Introduction to Logic PHIL 170

Eric Pacuit

University of Maryland, College Park pacuit.org
epacuit@umd.edu

November 9, 2015

Announcements

- read Chapter 10.
- Do the practice problems!
- Quiz is due Friday Nov. 13 at 11.59pm.
- Lab is due on Sunday, Nov. 15 at 11.59pm.
- Start the lab early. Do the practice quiz.

Recall: Predicates and Terms

Basic Expressions: Predicates and Terms
Predicates: For each non-negative integer n, we have an infinite stock of n-place predicate letters, represented by upper case letters (possibly with subscripts).

Individual Constants: We have an infinite stock of individual constants, represented by lower case letters ranging from a to t (possibly with subscripts).

Recall: Predicates and Terms

Syntax of Predicates and Terms

- Every 0-place predicate letter is a formula.
- If $n>0, \varphi$ is an n-place predicate letter, and $\tau_{1}, \ldots, \tau_{n}$ are n individual constants, then $\varphi\left(\tau_{1}, \ldots, \tau_{n}\right)$ is a formula.

Formulas of Predicate Logic

1. Every 0 -place predicate letter is a formula.
2. If $n>0, \varphi$ is an n-place predicate letter, and $\tau_{1}, \ldots, \tau_{n}$ are n individual constants, then $\varphi\left(\tau_{1}, \ldots, \tau_{n}\right)$ is a formula.
3. If φ is a formula of predicate logic, then so is $\neg \varphi$.
4. If φ and ψ are formulae of predicate logic, then so are each of the following:
a. $(\varphi \& \psi)$
b. $(\varphi \vee \psi)$
c. $(\varphi \rightarrow \psi)$
d. $(\varphi \leftrightarrow \psi)$
5. An expression of predicate logic is a formula only if it can be constructed by one or more applications of the four three rules.

Interpretations

An interpretation includes each of the following:

- A domain of discourse.
- An assignment to each individual constant of an individual from the domain of discourse.
- An assignment of truth-values to 0-place predicate letters.
- For $n>0$, an assignment of a set of ordered n-tuples of members of the domain of discourse to each n-place predicate letter.

Definition of Truth

Suppose that I is an interpretation.

- If φ is a 0 -place predicate letter, then φ is true on I just in case $I(\varphi)=\mathrm{T}$.
- If φ is of the form $\psi\left(\tau_{1}, \ldots, \tau_{n}\right)$ where ψ is an n-place predicate letter (with $n>0$), and $\tau_{1}, \ldots, \tau_{n}$ are n terms, then φ is true on I just in case $\left\langle I\left(\tau_{1}\right), \ldots, I\left(\tau_{n}\right)\right\rangle \in I(\psi)$.

Domain of discourse: \{John, Mary, Bob\}

Expression	Interpretation
j	John
m	Mary
b	Bob
$L(x, y)$	x likes y

Mary likes John.

Domain of discourse: \{John, Mary, Bob\}

Expression	Interpretation
j	John
m	Mary
b	Bob
$L(x, y)$	x likes y

Mary likes John. $\quad L(m, j)$
Bob likes himself.

Domain of discourse: \{John, Mary, Bob\}

Expression	Interpretation
j	John
m	Mary
b	Bob
$L(x, y)$	x likes y

Mary likes John. $\quad L(m, j)$
Bob likes himself. $L(b, b)$
Mary and John like each other:

Domain of discourse: \{John, Mary, Bob\}

Expression	Interpretation
j	John
m	Mary
b	Bob
$L(x, y)$	x likes y

Mary likes John. $\quad L(m, j)$
Bob likes himself. $L(b, b)$
Mary and John like each other: $\quad L(m, j) \& L(j, m)$
Everyone likes Mary.

Domain of discourse: \{John, Mary, Bob\}

Expression	Interpretation
j	John
m	Mary
b	Bob
$L(x, y)$	x likes y

Mary likes John. $\quad L(m, j)$
Bob likes himself. $L(b, b)$
Mary and John like each other: $\quad L(m, j) \& L(j, m)$
Everyone likes Mary. $L(j, m) \&(L(m, m) \& L(b, m))$
Someone likes Mary.

Domain of discourse: \{John, Mary, Bob\}

Expression	Interpretation
j	John
m	Mary
b	Bob
$L(x, y)$	x likes y

Mary likes John. $\quad L(m, j)$
Bob likes himself. $L(b, b)$
Mary and John like each other: $\quad L(m, j) \& L(j, m)$
Everyone likes Mary. $L(j, m) \&(L(m, m) \& L(b, m))$
Someone likes Mary. $\quad L(j, m) \vee(L(m, m) \vee L(b, m))$
Everyone likes someone.

Domain of discourse: \{John, Mary, Bob\}

Expression	Interpretation
j	John
m	Mary
b	Bob
$L(x, y)$	x likes y

Mary likes John. $\quad L(m, j)$
Bob likes himself. $L(b, b)$
Mary and John like each other: $\quad L(m, j) \& L(j, m)$
Everyone likes Mary. $L(j, m) \&(L(m, m) \& L(b, m))$
Someone likes Mary. $\quad L(j, m) \vee(L(m, m) \vee L(b, m))$
Everyone likes someone.
$(L(j, j) \vee L(j, m) \vee L(j, b)) \&(L(m, j) \vee L(m, m) \vee L(m, b)) \&$ $(L(b, j) \vee L(b, m) \vee L(b, b))$

Domain of discourse: All students at UMD

Expression	Interpretation
$P(x)$	x is enrolled in PHIL 170
$A(x)$	x 's grade is an A in PHIL 170
$B(x)$	x 's grade is a B in PHIL 170
$N(x, y)$	x is sitting next to y

Jessica got an A in PHIL 170.

Domain of discourse: All students at UMD

Expression	Interpretation
j	Jessica
$P(x)$	x is enrolled in PHIL 170
$A(x)$	x 's grade is an A in PHIL 170
$B(x)$	x 's grade is a B in PHIL 170
$N(x, y)$	x is sitting next to y

Jessica got an A in PHIL 170. $\quad A(j)$
Everyone got an A or B in PHIL 170.
Someone got an A in PHIL 170.
Everyone is sitting next to someone that got an A in PHIL 170.

Domain of discourse: $\mathbb{N}=\{0,1,2,3, \ldots\}$

Expression	Interpretation
$Z(x)$	x is $0(x=0)$
$G(x, y)$	x is greater than to $y(x>y)$
$A(x, y, z)$	$z=x+y$

$1>0$.

Domain of discourse: $\mathbb{N}=\{0,1,2,3, \ldots\}$

Expression	Interpretation
e	0
o	1
$Z(x)$	x is $0(x=0)$
$G(x, y)$	x is greater than to $y(x>y)$
$A(x, y, z)$	$z=x+y$

$$
1>0 . \quad G(o, e)
$$

Domain of discourse: $\mathbb{N}=\{0,1,2,3, \ldots\}$

Expression	Interpretation
e	0
o	1
$Z(x)$	x is $0(x=0)$
$G(x, y)$	x is greater than to $y(x>y)$
$A(x, y, z)$	$z=x+y$

$1>0 . \quad G(o, e)$
Some number is greater than 0 .
Every number (except 0) is greater than 0 .
Every number is the sum of two numbers.

Quantifiers

Variables: lower case letters (u through z, possibly with subscripts) are going to be used as individual variables.

Quantifiers

Variables: lower case letters (u through z, possibly with subscripts) are going to be used as individual variables.

Quantifier symbols: \forall indicates we are talking about all or every individual under consideration; \exists indicates some or at least one of the individuals under consideration.

Quantifiers

Variables: lower case letters (u through z, possibly with subscripts) are going to be used as individual variables.

Quantifier symbols: \forall indicates we are talking about all or every individual under consideration; \exists indicates some or at least one of the individuals under consideration.

Quantifier: Combine quantifier symbol with an individual constant (and parentheses to make it easier to read). E.g., $(\forall x),(\forall y),(\exists x),(\exists y)$.

Quantifiers

Variables: lower case letters (u through z, possibly with subscripts) are going to be used as individual variables.
Quantifier symbols: \forall indicates we are talking about all or every individual under consideration; \exists indicates some or at least one of the individuals under consideration.

Quantifier: Combine quantifier symbol with an individual constant (and parentheses to make it easier to read). E.g., $(\forall x),(\forall y),(\exists x),(\exists y)$.

- $(\forall x)(P(x) \rightarrow Q(x))$
- $(\forall x)(P(y) \rightarrow Q(y))$
- $(\forall x) P(x) \vee \neg(\forall x) P(x)$
- $(\forall x)(\forall y) R(x, y)$
- $(\forall x)(\exists y) R(x, y)$

Domain of discourse: \{John, Mary, Bob\}

Expression	Interpretation
j	John
m	Mary
b	Bob
$L(x, y)$	x likes y

Mary likes John. $\quad L(m, j)$
Bob likes himself. $L(b, b)$
Mary and John like each other: $\quad L(m, j) \& L(j, m)$
Everyone likes Mary. $L(j, m) \&(L(m, m) \& L(b, m))$
Someone likes Mary. $\quad L(j, m) \vee(L(m, m) \vee L(b, m))$
Everyone likes someone.
$(L(j, j) \vee L(j, m) \vee L(j, b)) \&(L(m, j) \vee L(m, m) \vee L(m, b)) \&$ $(L(b, j) \vee L(b, m) \vee L(b, b))$

Domain of discourse: \{John, Mary, Bob\}

Expression	Interpretation
j	John
m	Mary
b	Bob
$L(x, y)$	x likes y

Mary likes John. $\quad L(m, j)$
Bob likes himself. $L(b, b)$
Mary and John like each other: $\quad L(m, j) \& L(j, m)$
Everyone likes Mary. $L(j, m) \&(L(m, m) \& L(b, m)) \quad(\forall x) L(x, m)$
Someone likes Mary. $\quad L(j, m) \vee(L(m, m) \vee L(b, m))$
Everyone likes someone.
$(L(j, j) \vee L(j, m) \vee L(j, b)) \&(L(m, j) \vee L(m, m) \vee L(m, b)) \&$ $(L(b, j) \vee L(b, m) \vee L(b, b))$

Domain of discourse: \{John, Mary, Bob\}

Expression	Interpretation
j	John
m	Mary
b	Bob
$L(x, y)$	x likes y

Mary likes John. $\quad L(m, j)$
Bob likes himself. $L(b, b)$
Mary and John like each other: $\quad L(m, j) \& L(j, m)$
Everyone likes Mary. $L(j, m) \&(L(m, m) \& L(b, m)) \quad(\forall x) L(x, m)$
Someone likes Mary. $\quad L(j, m) \vee(L(m, m) \vee L(b, m)) \quad(\exists x) L(x, m)$
Everyone likes someone.
$(L(j, j) \vee L(j, m) \vee L(j, b)) \&(L(m, j) \vee L(m, m) \vee L(m, b)) \&$ $(L(b, j) \vee L(b, m) \vee L(b, b))$

Domain of discourse: \{John, Mary, Bob\}

Expression	Interpretation
j	John
m	Mary
b	Bob
$L(x, y)$	x likes y

Mary likes John. $\quad L(m, j)$
Bob likes himself. $L(b, b)$
Mary and John like each other: $\quad L(m, j) \& L(j, m)$
Everyone likes Mary. $L(j, m) \&(L(m, m) \& L(b, m)) \quad(\forall x) L(x, m)$
Someone likes Mary. $\quad L(j, m) \vee(L(m, m) \vee L(b, m)) \quad(\exists x) L(x, m)$
Everyone likes someone.
$(L(j, j) \vee L(j, m) \vee L(j, b)) \&(L(m, j) \vee L(m, m) \vee L(m, b)) \&$ $(L(b, j) \vee L(b, m) \vee L(b, b)) \quad(\forall x)(\exists y) L(x, y)$

Domain of discourse: All students at UMD

Expression	Interpretation
j	Jessica
$P(x)$	x is enrolled in PHIL 170
$A(x)$	x 's grade is an A in PHIL 170
$B(x)$	x 's grade is a B in PHIL 170
$N(x, y)$	x is sitting next to y

Jessica got an A in PHIL 170. $\quad A(j)$
Everyone got an A or B in PHIL 170.
Someone got an A in PHIL 170.
Everyone is sitting next to someone that got an A in PHIL 170.

Domain of discourse: All students at UMD

Expression	Interpretation
j	Jessica
$P(x)$	x is enrolled in PHIL 170
$A(x)$	x 's grade is an A in PHIL 170
$B(x)$	x 's grade is a B in PHIL 170
$N(x, y)$	x is sitting next to y

Jessica got an A in PHIL 170. $\quad A(j)$
Everyone got an A or B in PHIL 170. $(\forall x)(A(x) \vee B(x))$
Someone got an A in PHIL 170.
Everyone is sitting next to someone that got an A in PHIL 170.

Domain of discourse: All students at UMD

Expression	Interpretation
j	Jessica
$P(x)$	x is enrolled in PHIL 170
$A(x)$	x 's grade is an A in PHIL 170
$B(x)$	x 's grade is a B in PHIL 170
$N(x, y)$	x is sitting next to y

Jessica got an A in PHIL 170. $\quad A(j)$
Everyone got an A or B in PHIL 170. $\quad(\forall x)(A(x) \vee B(x))$
Someone got an A in PHIL 170.
Everyone is sitting next to someone that got an A in PHIL 170.

Domain of discourse: All students at UMD

Expression	Interpretation
j	Jessica
$P(x)$	x is enrolled in PHIL 170
$A(x)$	x 's grade is an A in PHIL 170
$B(x)$	x 's grade is a B in PHIL 170
$N(x, y)$	x is sitting next to y

Jessica got an A in PHIL 170. $\quad A(j)$
Everyone got an A or B in PHIL 170. $\quad(\forall x)(\neg P(x) \vee(A(x) \vee B(x)))$
Someone got an A in PHIL 170.
Everyone is sitting next to someone that got an A in PHIL 170.

Domain of discourse: All students at UMD

Expression	Interpretation
j	Jessica
$P(x)$	x is enrolled in PHIL 170
$A(x)$	x 's grade is an A in PHIL 170
$B(x)$	x 's grade is a B in PHIL 170
$N(x, y)$	x is sitting next to y

Jessica got an A in PHIL 170. $\quad A(j)$
Everyone got an A or B in PHIL 170. $\quad(\forall x)(P(x) \rightarrow(A(x) \vee B(x)))$
Someone got an A in PHIL 170.
Everyone is sitting next to someone that got an A in PHIL 170.

Domain of discourse: All students at UMD

Expression	Interpretation
j	Jessica
$P(x)$	x is enrolled in PHIL 170
$A(x)$	x 's grade is an A in PHIL 170
$B(x)$	x 's grade is a B in PHIL 170
$N(x, y)$	x is sitting next to y

Jessica got an A in PHIL 170. $\quad A(j)$
Everyone got an A or B in PHIL 170. $\quad(\forall x)(P(x) \rightarrow(A(x) \vee B(x)))$
Someone got an A in PHIL 170. $\quad(\exists x)(P(x) \& A(x))$
Everyone is sitting next to someone that got an A in PHIL 170.

Domain of discourse: All students at UMD

Expression	Interpretation
j	Jessica
$P(x)$	x is enrolled in PHIL 170
$A(x)$	x 's grade is an A in PHIL 170
$B(x)$	x 's grade is a B in PHIL 170
$N(x, y)$	x is sitting next to y

Jessica got an A in PHIL 170. $\quad A(j)$
Everyone got an A or B in PHIL 170. $\quad(\forall x)(P(x) \rightarrow(A(x) \vee B(x)))$
Someone got an A in PHIL 170. $\quad(\exists x)(P(x) \& A(x))$
Everyone is sitting next to someone that got an A in PHIL 170.
$(\forall x)(\exists y)(P(x) \& P(y) \& N(x, y) \& A(y))$

Domain of discourse: $\mathbb{N}=\{0,1,2,3, \ldots\}$

Expression	Interpretation
e	0
o	1
$Z(x)$	x is $0(x=0)$
$G(x, y)$	x is greater than to $y(x>y)$
$A(x, y, z)$	$z=x+y$

$1>0 . \quad G(o, e)$
Some number is greater than 0 .
Every number (except 0) is greater than 0 .
Every number is the sum of two numbers.

Domain of discourse: $\mathbb{N}=\{0,1,2,3, \ldots\}$

Expression	Interpretation
e	0
o	1
$Z(x)$	x is $0(x=0)$
$G(x, y)$	x is greater than to $y(x>y)$
$A(x, y, z)$	$z=x+y$

$1>0 . \quad G(o, e)$
Some number is greater than $0 . \quad(\exists x) G(x, e)$
Every number (except 0) is greater than 0 .
Every number is the sum of two numbers.

Domain of discourse: $\mathbb{N}=\{0,1,2,3, \ldots\}$

Expression	Interpretation
e	0
o	1
$Z(x)$	x is $0(x=0)$
$G(x, y)$	x is greater than to $y(x>y)$
$A(x, y, z)$	$z=x+y$

$1>0 . \quad G(o, e)$
Some number is greater than $0 . \quad(\exists x) G(x, e)$
Every number (except 0) is greater than $0 . \quad(\forall x)(\neg Z(x) \rightarrow G(x, e))$
Every number is the sum of two numbers.

Domain of discourse: $\mathbb{N}=\{0,1,2,3, \ldots\}$

Expression	Interpretation
e	0
o	1
$Z(x)$	x is $0(x=0)$
$G(x, y)$	x is greater than to $y(x>y)$
$A(x, y, z)$	$z=x+y$

$1>0 . \quad G(o, e)$
Some number is greater than $0 . \quad(\exists x) G(x, e)$
Every number (except 0) is greater than $0 . \quad(\forall x)(\neg Z(x) \rightarrow G(x, e))$
Every number is the sum of two numbers. $\quad(\forall x)(\exists y)(\exists z) A(y, z, x)$

Basic Expressions of Predicate Logic

- For each non-negative integer n, infinitely many n-place predicate letters, A, B, C, and so on (possibly with subscripts), are basic expressions of predicate logic.
- The falsum (\perp) is included as a special 0-place predicate (which, as in sentential logic, appears only in derivations).
- Terms:
- Infinitely many individual constants, represented by lower case letters ranging from a to t (possibly with subscripts), are basic expressions of predicate logic.
- Infinitely many individual variables, represented by lower case letters ranging from u to z (possibly with subscripts), are basic expressions of predicate logic.

Basic Expressions of Predicate Logic, continued

- The symbols for the logical connectives, $\&, \vee, \rightarrow, \leftrightarrow$ and \neg are basic expressions of predicate logic.
- The universal \forall and existential \exists quantifier symbols are basic expressions of predicate logic.
- The parentheses, (and), and the comma (,), which are used as punctuation, are basic expressions of predicate logic.

Formulas of Predicate Logic

1. Every 0 -place predicate letter is a formula. If $n>0, \varphi$ is an n-place predicate letter, and $\tau_{1}, \ldots, \tau_{n}$ are n terms, then $\varphi\left(\tau_{1}, \ldots, \tau_{n}\right)$ is a formula.
2. If φ is a formula of predicate logic, then so is $\neg \varphi$.
3. If φ and ψ are formulae of predicate logic, then so are each of the following:

$$
(\varphi \& \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi),(\varphi \leftrightarrow \psi)
$$

4. If φ is a formula and u an individual variable, then the following are formulas:
a. $(\forall u) \varphi$
b. $\quad(\exists u) \varphi$
5. An expression of predicate logic is a formula only if it can be constructed by one or more applications of the above four rules.

Formulas of Predicate Logic

1. Every 0 -place predicate letter is a formula. If $n>0, \varphi$ is an n-place predicate letter, and $\tau_{1}, \ldots, \tau_{n}$ are n terms, then $\varphi\left(\tau_{1}, \ldots, \tau_{n}\right)$ is a formula.
2. If φ is a formula of predicate logic, then so is $\neg \varphi$.
3. If φ and ψ are formulae of predicate logic, then so are each of the following:

$$
(\varphi \& \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi),(\varphi \leftrightarrow \psi)
$$

4. If φ is a formula and u an individual variable, then the following are formulas:
a. $(\forall u) \varphi$
b. $\quad(\exists u) \varphi$
5. An expression of predicate logic is a formula only if it can be constructed by one or more applications of the above four rules.

$$
(\forall x)((\forall z)(\exists y) P(z, y) \rightarrow(\forall u)(P(x, u) \rightarrow Q(x)))
$$

$$
\begin{gathered}
(\forall x)((\forall z)(\exists y) P(z, y) \rightarrow(\forall u)(P(x, u) \rightarrow Q(x))) \\
\left.\quad\right|_{((\forall z)(\exists y) P(z, y) \rightarrow(\forall u)(P(x, u) \rightarrow Q(x)))}
\end{gathered}
$$

Translations

$H(x)$	x is happy.
$S(x)$	x is a student.

All students are happy.

Some students are happy.

Translations

$H(x)$	x is happy.
$S(x)$	x is a student.

All students are happy.

$$
\begin{aligned}
& ?(\forall x)(S(x) \rightarrow H(x)) \\
& ?(\forall x)(S(x) \& H(x))
\end{aligned}
$$

Some students are happy.

Translations

$H(x)$	x is happy.
$S(x)$	x is a student.

All students are happy.
$\checkmark \quad(\forall x)(S(x) \rightarrow H(x))$
$x(\forall x)(S(x) \& H(x))$ (Everyone is a student and happy.)

Some students are happy.

Translations

$H(x)$	x is happy.
$S(x)$	x is a student.

All students are happy.
$\checkmark \quad(\forall x)(S(x) \rightarrow H(x))$
$x(\forall x)(S(x) \& H(x))$ (Everyone is a student and happy.)

Some students are happy.
$?(\exists x)(S(x) \rightarrow H(x))$
? $(\exists x)(S(x) \& H(x))$

Translations

$H(x)$	x is happy.
$S(x)$	x is a student.

All students are happy.
$\checkmark(\forall x)(S(x) \rightarrow H(x))$
$x(\forall x)(S(x) \& H(x))$ (Everyone is a student and happy.)

Some students are happy.
$x(\exists x)(S(x) \rightarrow H(x))$ (There is someone that is either not a student or happy.)
$\checkmark(\exists x)(S(x) \& H(x))$

every \mathbf{A} is B	$(\forall x)(A(x) \rightarrow B(x))$
some \mathbf{A} is B	$(\exists x)(A(x) \& B(x))$
no \mathbf{A} is B	$\neg(\exists x)(A(x) \& B(x))$
some \mathbf{A} is not B	$(\exists x)(A(x) \& \neg B(x))$
every \mathbf{A} is a non-B	$(\forall x)(A(x) \rightarrow \neg B(x))$
not every \mathbf{A} is B	$\neg(\forall x)(A(x) \rightarrow B(x))$

All logicians are mathematicians.

Some logicians are mathematicians.

$L(x)$	x is a logician
$M(x)$	x is a mathematician

No logician is a mathematician.

Some logicians are not mathematicians.

Every logician is not a mathematician.

Not every logician is a mathematician.

All logicians are mathematicians.
$(\forall x)(L(x) \rightarrow M(x))$

Some logicians are mathematicians.
$(\exists x)(L(x) \& M(x))$

$L(x)$	x is a logician
$M(x)$	x is a mathematician

No logician is a mathematician.

Some logicians are not mathematicians.

Every logician is not a mathematician.

Not every logician is a mathematician.

All logicians are mathematicians.
$(\forall x)(L(x) \rightarrow M(x))$
Some logicians are mathematicians.

$$
(\exists x)(L(x) \& M(x))
$$

$L(x)$	x is a logician
$M(x)$	x is a mathematician

No logician is a mathematician.
$\neg(\exists x)(L(x) \& M(x))$
Some logicians are not mathematicians.

Every logician is not a mathematician.

Not every logician is a mathematician.

All logicians are mathematicians.
$(\forall x)(L(x) \rightarrow M(x))$
Some logicians are mathematicians.

$$
(\exists x)(L(x) \& M(x))
$$

$L(x)$	x is a logician
$M(x)$	x is a mathematician

No logician is a mathematician.
$\neg(\exists x)(L(x) \& M(x))$
Some logicians are not mathematicians.
$(\exists x)(L(x) \& \neg M(x))$
Every logician is not a mathematician.

Not every logician is a mathematician.

All logicians are mathematicians.
$(\forall x)(L(x) \rightarrow M(x))$
Some logicians are mathematicians.

$$
(\exists x)(L(x) \& M(x))
$$

$L(x)$	x is a logician
$M(x)$	x is a mathematician

No logician is a mathematician.
$\neg(\exists x)(L(x) \& M(x))$
Some logicians are not mathematicians.
$(\exists x)(L(x) \& \neg M(x))$
Every logician is not a mathematician.
$(\forall x)(L(x) \rightarrow \neg M(x))$

Not every logician is a mathematician.

All logicians are mathematicians.
$(\forall x)(L(x) \rightarrow M(x))$
Some logicians are mathematicians.

$$
(\exists x)(L(x) \& M(x))
$$

$L(x)$	x is a logician
$M(x)$	x is a mathematician

No logician is a mathematician.
$\neg(\exists x)(L(x) \& M(x))$
Some logicians are not mathematicians.
$(\exists x)(L(x) \& \neg M(x))$
Every logician is not a mathematician.
$(\forall x)(L(x) \rightarrow \neg M(x))$

Not every logician is a mathematician.
$\neg(\forall x)(L(x) \rightarrow M(x))$

