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1 First-Order Language

The language of predicate logic is constructed from a number of different pieces of syntax: variables,
constants, function symbols and predicate symbols. Both function and predicate symbols are
associated with an arity: the number of arguments that are required by the function or predicate.
We start by defining terms. Let V be a finite (or countable) set of variables and C a set of
constants.

Definition 1.1 (Terms) Let V be a set of variable, C a set of constant symbols and F a set of
function symbols. Each function symbol is associated with an arity (a positive integer specifying
the number of arguments). Write f (") if the arity of f is n. A term 7 is constructed as follows:

e Any variable x € V is a term.
e Any constant ¢ € C is a term.

o If f(n) € F is a function symbol (i.e., f accepts n arguments) and 71,...,7, are terms, then
f(r1,...,m) is a term.

e Nothing else is a term.
Let 7 be the set of terms. 4

The language of arithmetic. The language of arithmetic is constructed from a single constant
C = {0}, the function symbols F = {S, +, x, E}, where S is a unary function symbol and +, %, E are
binary function symbols. Examples of terms in this language are S(S(0)), S(z), +(z, S(S(S(0)))),
S(+(x(z, 2),S(0))).

To increase readability, we typically use infix notation rather than prefix notation. So, we write
x + y instead of +(x,y).

Terms are used to construct atomic formulas:
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Definition 1.2 (Atomic Formulas) Let P be a set of predicate symbols. Each predicate symbol
is associated with an arity (the number of objects that are related by P). We write P(™) if the arity

of P is n. Suppose that P is an atomic predicate symbol with arity n. If 7,..., 7, are terms, then
P(11,...,7,) is an atomic formula. To simplify the notation, we may write P7i79---7,. A special
predicate symbol ‘=’ is included with the intended interpretation equality. N

The language of arithmetic. The language of arithmetic includes two predicate symbols: equal-
ity = and less-than <. Both are binary relation symbols. Again, we use infix notation to increase
readability. Examples of formulas include S(z) = S(S(S(0))), (z + S(y * S(S(S(0)))) < S(z),
S(S(0)) = S(0).

Definition 1.3 (Formulas) Formulas are constructed as follows:
e Atomic formulas P(7y,...,7,) are formulas;

o If ¢ is a formula, then so is —;

If ¢ and ¥ are a formulas, then so is ¢ A 1);

If ¢ is a formula, then so is (Vz)p, where x is a variable;

Nothing else is a formula.

The other boolean connectives (V,—,<>) are defined as usual. In addition, (3z)¢ is defined as
—(Vz)—e. N

The language of arithmetic. Examples of formulas in the language of arithmetic include:
—(S(0) = S(S(0)) (this is usually written as S(0) # S(S(0))), VzS(S(S(S(S(x))))) # =,
Va(z # 0 — Jy(S(y) = z)

Definition 1.4 (Free Variable) Suppose that z is a variable. Then, x occurs free in ¢ is
defined as follows:

1. If ¢ is an atomic formula, then x occurs free in ¢ provided = occurs in ¢ (i.e., is a symbol in
)

2. x occurs free in = iff x occurs free in v

3. x occurs free in 11 A 1o iff & occurs free in ¢y or x occurs free in

4. x occurs free in (Vy)y iff  occurs free in ¢ and x # y

5. x occurs free in (Jy)y iff x occurs free in ¢ and = # y q
The set of free variables in ¢, denoted Fr(yp), is defined by recursion as follows:

1. If ¢ is an atomic formula, then Fr(y) is the set of all variables (if any) that occur in ¢

2. If p is =), then Fr(—¢) = Fr(p)

3. If v is ¥1 A g, then Fr(p) = Fr(11) U Fr(i2)



4. If ¢ is (Vz)y, then Fr(¢)) = Fr(v) after removing z, if present.

A variable z that is not free is said to be bound. Formulas that do not contain any free
variables are called sentences:

Definition 1.5 (Sentence) If ¢ is a formula and Fr(¢) = () (i.e., there are no free variables), then
(p is a sentence. N
1.1 Substitutions

If 7 and 7’ are terms, we write 7[x/7'] for the terms where z is replaced by 7. We can formally
define this operation by recursion:

o afe/7] =7

o ylx/T=yforz #y

o cfz/r]=c

o F(1i,...,m)[x/T] = F(nlz/7],...,malx/T])

The same notation can be used for formulas p[z/7] which means replace all free occurrences of z
with 7 in a formula ¢. This is defined as follows:

o P(ry,...,mn)[x/7] = P(nlz/7],...,Tnlz/T])
o ~Pla/7] = =(plz/7])
o (Y1 An)[a/7] = ule/T] Adpalz/T]
o (Vo)p)lz/] = (Vo)
o (Vy)p)lz/7] = (Vy)plz/7], where y # x
The following are key examples of this operation:
(@=y)ly/alis =z and (z =y)lz/yl sy =y,
- (Vo(z = y))[z/yl is (Vo)r =y,
3. Vz(x =y))ly/z] is (Vo) = =,
4. (Yo)=(vy)(z = y) = (“Vy(z = y))[z/y] is (V)= (Vy)(z = y) = “Vy(y = y).
Definition 1.6 (Substitutability) A term 7 is substitutable for x in ¢ is defined as follows:
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e For an atomic formula ¢, 7 is always substitutable for z in ¢ (there are no quantifiers, so ¢
can always be substituted for x)

e 7 is substitutable for x in - iff 7 is is substitutable for z in

e 7 is substitutable for x in 11 A1y iff 7 is is substitutable for x in ¥, and 7 is is substitutable
for x in 19

e 7 is substitutable for x in (Vy)v iff either

1. x does not occur free in (Vy)
2. y does not occur in 7 and 7 is substitutable for x in . N



2 Models

2.1 Interpreting Terms

Suppose that W is a set. An interpretation I (for W) associates with each functions symbol F
a function on W of the appropriate arity, denoted F, and to each constant ¢ an element of W,
denoted ¢!. If W is a set and I an interpretation, then for a function symbol F' of arity n,
FloWwx. ... xW oW
—_———

n times
For each constant symbol, ¢, we have

dew
Our goal is to show how to associate with each term and element of a set W. We first need the
notion of a substitution:

Definition 2.1 (Substitution) Suppose that W is a nonempty set. A substitution is a function
s:V—=W. <

Definition 2.2 (Interpretation of Terms) Suppose that I is an interpretation for W and s :
V — W is a substitution. We define the function (I,s) : 7 — W by recursion as follows:

o (I,s)(x) =s(x)
o (I,8)(c)=c!
o (I,s)(F(71,...,7m)) = FI((I,8)(11),...,(I,8)()) <

Suppose that s : V — W is a substitution. If a € W, we define a new substitution s[z/a] as

follows:
a ify=u

slz/dl(y) = {

s(z) otherwise

Suppose that s : V — W and s’ : V — W are two substitutions. For each variable x € V, we
define a relation on the set of substitutions as follows:

s ~, s iff s(y) = s'(y) for all y # x

Hence, s ~, s’ provided there is some a € W such that s’ = s[z/a].

2.2 First Order Models

Definition 2.3 (Model) A model is a pair 2 = (W, I) where W is a nonempty set (called the
domain) and I is a function (called the interpretation) assigning to each function symbol F, a
function denoted F!, to each constant symbol, an element of W denoted ¢! and to each predicate
symbol P, a relation on W of the appropriate arity. If P has arity n, then we have

Plcwx...xW
D e

n times

If A is a model, we write |.A| for the domain of A, and we write F4, ¢* and P4 to denote F, ¢!
and P!, respectively. N



We say s is a substitution for A provided s : V — |A|. Let A = (W, I) be a model. For each
term 7, we write 748 for (I,s)(7).

Definition 2.4 (Truth) Suppose that A is a model and s is a substitution for .A. The formula ¢
is true in A (given s), denoted A, sy, is defined by recursion as follows:

o Ask P(r,...,m) iff (1%, %) e PA

A;s = iff As

A;s =1 Ag iff Ajs =11 and A, s |= 1o

A, s |E (Vx)y iff for all substitutions s’ for A if s ~, s/, then A,s' = q

Models of arithmetic Recall that N denotes the set of natural numbers (i.e., the integers greater
than or equal to 0). We will be interested in the following languages and models

e Ns = (N,0,S) with the language Lg constructed from the constant 0 and function symbol S
(and the equality symbol). So, Lg is a subset of the language of arithmetic £ 4.

e Np=(N,0,S,+) with the language £p constructed from the constant 0 and function symbols
S and + (and the equality symbol). So, Lp is a subset of the language of arithmetic £4

e N =(N,0,S,+,*, <) with the language of arithmetic £4.

3 Deductions in First Order Logic

An axiom system for first-order logic consists of the following four axioms (there are others, this is
the one from Enderton’s Introduction to Mathematical Logic):
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1. All tautologies
2. (Vx)p — p[z/t], where T is substitutable for z in ¢

3. (V) (e = ) = (Vo) = (Vo))

4. ¢ — (Vz)p, where x does not occur free in ¢

J

Definition 3.1 (Generalization) Given a formula ¢, a generalization of ¢ is a formula of the
form (Vx1)--- (Va,)e. <

Definition 3.2 (Tautology) A tautology (in FOL) is any formula obtained by replacing each
atomic proposition with a first-order formula. N

Definition 3.3 (Deduction) We write I' - ¢ iff there is a finite sequence of formulas ¢1, ..., ¢,
such that ¢, = ¢, each ; is either a generalization of one of the above axioms, is an element of I,
or follows from earlier formulas on the list by modus ponens. We write I ¢ instead of () - ¢. <



Example . - 3z(a A B) = Jza A Jzb.

1. Vz(-a— —(aAp)) Instance of Axiom 1
2. Ve(-a— —(aAp)) = Ve-a = Ve-(a A p)) Instance of Axiom 3
3. Vzoa — Vz-(aApB) MP 1,2
4. (Vz-a = Vr-(aAp)) = (-Vz—-(a A ) — =Vz—a) Instance of Axiom 1
5. =Vz=(aAB) - Ve« MP 3.4
6. Jzx(aAp)— Jza Definition of ‘3’
7. Vz(=8 = -(anp)) Instance of Axiom 1
8. Vz(=8—= (anp)) = (Vz-5 = Ve-(a A B)) Instance of Axiom 3
9. Vz—-f —= Vz-(aAp) MP 7.8
10. (Vz=f8 = Vz—=(a A B)) = (=Ve—(a A B) - —Vz—F) Instance of Axiom 1
11. —Vz—(a A B) — —Ve-p MP 9,10
12. Jz(aApB) — Jzp Definition of ‘3’
13. (Fz(aAp) = Jza) = ((Fx(a A B) = Jxp)

— (Fzx(a A p) = Bra A3xp))) Instance of Axiom 1
14. (Bz(aAp) — Jzp) — Bx(aAp) = (JzaATzp)) MP 6,13
15. Jz(aAB) = (Fza A3zp) MP 12, 14

Basic Model Theory

A set of formulas T' is inconsistent provided 7" F L (where L is a formula of the form
0 # S(0). A set of formulas T" is consistent if it is not inconsistent.

Suppose that T is a set of sentences. Then Cn(T) = {¢ | T F ¢} is the set of (first-order)
consequences of 7.

Suppose that A is a first-order model. Then, Th(A) = {¢ | ¢ is a sentence and A = ¢} is
the theory of A. For example, Th(Ns) is the set of sentences of Lg true in Ng; and Th(N)
is the set of sentences of L4 true in A/ (the theory of true arithmetic).

A set of sentences T' is satisfiable if there is a model A such that A = T (where A =T
means A = ¢ for each ¢ € T').
A theory is a set of sentences. (Sometimes

A theory is (effectively) axiomatizable provided there is recursive set A of sentences (and
possibly rules) such that Cn(A) = T. A theory T is finitely axiomatizable provided there
is a finite set A of sentences (and possibly rules) such that Cn(A) = T.

A theory T' (in the language £) is negation-complete provided for every sentence of ¢ in
L, either T F ¢ or T F —p.

A theory T is decidable provided the set Cn(T) is recursive.

Some useful observations and Theorems:



e If £ is a first-order language constructed from a signature of size k (where x is a cardinal),
then |£| = max{Ng,x} (R is the first countable cardinal). Thus, there are countably many
formulas of L 4.

e The set L of well-formed formulas (wff) is recursive.

o If T is effectively axiomatizable, then Cn(T) is semidecidable.

o If T is effectively axiomatizable and negation-complete, then Cn(T) is decidable.

o Model Construction Theorem. Every consistent set of formulas has a model.

e Compactness Theorem. If every finite subset of T' is satisfiable, then T is satisfiable.

e Lowenheim-Skolem Theorem. If T has a model, then T has a countable model. A model
A is countable provided the domain of A is countable (i.e., |A| is countable). The upward
Lowenheim-Skolem Theorem states that if 7" has a model, then it has a model of any infinite
cardinality .

Two structures A and B are elementarily equivalent, denoted A = B, provided for every
sentence ¢, A = ¢ iff B = ¢ (i.e., Th(A) = Th(B)).

Definition 4.1 (Isomorphism) Suppose that A and B are two models. A function f : |A| — |B]
is an isomorphism provided

e f is a bijection

e For all constants ¢ € C, f(c*) =B

o f(FAa1,...,a,)) = FB(f(ay),..., flan))
e For all (ay,...,a,) € PAiff (f(a1),..., f(an) € P58

We write A = B when there is an isomorphism from A to B. <

Isomorphism Theorem. For any two first-order models if A & B, then A = B.

There are examples of structures that are elementarily equivalent but not isomorphic (e.g.,
(R, <) and (Q, <) cannot be distinguished by a first-order formula, but are not isomorphic since
there is no bijection function from R to Q.)

Suppose that A is a first-order structure. A set X C |A| is definable (in the language £)
provided there is a formula ¢(x) with one free variable such that

X ={a| A ¢(a)}

This definition can be readily adapted to k-ary relations X C |A|*.

Example. N is not definable in the structure (R, <). Suppose it is defined by ¢(z) in the
first-order language with equality and <. Consider o : R — R defined as h(r) = r3. Then, h
is a isomorphism between (R, <) and itself (it is an automorphism). Thus, by the Isomorphism
Theorem, (R,<) | ¢(r) iff (R,<) | ¢(h(r)). But, then v/2 ¢ N implies (R, <) £ o(+/2) iff
(R, <) = p(h(V/2)) iff (R, <) F~ ¢(2), which is a contradiction since 2 € N.



A theory T is k-categorical (where x is an infinite cardinal) provided every model of T' of size
K is isomorphic.

Los-Vaught Test. Let T be a theory in a countable language. Assume that T has no finite models.
If T is k-categorical for some cardinal k, then T is negation-complete.

Fact. If T C T', T' is satisfiable and T is negation-complete, then T = T".

A theory T satisfies quantifier elimination provided for all sentences ¢, there is a quantifier-
free formula v such that
THp&Y

Theorem. Suppose that T is a theory such that for each sentence of the form Jzx(a; A -+ A ag),
where each «; is a literal, there is a quantifier-free sentences v such that

ThH3x(ar A ANayg) <

Then, T satisfies quantifier elimination.

Example. The theory of natural numbers with successor, Th(Ng) where Ng = (N, 0, S) satisfies
quantifier elimination.
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