Introduction to Logic PHIL 170

Eric Pacuit

University of Maryland, College Park pacuit.org
epacuit@umd.edu

October 5, 2015

Announcements

- Good job on the Midterm!
- Make sure that you can solve the problems on paper!
- Summary of grades will be emailed/added to ELMS
- Quiz due on Friday, Lab due on Sunday.
- Watch for more videos about how to do the upcoming problems on LogicLab...
- Email: You should email your TA first with questions about extensions, problems with the assignments, etc.

Fun problems to think about...

Imagine you have been transported to the mysterious "Island of Knights and Knaves" where every inhabitant is either a knight or a knave. Every knight always tells the truth and every knave always lies.

You stop for gas and the attendant says, "Either I am a knight or I am not a knight." What is he?

Suppose that you see two people A and B. Suppose that A says "Either I am a knave or B is a knight." What can you conclude?

Suppose that A says "Either I am a knave or $2+2=5$." What can you conclude?

Fun problems to think about...

An advertisement for a tennis magazine states, "If I'm not playing tennis, I'm watching tennis. And if I'm not watching tennis, I'm reading about tennis." We can assume that the speaker cannot do more than one of these activities at a time. What is the speaker doing?

General Observations

φ_{1}
φ_{2}
$\vdots \quad$ is valid if, and only if, $\left(\left(\varphi_{1} \& \varphi_{2} \& \cdots \& \varphi_{n}\right) \rightarrow \psi\right)$ is a tautology.
$\frac{\varphi_{n}}{\therefore \psi}$
φ and ψ are logically equivalent (i.e., have exactly the same truth-values) if, and only if, $((\varphi \rightarrow \psi) \&(\psi \rightarrow \varphi))$ is a tautology.

We often write $\varphi \leftrightarrow \psi$ for $((\varphi \rightarrow \psi) \&(\psi \rightarrow \varphi))$

Logical Equivalences

$$
\begin{array}{ll}
\varphi \rightarrow \psi & \neg \varphi \vee \psi \\
\varphi \rightarrow \psi & \neg(\varphi \wedge \neg \psi) \\
\varphi \rightarrow \psi & \neg \psi \rightarrow \neg \varphi \\
\neg(\varphi \vee \psi) & (\neg \varphi \& \neg \psi) \\
\neg(\varphi \& \psi) & (\neg \varphi \vee \neg \psi) \\
\neg \neg \varphi & \varphi \\
(\varphi \&(\psi \vee \chi)) & ((\varphi \& \psi) \vee(\varphi \& \chi)) \\
(\varphi \vee(\psi \& \chi)) & ((\varphi \vee \psi) \&(\varphi \vee \chi)) \\
(\varphi \rightarrow(\psi \rightarrow \chi)) & ((\varphi \& \psi) \rightarrow \chi)
\end{array}
$$

Questions

Why are we learning both truth-tables and truth-trees?

Why does LogicLab force you to enter truth-value assignments in the way that it does?

What's next?

Questions

Why are we learning both truth-tables and truth-trees?

Why does LogicLab force you to enter truth-value assignments in the way that it does?

What's next? Deductions

Arguments
I need to be at UMD by 11am.
Lily needs to be at the bus-stop by 9am.

Arguments

X I need to be at UMD by 11am.
Lily needs to be at the bus-stop by 9am.

Ann brought here laptop to first three lectures.
Ann will bring her laptop to today's lecture.

Arguments

X I need to be at UMD by 11am.
Lily needs to be at the bus-stop by 9am.

Ann brought here laptop to first three lectures.
Ann will bring her laptop to today's lecture.

Bob is a bachelor.
Bob is unmarried.

Arguments

I need to be at UMD by 11am.
Lily needs to be at the bus-stop by 9am.

Ann brought here laptop to first three lectures. Ann will bring her laptop to today's lecture.

Bob is a bachelor.
Bob is unmarried.

Ann will have salad or steak.
Ann will not have steak.
Ann will have salad.

Arguments

X I need to be at UMD by 11am.
Lily needs to be at the bus-stop by 9am.

Ann brought here laptop to first three lectures. Ann will bring her laptop to today's lecture.

X Bob is a bachelor.
Bob is unmarried.

Ann will have salad or steak.
Ann will not have steak.
Ann will have salad.

Arguments

$$
\begin{array}{ll}
X & \frac{U}{\therefore L} \\
X & \frac{\left(\left(L_{1} \& L_{2}\right) \& L_{3}\right)}{\therefore L_{4}} \\
X & \frac{B(b)}{\therefore U(b)} \\
\sqrt{ } \begin{array}{l}
A \vee S \\
\\
\therefore A
\end{array}
\end{array}
$$

Deductions

An advertisement for a tennis magazine states, "If I'm not playing tennis, I'm watching tennis. And if I'm not watching tennis, I'm reading about tennis." We can assume that the speaker cannot do more than one of these activities at a time. What is the speaker doing?

Deductions

An advertisement for a tennis magazine states, "If I'm not playing tennis, I'm watching tennis. And if I'm not watching tennis, I'm reading about tennis." We can assume that the speaker cannot do more than one of these activities at a time. What is the speaker doing?

$$
\begin{aligned}
& \neg P \rightarrow W \\
& \neg W \rightarrow R \\
& ((P \vee W) \vee R) \\
& (P \rightarrow(\neg W \& \neg R)) \\
& (R \rightarrow(\neg P \& \neg W)) \\
& (W \rightarrow(\neg P \& \neg R)) \\
& \therefore R
\end{aligned}
$$

Deductions

1.	$\neg P \rightarrow W$	Premise
2.	$\neg W \rightarrow R$	Premise
3.	$(P \rightarrow(\neg W \& \neg R))$	Premise
4.	$(R \rightarrow(\neg P \& \neg W))$	Premise
5.	$(W \rightarrow(\neg P \& \neg R))$	Premise
	\vdots	
c.	W	Goal

Conjunction Introduction (\&I)

Conjunction Introduction (\&I)

1.	A	Premise
2.	B	Premise
3.	$(A \&(B \vee C))$	Premise

Conjunction Introduction (\&l)

1.	A	Premise
2.	B	Premise
3. $(A \&(B \vee C))$	Premise	
4. $(A \& B)$	$\& I: 1,2$	

Conjunction Introduction (\&I)

1.	A	Premise
2.	B	Premise
3. $(A \&(B \vee C))$	Premise	
4. $(A \& B)$	$\& 1: 1,2$	
5. $(B \& A)$	$\& 1: 2,1$	

Conjunction Introduction (\&I)

1.	A	Premise
2.	B	Premise
3. $(A \&(B \vee C))$	Premise	
4. $(A \& B)$	$\& 1: 1,2$	
5. $(B \& A)$	$\& 1: 2,1$	
6. $(A \& A)$	$\& 1: 1,1$	

Conjunction Introduction (\&I)

1.	A	Premise
2.	B	Premise
3. $(A \&(B \vee C))$	Premise	
4. $(A \& B)$	$\& 1: 1,2$	
5. $(B \& A)$	$\& 1: 2,1$	
6. $(A \& A)$	$\& 1: 1,1$	

Conjunction Introduction (\&I)

1.	A	Premise
2.	B	Premise
3.	$(A \&(B \vee C))$	Premise
4.	$(A \& B)$	$\& \mid: 1,2$
5.	$(B \& A)$	$\& \mid: 2,1$
6.	$(A \& A)$	$\& \mid: 1,1$
7.	$((A \&(B \vee C)) \& B)$	$\& \mid: 3,2$

Conjunction Introduction (\&I)

1.	A	Premise
2.	B	Premise
3.	$(A \&(B \vee C))$	Premise
4.	$(A \& B)$	\& 1: 1,2
5.	$(B \& A)$	\& $1: 2,1$
6.	$(A \& A)$	\& $1: 1,1$
7.	$((A \&(B \vee C)) \& B)$	\& $1: 3,2$
8.	$((B \& A) \&(A \& A))$	\& $1: 5,6$

Example

| 1. $(\mathrm{G} \rightarrow \mathrm{H})$ | Premise |
| :---: | :--- | :--- |
| 2. $\quad \mathrm{I}$ | Premise |
| 3. $\neg \mathrm{J}$ | Premise |
| $\vdots \vdots$ | |
| n. $\quad((\mathrm{I} \& \neg \mathrm{~J}) \&(\mathrm{G} \rightarrow \mathrm{H}))$ | Goal |

Example

Example

Example

Example

Example

Example

1. $\quad(G \rightarrow H)$	Premise
2. $\quad I$	Premise
3. $\neg J$	Premise
5. $\quad((I \& \neg J) \&(G \rightarrow H))$	Goal

Example

1. $\quad(G \rightarrow H)$	Premise
2. $\quad I$	Premise
3. $\quad \neg J$	Premise
4. $\quad(I \& \neg J)$	$\& I: 2,3$
5. $\quad((I \& \neg J) \&(G \rightarrow H))$	Goal

Example

1. $\quad(G \rightarrow H)$	Premise
2. $\quad I$	Premise
3. $\quad \neg J$	Premise
4. $(I \& \neg J)$	$\& I: 2,3$
5. $((I \& \neg J) \&(G \rightarrow H))$	$\& I: 4,1$

Example

Example

Conjunction Elimination (\&EL, \&ER)

$$
\begin{array}{lll}
\text { p1. } & (\varphi \& \psi) & \\
\vdots & \\
\text { c. } & \varphi & \& E L: p 1
\end{array}
$$

p1. $\quad(\varphi \& \psi)$
c. ψ
\&ER: $p 1$

Conjunction Elimination (\&EL, \&ER)

1. $((A \&(B \vee C)) \& D)$ Premise

Conjunction Elimination (\&EL, \&ER)

1. $((A \&(B \vee C)) \& D)$ Premise
2. D \&ER:1

Conjunction Elimination (\&EL, \&ER)

1. $((A \&(B \vee C)) \& D)$ Premise
2. D \&ER:1
3. $(A \&(B \vee C)) \& E L: 1$

Conjunction Elimination (\&EL, \&ER)

1. $((A \&(B \vee C)) \& D)$ Premise
2. D \&ER:1
3. $(A \&(B \vee C)) \& E L: 1$
4. A \&EL:3

Conjunction Elimination (\&EL, \&ER)

1.	$((A \&(B \vee C)) \& D)$	Premise
2.	D	\&ER: 1
3. $(A \&(B \vee C))$	$\& E L: 1$	
4. A	$\& E L: 3$	
5. $(B \vee C)$	$\& E R: 3$	

Example

1.	$(D \& E)$	Premise
2.	$(F \& G)$	Premise
5.	$(E \& F)$ Goal	

Example

$$
\begin{array}{lll}
\text { 1. } & (D \& E) & \text { Premise } \\
\text { 2. } & (F \& G) & \text { Premise } \\
\text { 3. } & F & \& E L: 2 \\
& & \\
\text { 5. } & (E \& F) & \text { Goal }
\end{array}
$$

Example

1.	$(D \& E)$	Premise
2.	$(F \& G)$	Premise
3.	F	$\& E L: 2$
4.	E	$\& E R: 1$
5.	$(E \& F)$	Goal

Example

1.	$(D \& E)$	Premise
2.	$(F \& G)$	Premise
3.	F	$\& E L: 2$
4.	E	$\& E R: 1$
5.	$(E \& F)$	$\& \mid: 4,3$

Example

Example

Example

Example

Example

Conditional Elimination $(\rightarrow \mathrm{E})$

$$
\begin{array}{lll}
p 1 . & \varphi & \\
\text { p2. } & (\varphi \rightarrow \psi) & \\
& \vdots & \\
\text { c. } & \psi & \rightarrow E: p 1, p 2
\end{array}
$$

Example

Example

Example

Example

Example

