Introduction to Logic PHIL 170

Eric Pacuit

University of Maryland, College Park pacuit.org epacuit@umd.edu

November 4, 2015

Announcements

- Starting Part 3: Predicate Logic, read Chapter 9
- Do the practice problems!
- Online quiz due Friday, Nov. 6 at 11.59pm.
- ► In-class quiz: translate into predicate logic and find the truth-table.
- ► Lab due Sunday, Nov. 8 at 11.59pm. Start the lab early.

Sentences about John:

- John laughed.
- John is talkative.
- John is in France.
- John likes Mary.
- John is frequently discussed in logic texts.

Sentences about John:

- ▶ John laughed. *L*(*j*)
- John is talkative. T(j)
- John is in France. F(j)
- John likes Mary. M(j)
- John is frequently discussed in logic texts. D(j)

► John likes Mary.

► John likes Mary. L(,)

▶ John likes Mary. L(j, m)

Basic Expressions: Predicates and Terms

Predicates: For each non-negative integer *n*, we have an infinite stock of *n*-place predicate letters, represented by upper case letters (possibly with subscripts).

Individual Constants: We have an infinite stock of individual constants, represented by lower case letters ranging from a to t (possibly with subscripts).

Syntax of Predicates and Terms

- Every 0-place predicate letter is a formula.
- If n > 0, φ is an n-place predicate letter, and τ₁,...,τ_n are n individual constants, then φ(τ₁,...,τ_n) is a formula.

Maggie is a dog, and she is black.

Snowball is a cat, and she is white.

Zebbie is a zebra, and he is black and white.

- Maggie is a dog, and she is black.
 (D(m) & B(m))
- Snowball is a cat, and she is white.

Zebbie is a zebra, and he is black and white.

- Maggie is a dog, and she is black.
 (D(m) & B(m))
- Snowball is a cat, and she is white.
 (C(s) & W(s))
- Zebbie is a zebra, and he is black and white.

- Maggie is a dog, and she is black.
 (D(m) & B(m))
- Snowball is a cat, and she is white.
 (C(s) & W(s))
- Zebbie is a zebra, and he is black and white.
 (Z(z) & (B(z) & W(z))

- Maggie is a dog, and she is black.
 (D(m) & B(m))
- Snowball is a cat, and she is white.
 (C(s) & W(s))
- Zebbie is a zebra, and he is black and white.
 (Z(z) & P(z))

Formulas of Predicate Logic

- 1. Every 0-place predicate letter is a formula.
- If n > 0, φ is an n-place predicate letter, and τ₁,..., τ_n are n individual constants, then φ(τ₁,..., τ_n) is a formula.
- 3. If φ is a formula of predicate logic, then so is $\neg \varphi$.
- 4. If φ and ψ are formulae of predicate logic, then so are each of the following:
 - a. $(\varphi \& \psi)$
 - b. $(\varphi \lor \psi)$
 - c. $(\varphi \rightarrow \psi)$
 - d. $(\varphi \leftrightarrow \psi)$
- 5. An expression of predicate logic is a formula only if it can be constructed by one or more applications of the four three rules.

 $\blacktriangleright (P \& (R(a) \lor Q(a, b, c)))$

$$\blacktriangleright (R(a,b) \rightarrow R(b,a))$$

$$\blacktriangleright \ ((P(d) \And Q(c)) \leftrightarrow \neg (\neg P(d) \lor \neg Q(c)))$$

$$\blacktriangleright (\neg S(a, b, c) \& (Q(d) \lor Q(e)))$$

$(P \& (R(a) \lor Q(a, b, c)))$

Recall: Truth-Tables

Why is *R*(*a*) *false*?

Why is R(a) false? The object denoted by a does not have property R. E.g., R(a) means that 'a is red', but a denotes a black object.

$(R(a, b) \rightarrow R(b, a))$

$$(R(a,b) \rightarrow R(b,a))$$

Is $((P(d) \& Q(c)) \leftrightarrow \neg(\neg P(d) \lor \neg Q(c)))$ a tautology? If so, find a deduction. Otherwise, provide a counterexample.

Interpretations

An interpretation includes each of the following:

- A domain of discourse.
- An assignment to each individual constant of an individual from the domain of discourse.
- ► An assignment of truth-values to 0-place predicate letters.
- ▶ For n > 0, an assignment of a set of ordered n-tuples of members of the domain of discourse to each n-place predicate letter.

Domain of discourse: {John, Mary, Bob}

Expression	Interpretation
j	John
т	Mary
b	Bob
R(x,y)	x is sitting in front of y
P(x)	x is enrolled in PHIL 170

Suppose that John is sitting in row 1, Mary in row 2, and Bob is not enrolled in PHIL 170. Which of the following formulas are true:

- ▶ ¬P(b) & P(j)
- ▶ R(m,j)
- ▶ *R*(*j*, *m*)
- ▶ *R*(*j*, *b*)

Suppose that *I* is an interpretation.

- If φ is a 0-place predicate letter, then φ is true on I just in case $I(\varphi) = T$.
- If φ is of the form ψ(τ₁,...,τ_n) where ψ is an n-place predicate letter (with n > 0), and τ₁,...,τ_n are n terms, then φ is true on I just in case ⟨I(τ₁),...,I(τ_n)⟩ ∈ I(ψ).

Domain of discourse: $\{A, B, C, D\}$

I(j) = A
I(k) = B
I(I) = D
$I(P) = \{\langle B \rangle, \langle D \rangle\}$
$I(Q) = \{ \langle A, D \rangle, \langle D, B \rangle, \langle B, A \rangle \}$
I(R) = F (false)

Which of the following formulas are true:

$$\blacktriangleright \neg P(k) \& P(j)$$

- $\blacktriangleright Q(j,l) \& Q(l,j)$
- ► Q(I, I)
- ▶ $Q(k,j) \rightarrow Q(j,l)$
- $R \rightarrow Q(j,k)$

1.	$P \lor Q$	Premise
2.	$P \rightarrow R$	Premise
3.	Q ightarrow S	Premise
	:	
n.	$R \lor S$	Goal

1.	$P \lor Q$	Premise
2.	P ightarrow R	Premise
3.	Q ightarrow S	Premise
4.	Р	Assumption
5.	R	\rightarrow E:2,4
6.	$R \lor S$	∨IR:5
7.	Q	Assumption
8.	S	\rightarrow E:3,7
9.	$R \lor S$	∨IL: 8
10.	$R \lor S$	∨E:1,6,9

1.	$V(h, e, m) \lor V(h, p, m)$	Premise
2.	$V(h,e,m) \rightarrow V(h,l,t)$	Premise
3.	$V(h, p, m) \rightarrow V(h, l, d)$	Premise
	:	
n.	$V(h, l, t) \vee V(h, l, d)$	Goal

1.	$V(h, e, m) \lor V(h, p, m)$	Premise	1.	$P \lor Q$	Premise
2.	$V(h, e, m) \rightarrow V(h, l, t)$	Premise	2.	$P \rightarrow R$	Premise
3.	$V(h, p, m) \rightarrow V(h, l, d)$	Premise	3.	Q ightarrow S	Premise
	:			÷	
n.	$V(h, l, t) \lor V(h, l, d)$	Goal	n.	$R \lor S$	Goal

1.	$V(h, e, m) \vee V(h, p, m)$	Premise	1.	$P \lor Q$	Premise
2.	$V(h,e,m) \rightarrow V(h,l,t)$	Premise	2.	P ightarrow R	Premise
3.	$V(h, p, m) \rightarrow V(h, l, d)$	Premise	3.	$Q \rightarrow S$	Premise
	:			:	
n.	$V(h, l, t) \vee V(h, l, d)$	Goal	n.	$R \lor S$	Goal

1.	$V(h, e, m) \vee V(h, p, m)$	Premise	1.	$P \lor Q$	Premise
2.	$V(h, e, m) \rightarrow V(h, l, t)$	Premise	2.	$P \rightarrow R$	Premise
3.	$V(h, p, m) \rightarrow V(h, l, d)$	Premise	3.	Q ightarrow S	Premise
	÷			÷	
n.	$V(h, l, t) \vee V(h, l, d)$	Goal	n.	<i>R</i> ∨ <i>S</i>	Goal

1.	$V(h, e, m) \vee V(h, p, m)$	Premise	1.	$P \lor Q$	Premise
2.	V(h,e,m) ightarrow V(h,I,t)	Premise	2.	P ightarrow R	Premise
3.	$V(h, p, m) \rightarrow V(h, l, d)$	Premise	3.	$Q \rightarrow S$	Premise
	:			÷	
n.	$V(h, l, t) \vee V(h, l, d)$	Goal	n.	<i>R</i> ∨ <mark>S</mark>	Goal

Recall: Truth-Tables

Basic Rules

Conjunction Introduction (&I)

Conjunction Elimination (&EL, &ER)

<i>p</i> 1.	$(\varphi \& \psi)$	
c.	φ	&EL: p1

<i>p</i> 1.	($\varphi \& \psi$)	
	:	
c.	ψ	&ER: <i>p</i> 1

Conditional Introduction (\rightarrow I)

<i>a</i> 1.	φ	Assumption
	:	
p1.	ψ	Goal
c.	$(\varphi \rightarrow \psi)$	\rightarrow I: $p1$

p1.	ψ	
	:	
	:	
c.	$(\varphi \rightarrow \psi)$	\rightarrow I: $p1$

Conditional Elimination (\rightarrow E)

p1.
$$\varphi$$
p2. $(\varphi \rightarrow \psi)$ \vdots c. ψ $\rightarrow E: p1, p2$

Disjunction Introduction (\lor IL, \lor IR)

Disjunction Elimination (\lor E)

<i>p</i> 1.	$(\varphi \lor \psi)$	Premise
<i>a</i> 1.	φ	Assumption
	:	
p2.	ρ	Goal
a2.	ψ	Assumption
	÷	
<i>p</i> 3.	ρ	Goal
с.	ρ	∨E: <i>p</i> 1, <i>p</i> 2, <i>p</i> 3

Negation Introduction/Elimination $(\neg I, \neg E)$

Falsum Introduction/Elimination $(\perp I, \perp E)$

$$p1.$$
 φ $p2.$ $\neg \varphi$ \vdots c. \bot \bot \Box

