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1 First-Order Language

The language of predicate logic is constructed from a number of different pieces of syntax: variables,
constants, function symbols and predicate symbols. Both function and predicate symbols are
associated with an arity: the number of arguments that are required by the function or predicate.
We start by defining terms. Let V be a finite (or countable) set of variables and C a set of
constants.

Definition 1.1 (Terms) Let V be a set of variable, C a set of constant symbols and F a set of
function symbols. Each function symbol is associated with an arity (a positive integer specifying
the number of arguments). Write f (n) if the arity of f is n. A term τ is constructed as follows:

• Any variable x ∈ V is a term.

• Any constant c ∈ C is a term.

• If f (n) ∈ F is a function symbol (i.e., f accepts n arguments) and τ1, . . . , τn are terms, then
f(τ1, . . . , τn) is a term.

• Nothing else is a term.

Let T be the set of terms. /

The language of arithmetic. The language of arithmetic is constructed from a single constant
C = {0}, the function symbols F = {S,+, ∗,E}, where S is a unary function symbol and +, ∗,E are
binary function symbols. Examples of terms in this language are S(S(0)), S(x), +(x,S(S(S(0)))),
S(+(∗(x, z),S(0))).

To increase readability, we typically use infix notation rather than prefix notation. So, we write
x + y instead of +(x, y).

Terms are used to construct atomic formulas:
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Definition 1.2 (Atomic Formulas) Let P be a set of predicate symbols. Each predicate symbol
is associated with an arity (the number of objects that are related by P ). We write P (n) if the arity
of P is n. Suppose that P is an atomic predicate symbol with arity n. If τ1, . . . , τn are terms, then
P (τ1, . . . , τn) is an atomic formula. To simplify the notation, we may write Pτ1τ2 · · · τn. A special
predicate symbol ‘=’ is included with the intended interpretation equality. /

The language of arithmetic. The language of arithmetic includes two predicate symbols: equal-
ity = and less-than <. Both are binary relation symbols. Again, we use infix notation to increase
readability. Examples of formulas include S(x) = S(S(S(0))), (x + S(y ∗ S(S(S(0)))) < S(z),
S(S(0)) = S(0).

Definition 1.3 (Formulas) Formulas are constructed as follows:

• Atomic formulas P (τ1, . . . , τn) are formulas;

• If ϕ is a formula, then so is ¬ϕ;

• If ϕ and ψ are a formulas, then so is ϕ ∧ ψ;

• If ϕ is a formula, then so is (∀x)ϕ, where x is a variable;

• Nothing else is a formula.

The other boolean connectives (∨,→,↔) are defined as usual. In addition, (∃x)ϕ is defined as
¬(∀x)¬ϕ. /

The language of arithmetic. Examples of formulas in the language of arithmetic include:
¬(S(0) = S(S(0)) (this is usually written as S(0) 6= S(S(0))), ∀xS(S(S(S(S(x))))) 6= x,
∀x(x 6= 0→ ∃y(S(y) = x)

Definition 1.4 (Free Variable) Suppose that x is a variable. Then, x occurs free in ϕ is
defined as follows:

1. If ϕ is an atomic formula, then x occurs free in ϕ provided x occurs in ϕ (i.e., is a symbol in
ϕ).

2. x occurs free in ¬ψ iff x occurs free in ψ

3. x occurs free in ψ1 ∧ ψ2 iff x occurs free in ψ1 or x occurs free in ψ2

4. x occurs free in (∀y)ψ iff x occurs free in ψ and x 6= y

5. x occurs free in (∃y)ψ iff x occurs free in ψ and x 6= y /

The set of free variables in ϕ, denoted Fr(ϕ), is defined by recursion as follows:

1. If ϕ is an atomic formula, then Fr(ϕ) is the set of all variables (if any) that occur in ϕ

2. If ϕ is ¬ψ, then Fr(¬ϕ) = Fr(ϕ)

3. If ϕ is ψ1 ∧ ψ2, then Fr(ϕ) = Fr(ψ1) ∪ Fr(ψ2)
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4. If ϕ is (∀x)ψ, then Fr(ψ) = Fr(ψ) after removing x, if present.

A variable x that is not free is said to be bound. Formulas that do not contain any free
variables are called sentences:

Definition 1.5 (Sentence) If ϕ is a formula and Fr(ϕ) = ∅ (i.e., there are no free variables), then
ϕ is a sentence. /

1.1 Substitutions

If τ and τ ′ are terms, we write τ [x/τ ′] for the terms where x is replaced by τ ′. We can formally
define this operation by recursion:

• x[x/τ ′] = τ ′

• y[x/τ ′] = y for x 6= y

• c[x/τ ′] = c

• F (τ1, . . . , τn)[x/τ ′] = F (τ1[x/τ
′], . . . , τn[x/τ ′])

The same notation can be used for formulas ϕ[x/τ ] which means replace all free occurrences of x
with τ in a formula ϕ. This is defined as follows:

• P (τ1, . . . , τn)[x/τ ] = P (τ1[x/τ ], . . . , τn[x/τ ])

• ¬ψ[x/τ ] = ¬(ϕ[x/τ ])

• (ψ1 ∧ ψ2)[x/τ ] = ψ1[x/τ ] ∧ ψ2[x/τ ]

• ((∀x)ϕ)[x/τ ] = (∀x)ϕ

• ((∀y)ϕ)[x/τ ] = (∀y)ϕ[x/τ ], where y 6= x

The following are key examples of this operation:

1. (x = y)[y/x] is x = x and (x = y)[x/y] is y = y,

2. (∀x(x = y))[x/y] is (∀x)x = y,

3. (∀x(x = y))[y/x] is (∀x)x = x,

4. (∀x)¬(∀y)(x = y)→ (¬∀y(x = y))[x/y] is (∀x)¬(∀y)(x = y)→ ¬∀y(y = y).

Definition 1.6 (Substitutability) A term τ is substitutable for x in ϕ is defined as follows:

• For an atomic formula ϕ, τ is always substitutable for x in ϕ (there are no quantifiers, so t
can always be substituted for x)

• τ is substitutable for x in ¬ψ iff τ is is substitutable for x in ψ

• τ is substitutable for x in ψ1 ∧ψ1 iff τ is is substitutable for x in ψ1 and τ is is substitutable
for x in ψ2

• τ is substitutable for x in (∀y)ψ iff either

1. x does not occur free in (∀y)ψ

2. y does not occur in τ and τ is substitutable for x in ψ. /
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2 Models

2.1 Interpreting Terms

Suppose that W is a set. An interpretation I (for W ) associates with each functions symbol F
a function on W of the appropriate arity, denoted F I , and to each constant c an element of W ,
denoted cI . If W is a set and I an interpretation, then for a function symbol F of arity n,

F I : W × · · · ×W︸ ︷︷ ︸
n times

→W

For each constant symbol, c, we have
cI ∈W

Our goal is to show how to associate with each term and element of a set W . We first need the
notion of a substitution:

Definition 2.1 (Substitution) Suppose that W is a nonempty set. A substitution is a function
s : V →W . /

Definition 2.2 (Interpretation of Terms) Suppose that I is an interpretation for W and s :
V →W is a substitution. We define the function (I, s) : T →W by recursion as follows:

• (I, s)(x) = s(x)

• (I, s)(c) = cI

• (I, s)(F (τ1, . . . , τn)) = F I((I, s)(τ1), . . . , (I, s)(τn)) /

Suppose that s : V → W is a substitution. If a ∈ W , we define a new substitution s[x/a] as
follows:

s[x/a](y) =

{
a if y = x

s(x) otherwise

Suppose that s : V → W and s′ : V → W are two substitutions. For each variable x ∈ V, we
define a relation on the set of substitutions as follows:

s ∼x s′ iff s(y) = s′(y) for all y 6= x

Hence, s ∼x s′ provided there is some a ∈W such that s′ = s[x/a].

2.2 First Order Models

Definition 2.3 (Model) A model is a pair A = 〈W, I〉 where W is a nonempty set (called the
domain) and I is a function (called the interpretation) assigning to each function symbol F , a
function denoted F I , to each constant symbol, an element of W denoted cI and to each predicate
symbol P , a relation on W of the appropriate arity. If P has arity n, then we have

P I ⊆W × · · · ×W︸ ︷︷ ︸
n times

If A is a model, we write |A| for the domain of A, and we write FA, cA and PA to denote F I , cI

and P I , respectively. /
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We say s is a substitution for A provided s : V → |A|. Let A = 〈W, I〉 be a model. For each
term τ , we write τA,s for (I, s)(τ).

Definition 2.4 (Truth) Suppose that A is a model and s is a substitution for A. The formula ϕ
is true in A (given s), denoted A, sϕ, is defined by recursion as follows:

• A, s |= P (τ1, . . . , τn) iff (τA,s
1 , . . . , τA,s

n ) ∈ PA

• A, s |= ¬ψ iff A, s 6|= ψ

• A, s |= ψ1 ∧ ψ2 iff A, s |= ψ1 and A, s |= ψ2

• A, s |= (∀x)ψ iff for all substitutions s′ for A if s ∼x s′, then A, s′ |= ψ /

Models of arithmetic Recall that N denotes the set of natural numbers (i.e., the integers greater
than or equal to 0). We will be interested in the following languages and models

• NS = (N,0,S) with the language LS constructed from the constant 0 and function symbol S
(and the equality symbol). So, LS is a subset of the language of arithmetic LA.

• NP = (N,0,S,+) with the language LP constructed from the constant 0 and function symbols
S and + (and the equality symbol). So, LP is a subset of the language of arithmetic LA

• N = (N,0,S,+, ∗, <) with the language of arithmetic LA.

3 Deductions in First Order Logic

An axiom system for first-order logic consists of the following four axioms (there are others, this is
the one from Enderton’s Introduction to Mathematical Logic):

1. All tautologies

2. (∀x)ϕ→ ϕ[x/t], where τ is substitutable for x in ϕ

3. (∀x)(ϕ→ ψ)→ ((∀x)ϕ→ (∀x)ψ)

4. ϕ→ (∀x)ϕ, where x does not occur free in ϕ

Definition 3.1 (Generalization) Given a formula ϕ, a generalization of ϕ is a formula of the
form (∀x1) · · · (∀xn)ϕ. /

Definition 3.2 (Tautology) A tautology (in FOL) is any formula obtained by replacing each
atomic proposition with a first-order formula. /

Definition 3.3 (Deduction) We write Γ ` ϕ iff there is a finite sequence of formulas ϕ1, . . . , ϕn

such that ϕn = ϕ, each ϕi is either a generalization of one of the above axioms, is an element of Γ,
or follows from earlier formulas on the list by modus ponens. We write ` ϕ instead of ∅ ` ϕ. /
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Example . ` ∃x(α ∧ β)→ ∃xα ∧ ∃xβ.

1. ∀x(¬α→ ¬(α ∧ β)) Instance of Axiom 1
2. ∀x(¬α→ ¬(α ∧ β))→ (∀x¬α→ ∀x¬(α ∧ β)) Instance of Axiom 3
3. ∀x¬α→ ∀x¬(α ∧ β) MP 1,2
4. (∀x¬α→ ∀x¬(α ∧ β))→ (¬∀x¬(α ∧ β)→ ¬∀x¬α) Instance of Axiom 1
5. ¬∀x¬(α ∧ β)→ ¬∀x¬α MP 3,4
6. ∃x(α ∧ β)→ ∃xα Definition of ‘∃’
7. ∀x(¬β → ¬(α ∧ β)) Instance of Axiom 1
8. ∀x(¬β → ¬(α ∧ β))→ (∀x¬β → ∀x¬(α ∧ β)) Instance of Axiom 3
9. ∀x¬β → ∀x¬(α ∧ β) MP 7,8
10. (∀x¬β → ∀x¬(α ∧ β))→ (¬∀x¬(α ∧ β)→ ¬∀x¬β) Instance of Axiom 1
11. ¬∀x¬(α ∧ β)→ ¬∀x¬β MP 9,10
12. ∃x(α ∧ β)→ ∃xβ Definition of ‘∃’
13. (∃x(α ∧ β)→ ∃xα)→ ((∃x(α ∧ β)→ ∃xβ)

→ (∃x(α ∧ β)→ (∃xα ∧ ∃xβ))) Instance of Axiom 1
14. (∃x(α ∧ β)→ ∃xβ)→ (∃x(α ∧ β)→ (∃xα ∧ ∃xβ)) MP 6,13
15. ∃x(α ∧ β)→ (∃xα ∧ ∃xβ) MP 12, 14

4 Basic Model Theory

• A set of formulas T is inconsistent provided T ` ⊥ (where ⊥ is a formula of the form
0 6= S(0). A set of formulas T is consistent if it is not inconsistent.

• Suppose that T is a set of sentences. Then Cn(T ) = {ϕ | T ` ϕ} is the set of (first-order)
consequences of T .

• Suppose that A is a first-order model. Then, Th(A) = {ϕ | ϕ is a sentence and A |= ϕ} is
the theory of A. For example, Th(NS) is the set of sentences of LS true in NS ; and Th(N )
is the set of sentences of LA true in N (the theory of true arithmetic).

• A set of sentences T is satisfiable if there is a model A such that A |= T (where A |= T
means A |= ϕ for each ϕ ∈ T ).

• A theory is a set of sentences. (Sometimes

A theory is (effectively) axiomatizable provided there is recursive set A of sentences (and
possibly rules) such that Cn(A) = T . A theory T is finitely axiomatizable provided there
is a finite set A of sentences (and possibly rules) such that Cn(A) = T .

A theory T (in the language L) is negation-complete provided for every sentence of ϕ in
L, either T ` ϕ or T ` ¬ϕ.

A theory T is decidable provided the set Cn(T ) is recursive.

Some useful observations and Theorems:
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• If L is a first-order language constructed from a signature of size κ (where κ is a cardinal),
then |L| = max{ℵ0, κ} (ℵ0 is the first countable cardinal). Thus, there are countably many
formulas of LA.

• The set L of well-formed formulas (wff) is recursive.

• If T is effectively axiomatizable, then Cn(T ) is semidecidable.

• If T is effectively axiomatizable and negation-complete, then Cn(T ) is decidable.

• Model Construction Theorem. Every consistent set of formulas has a model.

• Compactness Theorem. If every finite subset of T is satisfiable, then T is satisfiable.

• Löwenheim-Skolem Theorem. If T has a model, then T has a countable model. A model
A is countable provided the domain of A is countable (i.e., |A| is countable). The upward
Löwenheim-Skolem Theorem states that if T has a model, then it has a model of any infinite
cardinality κ.

Two structures A and B are elementarily equivalent, denoted A ≡ B, provided for every
sentence ϕ, A |= ϕ iff B |= ϕ (i.e., Th(A) = Th(B)).

Definition 4.1 (Isomorphism) Suppose that A and B are two models. A function f : |A| → |B|
is an isomorphism provided

• f is a bijection

• For all constants c ∈ C, f(cA) = cB

• f(FA(a1, . . . , an)) = FB(f(a1), . . . , f(an))

• For all (a1, . . . , an) ∈ PA iff (f(a1), . . . , f(an) ∈ PB

We write A ∼= B when there is an isomorphism from A to B. /

Isomorphism Theorem. For any two first-order models if A ∼= B, then A ≡ B.

There are examples of structures that are elementarily equivalent but not isomorphic (e.g.,
(R, <) and (Q, <) cannot be distinguished by a first-order formula, but are not isomorphic since
there is no bijection function from R to Q.)

Suppose that A is a first-order structure. A set X ⊆ |A| is definable (in the language L)
provided there is a formula ϕ(x) with one free variable such that

X = {a | A |= ϕ(a)}

This definition can be readily adapted to k-ary relations X ⊆ |A|k.
Example. N is not definable in the structure (R, <). Suppose it is defined by ϕ(x) in the

first-order language with equality and <. Consider h : R → R defined as h(r) = r3. Then, h
is a isomorphism between (R, <) and itself (it is an automorphism). Thus, by the Isomorphism
Theorem, (R, <) |= ϕ(r) iff (R, <) |= ϕ(h(r)). But, then 3

√
2 6∈ N implies (R, <) 6|= ϕ( 3

√
2) iff

(R, <) 6|= ϕ(h( 3
√

2)) iff (R, <) 6|= ϕ(2), which is a contradiction since 2 ∈ N.
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A theory T is κ-categorical (where κ is an infinite cardinal) provided every model of T of size
κ is isomorphic.

 Loś-Vaught Test. Let T be a theory in a countable language. Assume that T has no finite models.
If T is κ-categorical for some cardinal κ, then T is negation-complete.

Fact. If T ⊆ T ′, T ′ is satisfiable and T is negation-complete, then T = T ′.

A theory T satisfies quantifier elimination provided for all sentences ϕ, there is a quantifier-
free formula ψ such that

T ` ϕ↔ ψ

Theorem. Suppose that T is a theory such that for each sentence of the form ∃x(α1 ∧ · · · ∧ αk),
where each αi is a literal, there is a quantifier-free sentences ψ such that

T ` ∃x(α1 ∧ · · · ∧ αk)↔ ψ

Then, T satisfies quantifier elimination.

Example. The theory of natural numbers with successor, Th(NS) where NS = (N,0,S) satisfies
quantifier elimination.
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