)(L(x) \& M(x))$

$L(x)$	x is a logician
$M(x)$	x is a mathematician

No logician is a mathematician.

Some logicians are not mathematicians.

Every logician is not a mathematician.

Not every logician is a mathematician.

All logicians are mathematicians.
$(\forall x)(L(x) \rightarrow M(x))$
Some logicians are mathematicians.

$$
(\exists x)(L(x) \& M(x))
$$

$L(x)$	x is a logician
$M(x)$	x is a mathematician

No logician is a mathematician.
$\neg(\exists x)(L(x) \& M(x))$
Some logicians are not mathematicians.

Every logician is not a mathematician.

Not every logician is a mathematician.

All logicians are mathematicians.
$(\forall x)(L(x) \rightarrow M(x))$
Some logicians are mathematicians.

$$
(\exists x)(L(x) \& M(x))
$$

$L(x)$	x is a logician
$M(x)$	x is a mathematician

No logician is a mathematician.
$\neg(\exists x)(L(x) \& M(x))$
Some logicians are not mathematicians.
$(\exists x)(L(x) \& \neg M(x))$
Every logician is not a mathematician.

Not every logician is a mathematician.

All logicians are mathematicians.
$(\forall x)(L(x) \rightarrow M(x))$
Some logicians are mathematicians.

$$
(\exists x)(L(x) \& M(x))
$$

$L(x)$	x is a logician
$M(x)$	x is a mathematician

No logician is a mathematician.
$\neg(\exists x)(L(x) \& M(x))$
Some logicians are not mathematicians.
$(\exists x)(L(x) \& \neg M(x))$
Every logician is not a mathematician.
$(\forall x)(L(x) \rightarrow \neg M(x))$

Not every logician is a mathematician.

All logicians are mathematicians.
$(\forall x)(L(x) \rightarrow M(x))$

Some logicians are mathematicians.

$$
(\exists x)(L(x) \& M(x))
$$

$L(x)$	x is a logician
$M(x)$	x is a mathematician

No logician is a mathematician.
$\neg(\exists x)(L(x) \& M(x))$
Some logicians are not mathematicians.
$(\exists x)(L(x) \& \neg M(x))$
Every logician is not a mathematician.
$(\forall x)(L(x) \rightarrow \neg M(x))$

Not every logician is a mathematician.
$\neg(\forall x)(L(x) \rightarrow M(x))$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$

$$
\begin{aligned}
& I(a)=\mathbf{a} \\
& I(b)=\mathbf{b} \\
& I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\} \\
& I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}
\end{aligned}
$$

$$
(\forall x)(P(x) \&(\forall y) Q(x, y))
$$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$

$$
\begin{aligned}
& I(a)=\mathbf{a} \\
& I(b)=\mathbf{b} \\
& I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\} \\
& I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}
\end{aligned}
$$

$$
(\forall x)(P(x) \&(\forall y) Q(x, y))
$$

$$
1
$$

$$
(P(x) \&(\forall y) Q(x, y))
$$

$Q(x, y)$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$

$$
\begin{aligned}
& I(a)=\mathbf{a} \\
& I(b)=\mathbf{b} \\
& I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\} \\
& I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}
\end{aligned}
$$

$$
\underset{a / x}{(\forall x)(P(x)} \&(\forall y) Q(x, y))
$$

$$
(P(a) \&(\forall y) Q(a, y))
$$

$P(a)$

$(\forall y) Q(a, y)$
$\begin{array}{cl}a / y^{\prime} & \text { '̀ } / y \\ Q(a, a)^{\prime} & Q(a, b)\end{array}$
$(P(b) \&(\forall y) Q(b, y))$
$P(b)$

$Q(b, a)^{\prime a / y^{\prime}} \quad \begin{array}{ll}b / y \\ \text { ' } & Q(b, b)\end{array}$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$

$$
\begin{aligned}
& I(a)=\mathbf{a} \\
& I(b)=\mathbf{b} \\
& I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\} \\
& I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}
\end{aligned}
$$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$

$$
\begin{aligned}
& I(a)=\mathbf{a} \\
& I(b)=\mathbf{b} \\
& I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\} \\
& I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}
\end{aligned}
$$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$
$I(a)=\mathbf{a}$
$I(b)=\mathbf{b}$
$I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\}$
$I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$

$$
\begin{aligned}
& I(a)=\mathbf{a} \\
& I(b)=\mathbf{b} \\
& I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\} \\
& I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}
\end{aligned}
$$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$
$I(a)=\mathbf{a}$
$I(b)=\mathbf{b}$
$I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\}$
$I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$

$$
\begin{aligned}
& I(a)=\mathbf{a} \\
& I(b)=\mathbf{b} \\
& I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\} \\
& I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}
\end{aligned}
$$

$$
(\forall x)(P(x) \&(\forall y) Q(x, y))
$$

$(P(a) \&(\forall y) Q(a, y))$

$P(a): T$

$(P(b) \&(\forall y) Q(b, y))$

$Q(b, a): \top$
$Q(b, b): T$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$

$$
\begin{aligned}
& I(a)=\mathbf{a} \\
& I(b)=\mathbf{b} \\
& I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\} \\
& I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}
\end{aligned}
$$

$$
Q(a, a): F \quad Q(a, b): T \quad Q(b, a): T \quad Q(b, b): T
$$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$

$$
\begin{aligned}
& I(a)=\mathbf{a} \\
& I(b)=\mathbf{b} \\
& I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\} \\
& I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}
\end{aligned}
$$

$$
(\forall x)(P(x) \&(\forall y) Q(x, y))
$$

_

$$
(P(a) \&(\forall y) Q(a, y)): F
$$

$P(a): T$

$(P(b) \&(\forall y) Q(b, y)): T$

$Q(b, a): T$
$Q(b, b): \top$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$

$$
\begin{aligned}
& I(a)=\mathbf{a} \\
& I(b)=\mathbf{b} \\
& I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\} \\
& I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}
\end{aligned}
$$

$$
(\forall x)(P(x) \&(\forall y) Q(x, y)): F
$$

$(P(a) \&(\forall y) Q(a, y)): F$

$(P(b) \&(\forall y) Q(b, y)): T$

$Q(b, a): T \quad Q(b, b): \top$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$

$$
\begin{aligned}
& I(a)=\mathbf{a} \\
& I(b)=\mathbf{b} \\
& I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\} \\
& I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}
\end{aligned}
$$

$$
(\exists x)(P(x) \&(\forall y) Q(x, y))
$$

$$
(P(a) \&(\forall y) Q(a, y)): \mathrm{F}
$$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$

$$
\begin{aligned}
& I(a)=\mathbf{a} \\
& I(b)=\mathbf{b} \\
& I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\} \\
& I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}
\end{aligned}
$$

$$
(\exists x)(P(x) \&(\forall y) Q(x, y)): T
$$

$(P(a) \&(\forall y) Q(a, y)): F$

$(P(b) \&(\forall y) Q(b, y)): T$

$Q(b, a): T \quad Q(b, b): \top$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$

$$
\begin{aligned}
& I(a)=\mathbf{a} \\
& I(b)=\mathbf{b} \\
& I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\} \\
& I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}
\end{aligned}
$$

$$
(\forall x)(P(x) \&(\exists y) Q(x, y))
$$

$(P(a) \&(\exists y) Q(a, y))$

$(P(b) \&(\exists y) Q(b, y))$

$Q(b, a): \top$
$Q(b, b): \top$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$

$$
\begin{aligned}
& I(a)=\mathbf{a} \\
& I(b)=\mathbf{b} \\
& I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\} \\
& I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}
\end{aligned}
$$

$$
(\forall x)(P(x) \&(\exists y) Q(x, y))
$$

$(P(a) \&(\exists y) Q(a, y))$

$P(a): T$

$(P(b) \&(\exists y) Q(b, y))$

$(\exists y) Q(b, y): \top$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$

$$
\begin{aligned}
& I(a)=\mathbf{a} \\
& I(b)=\mathbf{b} \\
& I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\} \\
& I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}
\end{aligned}
$$

$$
(\forall x)(P(x) \&(\exists y) Q(x, y))
$$

$(P(a) \&(\exists y) Q(a, y)): T$

$(P(b) \&(\exists y) Q(b, y)): T$

$Q(a, a): \mathrm{F} \quad Q(a, b): \mathrm{T}$
$Q(b, a): \top$
$Q(b, b): \top$

Domain of discourse: $\{\mathbf{a}, \mathbf{b}\}$

$$
\begin{aligned}
& I(a)=\mathbf{a} \\
& I(b)=\mathbf{b} \\
& I(P)=\{\langle\mathbf{a}\rangle,\langle\mathbf{b}\rangle\} \\
& I(Q)=\{\langle\mathbf{a}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{b}\rangle,\langle\mathbf{b}, \mathbf{a}\rangle\}
\end{aligned}
$$

$$
(\forall x)(P(x) \&(\exists y) Q(x, y)): T
$$

$$
(P(a) \&(\exists y) Q(a, y)): \top
$$

$(P(b) \&(\exists y) Q(b, y)): T$

$Q(a, a): \mathrm{F} \quad Q(a, b): \top$
$Q(b, a): T \quad Q(b, b): \top$

Interpretations

An interpretation / for a domain of discourse assigns:

- an element of the domain of discourse to each individual constant;
- a truth value (i.e., T or F) to each 0 -place predicate;
- a set of n-place tuples to each n-place predicate (for $n>0$); and
- an element of the domain of discourse to each individual variable (called an assignment of values to variables)

Interpretations

An interpretation / for a domain of discourse assigns:

- an element of the domain of discourse to each individual constant;
- a truth value (i.e., T or F) to each 0-place predicate;
- a set of n-place tuples to each n-place predicate (for $n>0$); and
- an element of the domain of discourse to each individual variable (called an assignment of values to variables)

If I is an interpretation, then $I[a / u]$ is the interpretation that is just like I except the variable u is assigned the element a.

Truth/Falsity

- If φ is of the form $\psi\left(\tau_{1}, \ldots, \tau_{n}\right)$ where ψ is an n-place predicate letter (with $n>0$), and $\tau_{1}, \ldots, \tau_{n}$ are n terms, then φ is true on I just in case $\left\langle I\left(\tau_{1}\right), \ldots, I\left(\tau_{n}\right)\right\rangle$ is in $I(\psi)$, and false otherwise.
- If φ is of the form $(\forall u) \psi$, then φ is true on I just in case, for each member a of the domain of discourse, ψ is true on $I[a / u]$, and false otherwise.
- If φ is of the form $(\exists u) \psi$, then φ is true on $/$ just in case, there is at least one member a of the domain of discourse such that ψ is true on $I[a / u]$, and false otherwise.

Read the example on pg. 144.

- Tautology: A formula of predicate logic is a tautology just in case it is true on every interpretation.
- Contradictory Formula: A formula of predicate logic is a contradictory just in case it is false on every interpretation.
- Contingent Formula: A formula of predicate logic is contingent just in case it is true on some interpretations, and false on others.

Are the following formulas a tautology, contradictory or contingent?

1. $(\forall x) P(x) \vee \neg(\forall x) P(x)$
2. $(\forall x)(P(x) \vee \neg P(x))$
3. $(\forall x) P(x) \vee(\forall x) \neg P(x)$

Tautologies

$\left.\right|_{P(x)}$

Contingent Formula

An argument of predicate logic is quantificationally valid just in case there is no interpretation that makes all the premises of the argument true and the conclusion false.

Which arguments are quantificationally valid?

3. $\begin{aligned} & (\exists x)(S(x) \& C(x)) \\ & \frac{(\exists x)(S(x) \& D(x))}{\therefore(\exists x)(S(x) \&(D(x) \& C(x)))}\end{aligned}$
$(\forall x)(H(x) \rightarrow M(x))$
2. $\neg H(a)$
$\therefore \neg M(a)$
4. $\begin{gathered}(\forall x)(P(x) \rightarrow Q(x)) \\ \frac{(\forall x)(Q(x) \rightarrow R(x))}{\therefore(\forall x)(P(x) \rightarrow R(x))}\end{gathered}$

Truth-trees for predicate logic

$$
\left./_{\neg \varphi}^{\neg(\varphi \& \psi)}\right\rangle_{\neg \psi}
$$

$$
\begin{gathered}
\neg(\varphi \rightarrow \psi) \\
\varphi \\
\neg \psi
\end{gathered}
$$

$$
(\varphi \leftrightarrow \psi)
$$

$$
\left./\rangle_{\varphi} \quad\right\rangle_{\psi \varphi}
$$

$\stackrel{\neg \neg \varphi}{\varphi}$

Decomposition Rules for Quantifiers

$$
(\exists u) \varphi
$$

$(\forall u) \varphi$

Decomposition Rules for Quantifiers

$$
\begin{array}{ll}
(\exists u) \varphi & (\forall u) \varphi \\
\varphi[v / u] &
\end{array}
$$

Provided v does not appear on the branch

Decomposition Rules for Quantifiers

$$
\begin{array}{ll}
(\exists u) \varphi & (\forall u) \varphi \\
\varphi[v / u] &
\end{array}
$$

Provided v does not
appear on the branch

Decomposition Rules for Quantifiers

$$
\begin{array}{lc}
(\exists u) \varphi & (\forall u) \varphi \quad t \\
\varphi[v / u] & \varphi[t / u]
\end{array}
$$

Provided v does not appear on the branch

Decomposition Rules for Quantifiers, continued

$$
\begin{array}{ll}
\neg(\exists u) \varphi & \neg(\forall u) \varphi \\
(\forall u) \neg \varphi & (\exists u) \neg \varphi
\end{array}
$$

When is a branch completed?

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.

$$
P(x, y)
$$

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.
$P(x, y)$
Free variables: x, y, Bound variables: none

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.

$$
(\forall x) P(x, y)
$$

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.

$(\forall x) P(x, y)$

Free variables: y, Bound variables: x

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.

$$
(\forall x)(R(x) \rightarrow(\exists y) P(x, y))
$$

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.
$(\forall x)(R(\bar{x}) \rightarrow(\exists y) P(\bar{x}, y))$
Free variables: none, Bound variables: x, y

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.

$$
(\forall x) Q(z)
$$

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.
$(\forall x) Q(z)$
Free variables: z, Bound variables: none

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.

$$
(\forall x) P(x) \& Q(x)
$$

An occurrence of a variable u in a formula is bound just in case that occurrence is in the scope of a quantifier that has u as its variable of quantification. An occurrence of a variable is free just in case it is not bound.
$(\forall x) P(\underline{x}) \& Q(\underline{x})$
Free variables: first x, Bound variables: second x

Universally quantified formulas are never checked off.
admissible term: any constant or variable that has a free occurrence in a formula on the branch.

Universally quantified formulas are never checked off.
admissible term: any constant or variable that has a free occurrence in a formula on the branch.

A truth-tree is completed once any formula on an open branch is either an atomic formula, the negation of an atomic formula, checked off, or a universally quantified formula that has been instantiated with every admissible term.

Which arguments are quantificationally valid?

3. $\begin{aligned} & (\exists x)(S(x) \& C(x)) \\ & \frac{(\exists x)(S(x) \& D(x))}{\therefore(\exists x)(S(x) \&(D(x) \& C(x)))}\end{aligned}$
$(\forall x)(H(x) \rightarrow M(x))$
2. $\neg H(a)$
$\therefore \neg M(a)$
4. $\begin{gathered}(\forall x)(P(x) \rightarrow Q(x)) \\ \frac{(\forall x)(Q(x) \rightarrow R(x))}{\therefore(\forall x)(P(x) \rightarrow R(x))}\end{gathered}$

Important Point

If the formula we are considering is in fact valid, then our procedure will eventually close the tree in a finite number of steps, confirming the validity.

Important Point

If the formula we are considering is in fact valid, then our procedure will eventually close the tree in a finite number of steps, confirming the validity. However, if the formula is not valid, our procedure will sometimes indicate a counterexample after finitely many steps, but it could also be the case that our procedure will never terminate, thus yielding no effective answer at all.

Important Point

If the formula we are considering is in fact valid, then our procedure will eventually close the tree in a finite number of steps, confirming the validity. However, if the formula is not valid, our procedure will sometimes indicate a counterexample after finitely many steps, but it could also be the case that our procedure will never terminate, thus yielding no effective answer at all.
$(\forall x)(\exists y) S(x, y)$

