
ON THE QUESTION OF ABSOLUTE UNDECIDABILITY†

PETER KOELLNER

The incompleteness theorems show that for every sufficiently strong con-
sistent formal system of mathematics there are mathematical statements un-
decided relative to the system.1 A natural and intriguing question is whether
there are mathematical statements that are in some sense absolutely unde-
cidable, that is, undecidable relative to any set of axioms that are justified.
Gödel was quick to point out that his original incompleteness theorems did
not produce instances of absolute undecidability and hence did not undermine
Hilbert’s conviction that for every precisely formulated mathematical question
there is a definite and discoverable answer. However, in his subsequent work
in set theory, Gödel uncovered what he initially regarded as a plausible candi-
date for an absolutely undecidable statement. Furthermore, he expressed the
hope that one might actually prove this. Eventually he came to reject this view
and, moving to the other extreme, expressed the hope that there might be a
generalized completeness theorem according to which there are no absolutely
undecidable sentences.

In this paper I would like to bring the question of absolute undecidability
into sharper relief by bringing results in contemporary set theory to bear

†I am indebted to John Steel and Hugh Woodin for introducing me to the subject and sharing
their insights into Gödel’s program. I am also indebted to Charles Parsons for his work on
Gödel, in particular, his 1995. I would like to thank Andrés Caicedo and Penelope Maddy for
extensive and very helpful comments and suggestions. I would like to thank Iris Einheuser, Matt
Foreman, Haim Gaifman, Kai Hauser, Aki Kanamori, Richard Ketchersid, Paul Larson, and
Richard Tieszen, for discussion of these topics. I would also like to thank two referees and Robert
Thomas for helpful comments. [Note added June 14, 2009: For this reprinting I have updated the
references and added a postscript on recent developments. The main text has been left unchanged
apart from the substitution of the Strong Ω Conjecture for the Ω Conjecture in the statements of
certain theorems of Woodin in Sections 4 and 5. This change was necessitated by Woodin’s recent
discovery of an oversight in one of the proofs in his HOD-analysis, an analysis that is used in
the calculation of the complexity of Ω-provability. Fortunately, this change does not significantly
alter the nature of the case for the failure of CH. More importantly, it opens up the way for an
important new inner model, something we discuss in items 3 and 4 of the postscript.]

1Strictly speaking this is Rosser’s strengthening of the first incompleteness theorem. Gödel
had to assume more than consistency.

Kurt Gödel: Essays for his Centennial
Edited by Solomon Feferman, Charles Parsons, and Stephen G. Simpson
Lecture Notes in Logic, 33
c⃝ 2010, Association for Symbolic Logic 189



190 PETER KOELLNER

on it. The question is intimately connected with the nature of reason and the
justification of new axioms and this is why it seems elusive and difficult. It
is much easier to show that a statement is not absolutely undecidable than
to show either that a statement is absolutely undecidable or that there are no
absolutely undecidable statements. For the former it suffices to find and justify
new axioms that settle the statement. But the latter requires a characterization
(or at least a circumscription) of what is to count as a justification and it is
hard to see how we could ever be in a position to do this. Some would
claim that the proliferation of independence results relative to the standardly
accepted axioms ZFC already vindicate such a position and that we must be
content with studying the consequences of ZFC and taking a relativist stance
toward systems that lie beyond.2 Others would go further and claim that
the independence results lend credibility to a general skepticism about the
transfinite and undercut the support for ZFC itself.3 In this paper I will take
a non-skeptical stance toward set theory and assume that as far as its basic
features are concerned the enterprise is legitimate. This is not because I think
that the subject is immune to criticism. There are many coherent stopping
points in the hierarchy of increasingly strong mathematical systems, starting
with strict finitism and moving up through predicativism to the higher reaches
of set theory. One always faces difficulties in arguing across the divide between
coherent positions. This occurs already at the bottom with strict finitism—for
example, it is hard to give a strict finitist such as Nelson [1986] a non-circular
justification of the totality of exponentiation. But it is of interest to spell
out each position and this is what I will be doing here for strong systems of
set theory.

Starting with a generally non-skeptical stance toward set theory I will argue
that there is a remarkable amount of structure and unity beyond ZFC and
that a network of results in modern set theory make for a compelling case for
new axioms that settle many questions undecided by ZFC. I will argue that
most of the candidates proposed as instances of absolute undecidability have
been settled and that there is not currently a good argument to the effect that
a given sentence is absolutely undecidable.

The plan of the paper is as follows. In §1 I will introduce the themes of the
paper through a historical discussion that focuses on three stages of Gödel’s
thought: (1) The view of 1939 according to which there is an absolutely unde-
cidable sentence. (2) The view of 1946 where Gödel introduces the program
for large cardinal axioms and entertains the possibility of a generalized com-
pleteness theorem according to which there are no statements undecidable
relative to large cardinal axioms. (3) The mature view in which Gödel broad-
ens the program for new axioms and gives his most forceful statements about

2See Shelah [2003].
3See Feferman [1999].
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the nature and power of reason in mathematics.4 In the remainder of the
paper these views will be clarified and assessed in light of modern develop-
ments in set theory.5 In §2 I take up the view of 1939, where Gödel appears to
have restricted his attention to “intrinsic” justifications of new axioms. I give
a precise circumscription of the view in terms of “reflection principles” and
state a theorem which shows that on this reconstruction the sentence Gödel
proposed is indeed absolutely undecidable relative to the limited view he held.
In §3 I turn to the later views which involve “extrinsic” justifications of new
axioms. I argue that a network of theorems make for a compelling case for
new axioms that settle many of the statements undecided by ZFC and, more-
over, that there is a precise sense in which Gödel’s program for large cardinals
is a complete success “below” the sentence he proposed as a test case—the
continuum hypothesis. In §4 I examine recent work of Hugh Woodin on the
continuum hypothesis, which involves going “beyond” large cardinal axioms.
Finally, in §5 I give a reconstruction of Gödel’s view of 1946 in terms of the
“logic of large cardinals”, summarize where we now stand with regard to ab-
solute undecidability and look at three possible scenarios for how the subject
might unfold.6

I have tried to write the paper in such a way that the major ideas and
arguments can be understood without knowing more than the basics of set
theory. Most of the more technical material has been placed in parentheses
or footnotes or occurs in the statements of various theorems. This material
can be skimmed on a first reading since I have paraphrased most of it in
non-technical terms in the surrounding text.7

§1. Gödel on new axioms.
1.1. Relative versus absolute undecidability. The inherent limitations of the

axiomatic method were first brought to light by the incompleteness theorems.8

Consider the standard axiomatization PA of arithmetic and let Con(PA) be
the arithmetical statement expressing the consistency of PA. In the context of
this formal system the second incompleteness theorem states:

4The mature view has its roots in 1944 but is primarily contained in texts that date from 1947
onward.

5For a related discussion, one that contains a more comprehensive account of the development
of Gödel’s views on absolute undecidability and that treats of a number of similar modern themes,
see Kennedy and Atten [2004].

6Gödel’s views are also discussed from a contemporary perspective in Koellner [2003] although
there the emphasis is on intrinsic rather than extrinsic justifications.

7For unexplained notation and further background see Jech [2003] and Kanamori [1997].
8In my reading of Gödel’s unpublished manuscripts I have benefited from Parsons [1995],

the editors’ introductions to Gödel [1995], and Kennedy and Atten [2004]. See the latter for a
detailed discussion of the development of Gödel’s views on absolute undecidability.
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Theorem 1 (Gödel [1931]). Assume that PA is consistent. Then PA !
Con(PA).9

If one strengthens the assumption to the truth of PA then the conclusion
can be strengthened to the relative undecidability of Con(PA).10 There is
a sense, however, in which such instances of incompleteness are benign since
to the extent that we are justified in accepting PA we are justified in accepting
Con(PA) and so we know how to expand the axiom system so as to overcome
the limitation.11 The resulting system faces a similar difficulty but we know
how to overcome that limitation as well, and so on.

There are other, more natural, ways of expanding the system in a way that
captures the undecided sentence. Let us consider two. For the first note
that implicit in our acceptance of PA is our acceptance of induction for any
meaningful predicate on the natural numbers. So we are justified in accepting
the system obtained by expanding the language to include the truth predicate
and expanding the axioms by adding the elementary axioms governing the
truth predicate and allowing the truth predicate to figure in the induction
scheme. The statement Con(PA) is provable in the resulting system. This
procedure can be iterated into the transfinite in a controlled manner along the
lines indicated in Feferman [1964] and Feferman [1991] to obtain a system
which (in a slightly different guise) is known as predicative analysis.

The second approach is even more natural since it involves moving to a
system that is already familiar from classical mathematics. Here we simply
move to the system of next “higher type”, allowing variables that range over
subsets of natural numbers (which are essentially real numbers). This system is
known as analysis or second-order arithmetic. It is sufficiently rich to define the
truth predicate and sufficiently strong to prove Con(PA) and much more. One
can then move to third-order arithmetic and so on up through the hierarchy
of higher types. (For the purposes of this paper it will be convenient to use
the cumulative hierarchy of types defined by letting V0 = ∅, Vα+1 = P(Vα),
and V" = ∪α<"Vα for limit ordinals ". The universe of sets V is defined to
be ∪α<ORDVα where ORD is the class of ordinals. The first infinite stage V#
of this hierarchy is essentially the set of natural numbers and the theory of
this stage is essentially first-order arithmetic; the next stage V#+1 is essentially
the set of real numbers and the theory of this stage is essentially second-
order arithmetic, and so on. Thus to pass up through the higher orders of

9Here the consistency predicate is assumed to be standard in that it derives from a formalized
provability predicate that satisfies the Hilbert-Bernays-Löb derivability conditions and involves a
Σ0

1-enumeration of the axioms. This general form of the theorem is due to Feferman [1960], as is
the result that the theorem can fail if the above conditions are not met.

10It suffices to strengthen the assumption to the 1-consistency of PA.
11To the skeptic who doubts that we are justified in accepting PA one can remark that if

Con(PA) is indeed an instance of a limitation—that is, if it is independent—then it must be true
since PA is Σ0

1-complete and Con(PA) is a Π0
1-statement.
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arithmetic is to pass through the stages of set theory.) This second approach
is much stronger than the first. Already at the first stage of the process (i.e. in
second-order arithmetic) one can prove the consistency of predicative analysis
and settle fairly natural arithmetical sentences (such as Harvey Friedman’s
finite form of Kruskal’s theorem) that are known to be beyond the reach of
predicative analysis.

It is of interest to note that Gödel knew much of this quite early on and that
in the second installment of his incompleteness paper (which never appeared)
he had planed to take the second approach. Gödel alluded to this already
in his original incompleteness paper but he was more explicit in unpublished
manuscripts and in his correspondence. For example, Gödel [*1931?] says of
his undecidable arithmetical sentence that it is

not at all absolutely undecidable; rather, one can always pass to
“higher” systems in which the sentence in question is decidable . . .
In particular, for example, it turns out that analysis is a system
higher in this sense than number theory, and the axiom system of
set theory is higher still than analysis. (p. 35)

That this involves the definition of ‘truth’ is made clear in two letters to
Carnap. In a letter of Sept. 11, 1932 Gödel says that “in the second part of
my work I will give a definition of ‘truth’” and in a letter of Nov. 28, 1932 he
continues, saying that “with its help one can show that undecidable sentences
become decidable in systems which ascend farther in the sequence of types.”
Thus, although the above instances are undecidable relative to a system they
are not absolutely undecidable.

1.2. Candidates for absolutely undecidable sentences. The trouble is that
once we move beyond arithmetic to analysis and set theory, the vastly greater
expressive resources raise the possibility of sentences that are not decided
at any level. We will focus on three candidates for absolutely undecidable
sentences.

To describe the first candidate we will need to invoke the notion of a pro-
jective set of reals and the stratification of the projective sets of reals into
the subclasses Σ∼

1
1, Σ∼

1
2, . . . ,Σ∼

1
n, . . . The details of this classification will not be

important. The important point is that these are “simple” sets of reals and
that the stratification is one of increasingly complexity.12 The early French

12Here are some further details: For the purposes of this paper we will regard the reals as
elements of ## , that is, as infinite sequences of natural numbers. We will also use the more
familiar notation ‘R’ for ## . As a topology on ## we take the product topology of the discrete
topology on #. As a topological space ## is homeomorphic to the standard space of irrationals.
In addition to this space we will also be interested in the n-dimensional product spaces (##)n .
Given a subset A of (##)n+1 the complement of A is just the set of elements not in A and
the projection of A is the result of “projecting” A onto the space (##)n by “erasing” the last
coordinate. The simplest sets of such a space are the closed sets. From these we can obtain more
complex sets by iteratively applying the operations of complementation and projection. The Σ∼

1
1
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and Russian analysts studied the projective sets and established some of their
basic properties. For example, in 1917 Luzin showed that the Σ∼

1
1 sets are

Lebesgue measurable. However, it remained open whether all of the projec-
tive sets are Lebesgue measurable. Indeed this problem proved so intractable
that Luzin [1925] was led to conjecture that it is absolutely undecidable, saying
that “one does not know and one will never know whether it holds”. Our first
candidate for an absolutely undecidable statement is thus the statement PM
that all projective sets of reals are Lebesgue measurable.

Our second candidate is as old as set theory itself. This is Cantor’s contin-
uum hypothesis (CH), which says that for every infinite set X of reals there
is either a one-to-one correspondence between X and the natural numbers
or between X and the real numbers. Cantor showed that there is no closed
set of reals that is a counter example to CH and in 1917 Luzin improved
this by showing that there is no Σ∼

1
1 counter-example. However, it remained

open whether there is a projective counter-example and whether there is any
counter-example whatsoever. This problem resisted the efforts of many peo-
ple (including Hilbert) and Skolem [1923] conjectured that CH is relatively
undecidable, saying that “it is quite probable that what is called the continuum
problem . . . is not solvable at all on this basis [that is, on the basis of Zermelo’s
axioms]”. Many today have gone further in maintaining that CH is absolutely
undecidable.

Skolem’s conjecture was borne out by the following companion results of
Gödel and Cohen:

Theorem 2 (Gödel, 1938). If ZFC is consistent then ZFC + CH is
consistent.

Theorem 3 (Cohen, 1963). If ZFC is consistent then ZFC + ¬CH is
consistent.

The first result is proved via the method of inner models, in this case by using
the class L of constructible sets. This class is defined much like V except that
in passing from one stage to the next, instead of taking all arbitrary subsets of
the previous stage one takes only those which are definable with parameters.
This brings us to our third candidate, namely, the statement V =L asserting
that all sets are constructible. Gödel showed that if ZFC is consistent then

sets are the projections of closed sets and the Σ∼
1
n+1 sets are the projections of complements of Σ∼

1
n

sets. The Π∼
1
n sets are the complements of Σ∼

1
n sets and a set is ∆∼

1
n if it is both Σ∼

1
n and Π∼

1
n . The

projective sets are the sets that are Σ∼
1
n for some n < #. There is an equivalent classification in

terms of definability. The projective sets of reals are the sets of reals that are definable (with real
parameters) in second-order arithmetic. Here existential quantification over the reals corresponds
to projection, negation corresponds to complementation, and the hierarchy Σ∼

1
1,Σ∼

1
2, . . . parallels

the classification of formulas in terms of quantifier complexity. We will also use the notation Σ1
1,

Σ∼
1
1 etc. to classify the corresponding sentences. When the symbol ‘∼’ is absent this indicates that

real parameters are not allowed.
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so is ZFC + V =L and moreover that the latter implies CH. This gives the
first result. The second result is proved via Cohen’s more radical method of
forcing or outer models. Here one uses a partial order P in V to approximate
a generic object G ⊆ P and a generic extension V [G ]. This is done in such a
way that truth in V [G ] can be controlled in V and, by varying the choice of
P, one can vary the features of V [G ]. Cohen used this method to construct
models of ZFC + V ̸= L and ZFC + ¬CH, thus completing the proof that
V =L and CH are independent of ZFC. These dual methods have been used
to show that a host of problems in mathematics are independent of ZFC.
For example, Gödel showed that in L there is a Σ1

2 well ordering of the reals
and so this inner model satisfies ZFC +¬PM; and (assuming an inaccessible)
Solovay constructed an outer model satisfying ZFC + PM. Other notable
examples of statements that are independent of ZFC are Suslin’s hypothesis,
Kaplanski’s conjecture and the Whitehead problem in group theory. All of
these statements are candidates for absolutely undecidable sentences.

The above statements of analysis and set theory differ from the early arith-
metical instances of incompleteness in that their independence does not imply
their truth. Moreover, it is not immediately clear whether they are settled at
any level of the hierarchy. They are much more serious cases of independence.
The question is whether they are instances of absolute undecidability and, if
so, how one might go about showing this.

1.3. The view of 1939: Absolute undecidability. Initially Gödel thought that
it was “very likely” that V =L is absolutely undecidable and he seems to have
thought that one could show this. In his*1939b he says that

the consistency of the proposition [V =L] (that every set is con-
structible) is also of interest in its own right, especially because
it is very plausible that with [V =L] one is dealing with an ab-
solutely undecidable proposition, on which set theory bifurcates
into two different systems, similar to Euclidean and non-Euclidean
geometry. (p. 155)

Similar remarks appear in his*193? and*1940a. In*193? the discussion centers
around Hilbert’s conviction that “for any precisely formulated mathematical
question a unique answer can be found”, which Gödel elaborates informally as:
“Given an arbitrary mathematical propositionA there exists a proof either for
Aor for not-A, where by “proof” is meant something which starts from evident
axioms and proceeds by evident inferences”. He then notes that “formulated
in this way the problem is not accessible for mathematical treatment because
it involves the non-mathematical notion of evidence.” So one must render
the notion of “proof” mathematically precise. He first does this in terms
of provability in a given formal system and argues (as we have above) that
when regimented in this way “the conviction about which Hilbert speaks
remains entirely untouched” by his incompleteness results since the statements
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in question are “always decidable by evident inferences not expressible in
the given formalism” (p. 164). However, he goes on to say that there are
“[q]uestions connected with Cantor’s continuum hypothesis” which “very
likely are really undecidable.” He concludes by saying: “So far I have not
been able to prove their undecidability, but there are considerations which
make it highly plausible that they really are undecidable” (175). In*1940a
Gödel starts by saying that “A is very likely a really undecidable proposition
(quite different from the undecidable proposition which I constructed some
years ago and which can always be decided in logics of higher types).” Here ‘A’
is Gödel’s abbreviation for “all reals are constructible” (and also for V =L).
He then says that he can prove that “[e]ither A is absolutely undecidable or
Cantor’s continuum hypothesis is demonstrable” but that he has “not been
able to determine which of these two possibilities is realized” (185). So it
appears that Gödel thought that one might be in a position to establish that
A and V =L are absolutely undecidable.

It is difficult to see what he could have hoped to prove. The trouble is it would
appear that any precise characterization of the notion of absolute provability
would fall short of the full notion since one would be able to “diagonalize out”
as in the construction of the Gödel sentence. This, however, does not rule
the possibility of encompassing the notion. The strategy would be to give a
precise characterization of a notion that encompassed the notion of absolute
provability and then prove a theorem to the effect that V =L is beyond the
reach of this notion. In Section 2, I will suggest a reconstruction along these
lines, one that seems to be faithful to the limited view that Gödel held at
the time.

1.4. The view of 1946: Generalized completeness. The notion of absolute
provability (referred to by Gödel as ‘absolute demonstrability’) is revisited in
his Princeton address of 1946. His model is Turing’s analysis of computability
which has the feature that “[b]y a kind of miracle it is not necessary to dis-
tinguish orders, and the diagonal procedure does not lead outside the defined
notion” (p. 150). After noting that any particular formalism can be tran-
scended and that “there cannot exist any formalism which would embrace all
these steps”, Gödel says that “this does not exclude that all these steps . . .
could be described and collected together in some non-constructive way.” He
continues:

In set theory, e.g., the successive extensions can most conveniently
be represented by stronger and stronger axioms of infinity. It is
certainly impossible to give a combinatorial and decidable charac-
terization of what an axiom of infinity is; but there might exist, e.g.,
a characterization of the following sort: An axiom of infinity is a
proposition which has a certain (decidable) formal structure and
which in addition is true. (p. 151)
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This is a natural idea. Earlier we saw that the arithmetical instances of
undecidability that arise at one stage of the hierarchy are settled at the next.
We then expressed the concern that there might be statements of analysis or
set theory that are not settled at “any” stage of the hierarchy. In saying this
we were not precise about just what stages of the hierarchy there are. Large
cardinal axioms make this more precise by asserting that there are stages Vα
with certain “largeness” properties. These axioms are intrinsically plausible
and provide a canonical way of climbing the hierarchy of consistency strength.
Some of the standard large cardinals (in order of increasing (logical) strength)
are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable,
strong, Woodin, supercompact, huge, etc.13

Gödel goes on to say of such a concept of provability that it “might have
the required closure property, i.e., the following could be true: Any proof for
a set-theoretic theorem in the next higher system above set theory (i.e., any
proof involving the concept of truth which I just used) is replaceable by a proof
from such an axiom of infinity.” Furthermore, he entertains the possibility of
a generalized completeness theorem:

It is not impossible that for such a concept of demonstrability
some completeness theorem would hold which would say that every
proposition expressible in set theory is decidable from the present
axioms plus some true assertion about the largeness of the universe
of all sets. (Gödel [1946, p. 151])

Thus as an absolute concept of provability he proposes “provability from
(true) large cardinal axioms”. So Gödel went from thinking in 1939 that
it was very likely that V =L is absolutely undecidable (and that there was
a bifurcation in set theory) to thinking that there might be no absolutely
undecidable sentences.

1.5. The program for new axioms. Let us call the program of using large
cardinal axioms to settle questions undecided in ZFC the program for large
cardinal axioms. If successful such a program would reduce all questions of set
theory to questions concerning large cardinals. The question of how one might
establish a “true assertion about the largeness of the universe” is touched on
in his1944 and taken up in the 1947/1964 paper on the continuum hypothesis.
Gödel distinguishes between intrinsic and extrinsic justifications. In the first
version of the paper intrinsic justifications are taken to involve an analysis of
the concept of set and lead to “small” large cardinals such those asserting the
existence of inaccessible cardinals and Mahlo cardinals. Regarding axioms
asserting the existence of “large” large cardinals such as measurable cardinals
he says it has not yet been made clear “that these axioms are implied by the
general concept of set in the same sense as Mahlo’s”. However, he holds

13We will not be able to discuss large cardinal axioms in detail. See Kanamori [1997] for
further details.
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out hope that “there may exist, besides the usual axioms, the axioms of
infinity, and the axioms mentioned in footnote 18, other (hitherto unknown)
axioms of set theory which a more profound understanding of the concepts
underlying logic and mathematics would enable us to recognize as implied by
these concepts” (Gödel [1964], p. 261, revised footnote of September 1966).
In the later version of the paper intrinsic justifications are elaborated in terms
of rational intuition. In both versions the scope of intrinsic methods is held
to be potentially broader than in his earlier writings and leads to the more
general program for new axioms.

Extrinsic justifications are discussed in both versions of the paper. They
were discussed already in Gödel [1944]. Here Gödel embraces Russell’s re-
gressive method for discovering the axioms, according to which

the axioms need not necessarily be evident in themselves, but rather
their justification lies (exactly as in physics) in the fact that they
make it possible for these “sense perceptions” to be deduced. . . .
I think that . . . this view has been largely justified by subsequent
developments, and it is to be expected that it will be still more so in
the future. (p. 127)

This view is elaborated on in the paper on the continuum problem:

. . . even disregarding the intrinsic necessity of some new axiom,
and even in case it has no intrinsic necessity at all, a probable
decision about its truth is possible also in another way, namely,
inductively by studying its “success”. Success here means fruitful-
ness in consequences, in particular in “verifiable” consequences,
i.e., consequences demonstrable without the new axioms, whose
proofs with the help of the new axiom, however, are considerably
simpler and easier to discover, and make it possible to contract into
one proof many different proofs. . . . There might exist axioms so
abundant in their verifiable consequences, shedding so much light
upon a whole field, and yielding such powerful methods for solving
problems (and even solving them constructively, as far as that is
possible) that, no matter whether or not they are intrinsically nec-
essary, they would have to be accepted at least in the same sense as
any well-established physical theory. (Gödel [1964, p. 261])

In his*1961/? Gödel upheld “the belief that for clear questions posed by
reason, reason can also find clear answers” (p. 381). And in a letter of
Sept. 29, 1966 to Church, he wrote:

I disagree about the philosophical consequences of Cohen’s re-
sult. In particular I don’t think realists need expect any permanent
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ramifications . . . as long as they are guided, in the choice of ax-
ioms, by mathematical intuition and by other criteria of rationality.
(Gödel [2003, p. 372])

In the end, it was his belief in extrinsic justifications and the scope of reason
that led Gödel to reject absolute undecidability and bifurcation in set theory.

In what follows I will speak of reason and evidence in mathematics but I
want to use these notions in as general and neutral a fashion as possible. I
do not wish to present a theory of reason or even to commit to such a theory,
such as one involving the notion of rational intuition. Instead I want to bring
together what I regard as the strongest reasons that we currently have for
new axioms and consider some new candidates. My aim will be to convince
the reader that the particular reasons have force, that in many instances (for
example, in the cases of definable determinacy) the case is compelling and,
looking ahead, that there are scenarios in which we would have a compelling
case with regard to CH. These are thus reasons that any general theory of
reason will have to accommodate.14

§2. Limitations of intrinsic justifications. According to the view of 1939
the statement V =L is very likely to be absolutely undecidable. Establishing
this would involve two things. First, one would have to render the problem
amenable to mathematical treatment by giving a precise circumscription of the
concept of absolute provability. Second, one would have to prove a theorem
to the effect that neither V =L nor its negation is absolutely provable on this
reconstruction.

2.1. Systems of arbitrarily high type. In his*1940a Gödel states that his
“proof [of the consistency of A] goes through for systems of arbitrarily high
type” and that “[i]t is to be expected that also ¬A will be consistent with the
axioms of mathematics”, the reason being that the inconsistency of ¬A would
“imply an inconsistency of the notion of a random sequence . . . and it seems
very unlikely that this notion should imply a contradiction” (pp. 184–185).
Notice that Gödel slides from “systems of arbitrarily high type” to “the axioms
of mathematics”. He thus implicitly identifies the need for new axioms with
the need for axioms asserting the existence of higher and higher types, that is,
with the need for large cardinal axioms.

Gödel does not discuss extrinsic justifications until 1944 and there is some
evidence that in 1939 he took all justifications to be intrinsic. For example, in
his statement of Hilbert’s conviction (quoted in §1.3) he identifies the possibil-
ity of settling a mathematical question with deducing it from “evident axioms”
by “evident inferences”. During this period his most extended discussion of
new axioms is in his*1933o. Here, in motivating the axioms of set theory
he uses a bootstrapping method to successively extend the hierarchy to levels

14For more on the notion of reason in the neutral sense I intend see Parsons [2000].
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that satisfy ZFC and much more. He does not spell out the details but the
approach appears to be driven by the idea (implicit in the concept of set) that
the totality of levels is “absolutely infinite” and hence “indefinable”. Now, the
most straightforward way of rendering precise the idea thatV is “indefinable”
is in terms of “reflection principles”. Roughly speaking such principles assert
that anything true in V falls short of characterizing V in that it is true within
some earlier level. Schematically, a reflection principle has the form

V |= ϕ(A) → ∃α Vα |= ϕα(Aα)

whereϕα( · ) is the result of relativizing the quantifiers of ϕ( · ) toVα andAα is
the result of relativizing an arbitrary parameterA toVα .15 Let us consider the
view that the only justifications of new axioms are intrinsic justifications and
that these involve spelling out the idea that the hierarchy of types is “absolutely
infinite”, an idea which in turn is rendered precise in terms of “reflection
principles”. Thus, the notion of absolute provability will be explicated in terms
of the notion of being provable from ZFC and (true) reflection principles. I am
not claiming that this is exactly what Gödel had in mind. There is too little
textual evidence. I intend it only as a rational reconstruction of his view, one
that coheres with what he says and puts us in a position to say something
precise about the purported absolute undecidability of V =L.

2.2. Extent of reflection. In order to render the general form of a reflection
principle precise we have to specify the language, the nature of the parameters,
and the method of relativization. Let us do this in stages. Consider first the
case of first-order reflection where the language and parameters are first-order.
For a first-order parameter A ∈ V and a first-order formula ϕ, ϕα(Aα) is the
result of taking Aα = A and interpreting the quantifiers in ϕ as ranging over
Vα . This is how someone “living in Vα” would interpret ϕ(A). If we let T
be the axioms of ZFC with the axioms of Infinity and Replacement removed
then it is a standard result that over T the first-order reflection scheme implies
(and, in fact, is equivalent to) Infinity and Replacement, and so even these
basic axioms of extent are subsumed by reflection principles.16 Consider next
the case of second-order reflection, where the language and parameters are
second-order. For a second-order parameter A ⊆ V and a second-order
formula ϕ, ϕα(Aα) is the result of taking Aα = A ∩ Vα and interpreting the

15There are other principles that are called ‘reflection principles’ such as the principles of
Reinhardt (which are more properly called ‘extension principles’) and modern “local reflection
principles”. Such principles are quite different than those discussed above. For a more compre-
hensive discussion see Koellner [2009a].

16[Note added June 14, 2009. The version of the first-order reflection scheme involved in this
standard result is different than the scheme discussed in the text. See Kanamori [1997], pp. 57–
58. It is subsumed by the reflection principles discussed in the text when one allows higher-order
parameters, which is our main focus.] In the second-order context one can formulate a theory
that has as its models precisely the rank initial segments Vα of the universe; in this way all of the
axioms of extent are subsumed by reflection principles. See Tait [2005a].
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second-order quantifiers in ϕ as ranging over the subsets of Vα . Again, this
is how someone “living in Vα” would interpret ϕ(A). This principle yields
inaccessible cardinals, Mahlo cardinals, weakly compact cardinals and more.
One can continue up the higher-orders into the transfinite (while keeping the
parameters of second-order) to obtain the so-called indescribable cardinals.17

These principles exhaust those envisaged in Gödel’s time.
Now, it is straightforward to show that such principles relativize to L and

are preserved under small forcing extensions that violateV =L. Hence, if one
takes the notion of absolute undecidability to be subsumed by these principles
then, from this limited vantage point, V =L really is absolutely undecidable.

One might try to go further and allow parameters of third and higher order
but in doing so one immediately encounters inconsistency (assuming that one
takes the natural course of inductively relativizing a higher-order parameter to
the set consisting of the relativizations of its members). However, Tait has de-
veloped a workable theory with higher-order parameters by placing suitable
restrictions on the language.18 He shows that the resulting principles—the
Γn-reflection principles—are stronger than those considered above (e.g. they
imply the existence of ineffable cardinals) and are consistent relative to mea-
surable cardinals. This leaves open the possibility that such principles might
settle V =L. However, building on ideas of Reinhardt and Silver one can
show the following:

Theorem 4. Assume that the Erdös cardinal κ = κ(#) exists. Then there is
a & < κ such that V& satisfies Γn-reflection for all n.19

Since such cardinals relativize to V =L it follows that even with respect to
this extended vantage point V =L remains absolutely undecidable.

Perhaps intrinsic justifications of a different nature can overcome these
limitations and secure axioms that violate V =L. This has not happened to
date.20 The kinds of justifications that have borne the most fruit and shown
the greatest promise are extrinsic justifications.

§3. Extent of the program for large cardinals. In 1961 Scott showed that if
one extends the axioms of ZFC by adding the axiom asserting the existence
of a measurable cardinal then V =L is refutable. This provided further hope

17There is a difficulty here in making sense of higher-order quantification over the entire
universe of sets. Since Gödel’s view of set theory involved an ontology of concepts (cf. Gödel
[1964, fn. 18]) this would go some way to meeting this challenge. In any case, since our concern
is with an upper bound on the view, let us take the liberal course of allowing such higher-order
reflection principles.

18See Tait [1990], Tait [1998], and Tait [2005a].
19For α ≥ # the Erdös cardinal κ(α) is the least κ such that κ → (α)<#2 , that is, the least κ

such that for each partition P : [κ]<# → 2 there is an X ∈ [κ]α such that Card(P“[X ]n) = 1 for
all n < #.

20For more on the subject see Koellner [2009a].
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that measurable cardinals might have some bearing on CH. This hope was
soon dashed by a result of Levy and Solovay:

Theorem 5 (Levy and Solovay, 1967). Suppose that κ is a measurable car-
dinal and P is a partial order such that |P| < κ. Then if G ⊆ P is V -generic,
then V [G ] |= “κ is measurable.”

Since the size of the continuum can be altered by forcing with such a
“small” partial ordering P it follows that measurable cardinals cannot settle
CH. Moreover, the argument generalizes to show that none of the familiar
large cardinal axioms can settle CH.21 Thus there can be no generalized
completeness theorem of the sort Gödel entertained in 1946 and the program
for large cardinals must be considered a failure at the level of CH.22

The remarkable fact is that the program for large cardinals has been a very
successful “below CH” (in a sense to be made precise). So, in choosing CH
as a test case for the program for large cardinals, Gödel put his finger on
precisely the point where it breaks down. The first purpose of this section is
to present a strong extrinsic case for new axioms. The second purpose is to
make precise the above claim that the program for large cardinals has been a
success “below” CH.23

3.1. Descriptive set theory. The continuum hypothesis is a statement of
third-order arithmetic—more precisely, it is a Σ2

1 statement; it asserts the
existence of a certain set of reals. The assessment of the program below CH
will involve looking at sentences of lower complexity and (correspondingly)
definable sets of reals. The most well known class of such sentences are those
of second-order arithmetic, stratified into the hierarchy Σ1

0,Σ
1
1, . . . ,Σ

1
n, . . . .

But this hierarchy can be continued into the transfinite while still remaining
below Σ2

1. This can be seen in terms of definable sets of reals. After the
sets of reals definable (with real parameters) in second-order arithmetic—the
projective sets—we have the sets of reals appearing at various levels ofL(R)—

21It is of interest to note that after learning of Cohen’s method of forcing Gödel added a revised
postscript in September 1966 to his 1947/1964 paper in which he says that “it seems to follow
that the axioms of infinity mentioned in footnote 20 [which include axioms asserting the existence
of measurable cardinals], to the extent to which they have so far been precisely formulated, are
not sufficient to answer the question of the truth or falsehood of Cantor’s continuum hypothesis”
(p. 270).

22There might, however, be a new kind of large cardinal axiom that circumvents the result of
Levy and Solovay and settles CH. In the final section we will discuss the notion of a large cardinal
axiom in a more general setting and consider an axiom that has the flavour of a large cardinal
axiom and may have the sensitivity to forcing necessary to have an influence on the size of the
continuum.

23The approach I take owes much to Steel and Woodin—in particular, Steel [2000] and
Woodin’s Logic Colloquium 2000 lecture, published as Woodin [2005a]—and I am indebted
to them for many helpful conversations. See also Hauser [2002]. For alternative approaches see
Foreman [2006] and Friedman [2006].
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the result of starting with the reals and iterating the definable powerset into
the transfinite.24

The study of definable sets of reals is known as descriptive set theory. The
central idea underlying the subject is that definable sets of reals are well
behaved. Some notable results in the classical period that illustrate this idea
are: Σ∼

1
1 sets are Lebesgue measurable (Luzin, 1917), Σ∼

1
1 sets have the property

of Baire (Luzin, 1917), Σ∼
1
1 sets have the perfect set property (Suslin, 1917), and

every Σ∼
1
2 subset of the plane can be uniformized by a Σ∼

1
2 set (Kondô, 1937).

These results are provable in ZFC but as we noted above the early analysts ran
into obstacles in extending them to higher levels of the projective hierarchy and
this led Luzin to conjecture that one would never know whether the projective
sets are Lebesgue measurable.

In the modern era of descriptive set theory it was discovered that the above
regularity properties (at a given level of complexity) are unified by a single
property—the property of determinacy (at roughly the same level). For a set
of reals A consider the game GA where two players take turns playing natural
numbers:

I a0 a1 . . .
II b0 b1 . . .

When the game is over the players will have cooperated in producing the real
number ⟨a0, b0, a1, b1, . . .⟩. We say that player I wins a round of the game if
this number is in the set A; otherwise player II wins the round. The game
GA is said to be determined if either player has a “winning strategy”, that is,
a strategy which ensures that the player wins a round regardless of how the
other player plays. The Axiom of Determinacy (AD) is the statement that for
every set of reals A the game GA is determined. A straightforward argument
shows that AD contradicts AC and for this reason the axiom was never really
considered as a serious candidate for a new axiom. There is, however, an
interesting class of axioms that are consistent with AC, namely, the axioms
of definable determinacy. These axioms assert that all sets of reals at a given
level of complexity are determined, notable examples being ∆∼

1
1-determinacy

(all Borel sets of reals are determined), PD (all projective sets of reals are
determined) and ADL(R) (all sets of reals in L(R) are determined).

Martin showed that ∆∼
1
1-determinacy is provable in ZFC. This single prin-

ciple unifies the results from two paragraphs back and lies at the heart of
the remarkably rich structure theory of definable sets of reals that can be
established in ZFC. Furthermore, it was discovered that stronger forms of
definable determinacy lift this structure theory to more complex sets of reals.

24The projective sets of reals are those appearing in the first stage of this process. The sets
of reals appearing at the successive levels of L(R) thus forms a transfinite extension of the
projective sets.
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Our reason for concentrating on axioms of definable determinacy is twofold.
First, since they knit together the results of classical descriptive set theory
they serve as a focal point in assessing the program for large cardinals—if
large cardinal axioms imply definable determinacy at a given level then they
imply all of the statements of the corresponding level of the structure theory.
Second, axioms of definable determinacy are plausible candidates for new
axioms and, as we shall see, the considerations in their favour are quite strong.
The two examples that we shall focus on are PD and ADL(R).

Let me mention three such considerations before turning to the connec-
tion with large cardinals. For definiteness let us concentrate on PD. The
first consideration is that PD yields the most natural and straightforward
generalization to the projective sets of the structure theory that can be estab-
lished in ZFC—in particular, it implies PM and so, if justified, refutes Luzin’s
conjecture. A second consideration is that PD implies results that were sub-
sequently verified in ZFC, thus providing the kind of confirmation discussed
in §1.5.25 A third consideration is that PD appears to be “effectively com-
plete” in that it settles any statement (apart from the inevitable (but benign)
forms of arithmetic incompleteness) of second-order arithmetic not settled by
ZFC—indeed PD appears to be more complete with respect to second-order
arithmetic than PA is with respect to first-order arithmetic in that there are
no known analogues of “natural” mathematical instances of independence
such as the Paris-Harrington theorem and Friedman’s finite form of Kruskal’s
theorem. These three features—generalization, verifiable consequences, and
effective completeness—are strong considerations in support of PD. Similar
considerations apply to higher grades of definable determinacy.26

3.2. Definable determinacy and large cardinals. The case for axioms of de-
finable determinacy is further strengthened by the fact that they are implied
by large cardinal axioms. In 1970 Martin showed that if there is a measurable
cardinal then all Σ∼

1
1 sets of reals are determined. Martin [1980] then showed

that under the much stronger assumption of a non-trivial iterable elementary
embedding j : V" → V" all Σ∼

1
2 sets of reals are determined. This was dramati-

cally improved by Woodin who showed that if there is a non-trivial elementary
embedding j : L(V"+1) → L(V"+1) with critical point less than " then all sets
of reals in L(R) are determined (and hence AD is consistent). The bound
was then lowered by Woodin, building on a groundbreaking result of Martin
and Steel:

Theorem 6 (Martin and Steel). Assume there are infinitely many Woodin
cardinals. Then PD.

25See Martin [1998] for further discussion.
26See Moschovakis [1980], Maddy [1988a], Maddy [1988b] and Jackson [2009] for more on

the structure theory and the manner in which definable determinacy axioms lift it to higher levels
of complexity.
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Theorem 7 (Woodin). Assume there are infinitely many Woodin cardinals
and a measurable cardinal above them all. Then ADL(R).

The pattern persists: Stronger large cardinal axioms imply richer forms
of definable determinacy and inherit their consequences—in particular, they
refute Luzin’s conjecture.

Conversely, definable determinacy implies (inner models of) large cardinals.
Theorem 8 (Woodin). Assume ADL(R). Then there is an inner model N of

ZFC + “There are #-many Woodin cardinals”.
One can also recover ADL(R) from its consequences.
Theorem 9 (Woodin). Assume that every set of reals in L(R) is Lebesgue

measurable and has the property of Baire and assume Σ2
1-uniformization holds

in L(R). Then ADL(R).
A very striking instance of this phenomenon is the following:
Theorem 10 (Woodin). Assume that “PAS + Σ1

2-determinacy” is consistent.
Then “BGC + ORD is Woodin” is consistent.

Here PAS is second-order arithmetic with schematic comprehension and
choice and BGC is the schematic form of ZFC due to Bernays and Gödel.
The theorem says that even in the context of analysis, significant large cardinal
strength is required in order to establish Σ1

2-determinacy. The situation here
differs markedly from analogous results in arithmetic in that when one shifts
from arithmetic to analysis the examples of statements requiring large cardinal
strength both become more natural and require significantly greater large
cardinal strength.

To summarize: Large cardinals are sufficient to prove definable determi-
nacy and (inner models of) large cardinals are necessary to prove definable
determinacy.

3.3. Generic absoluteness. Definable Determinacy is not an isolated oc-
currence. As noted earlier, definable determinacy carries with it the entire
structure theory; moreover, it appears to be “effectively complete”—for ex-
ample, PD seems to be “effectively complete” with respect to statements of
analysis. It is now time to make this precise and substantiate it. We shall do
this in terms of generic absoluteness, the paradigm result being the following
theorem of ZFC:

Theorem 11 (Shoenfield). Suppose ϕ is a Σ1
2 sentence, P is a partial order

and G ⊆ P is V -generic. Then

V |= ϕ iff V [G ] |= ϕ.
The theorem is proved by showing that there are certain tree representations

for Σ1
2 sets of reals that are robust under forcing and act as “oracles for truth”.

One consequence of the theorem is that the independence of Σ1
2 statements

can never be established by forcing. Another is that we have here a partial
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realization of the idea that consistency implies existence since if one establishes
such a statement to be consistent via forcing then it must be true.

Under large cardinal assumptions the situation generalizes. Martin and
Solovay showed that if there is a proper class of measurable cardinals then Σ1

3
truth is frozen or generically absolute (in the sense indicated above). Woodin
pushed this further:

Theorem 12 (Woodin). Assume there is a proper class of Woodin cardinals.
Suppose ϕ is a sentence, P is a partial order and G ⊆ P is V -generic. Then

L(R) |= ϕ iff L(R)V [G ] |= ϕ.

This can be pushed even beyondL(R). To explain this we will need to invoke
the notion of a universally Baire set of reals. The details of this notion will not
be important. The important point is that under large cardinal assumptions
sets of reals beyond L(R) are universally Baire and such sets are well behaved.
Let Γ∞ be the collection of sets of reals that are universally Baire27 and for
κ an infinite regular cardinal let H (κ) be the set of all sets x such that the
cardinality of the transitive closure of x is less than κ.

Theorem 13 (Woodin). Suppose there is a proper class of Woodin cardinals
and A ∈ Γ∞. Suppose G ⊆ P is V -generic. Then

(H (#1),∈, A)V ≺ (H (#1)V [G ],∈, AG).

That is, we have generic absoluteness for “projective-in-A” where A is uni-
versally Baire. In fact, one has “Σ2

1(Γ∞)-generic absoluteness”:

Theorem 14 (Woodin). Suppose there is a proper class of Woodin cardinals
and let ϕ be a sentence of the form

∃A ∈ Γ∞ (H (#1),∈, A) |= '.

Suppose G ⊆ P is V -generic. Then

V |= ϕ iff V [G ] |= ϕ.

27Here are some further details: For a cardinal &, a set A ⊆ R is &-universally Baire if for
all partial orders P of cardinality &, there exist trees S and T on # × " (for some ") such that
A = p[T ] and, if G ⊆ P is V -generic, then p[T ]V [G ] = RV [G ] − p[S]V [G ]. A set A ⊆ R
is universally Baire if it is &-universally Baire for all &. Universally Baire sets have canonical
interpretations in generic extensions V [G ]: Choose any T, S ∈ V such that p[T ] = A and
p[T ]V [G ] = RV [G ] − p[S]V [G ] and set AG = p[T ]V [G ]. The point is that AG is independent
of the choice of T and S. For suppose T̄ , S̄ ∈ V are two other such trees. And suppose
p[T ]V [G ] ̸= p[T̄ ]V [G ], say p[T̄ ]V [G ] ∩ p[S]V [G ] ̸= ∅. Then, by absoluteness of wellfoundedness,
p[T̄ ]∩p[S] ̸= ∅, which is a contradiction. Universally Baire sets of reals also have strong closure
properties. For example, Woodin showed that if there is a proper class of Woodin cardinals and
A ∈ Γ∞ then (1) L(A,R) |= AD+ and (2) P(R) ∩ L(A,R) ⊆ Γ∞. Here AD+ is a (potential)
strengthening of AD designed for models of the form L(P(R)). See Woodin [1999].
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Stronger large cardinal axioms imply that many sets of reals beyond L(R)
are universally Baire. Let us call a set absolutely ∆2

1 if there are Σ2
1 formulas

which define complementary sets of reals in all generic extensions. Woodin
showed that if there is a proper class of measurable Woodin cardinals then all
absolutely ∆2

1 sets of reals are universally Baire.28 This is one precise sense in
which CH was an unfortunate choice of a test case for the program for large
cardinals—large cardinal axioms effectively settle all questions of complexity
strictly below (in the above sense) that of CH.29

Moreover, just as large cardinals are necessary for definable determinacy,
definable determinacy is necessary for generic absoluteness.

Theorem 15 (Woodin). Suppose there is a proper class of strongly inacces-
sible cardinals. Suppose that the theory of L(R) is generically absolute. Then
ADL(R).

A convenient (but tendentious) way to summarize this and the companion
result above is as follows: Call a theory ‘good’ if it freezes the theory of L(R).
(1) There is a good theory.
(2) All good theories imply ADL(R).

3.4. Inner model theory and the overlapping consensus. Definable determi-
nacy is implicated in an even more dramatic fashion. In a certain sense it
is inevitable. This comes about through its intimate connection with inner
models of large cardinal axioms.

Theorem 16 (Harrington, Martin). The following are equivalent:
(1) Π∼

1
1-determinacy.

(2) For all x ∈ R, x# exists.30

Theorem 17 (Woodin). The following are equivalent:
(1) PD.
(2) For each n < #, there is a transitive #1-iterable modelM such that

M |= “ZFC + there exist nWoodin cardinals”.

The equivalence of definable determinacy and inner models for large cardi-
nals generalizes to higher levels.

This is striking. We first saw that large cardinal axioms imply definable de-
terminacy and then that definable determinacy implies inner models of large
cardinal axioms. Ultimately, we see that definable determinacy is equivalent
to the existence of certain inner models of large cardinal axioms. It should be

28Under the same hypothesis one has that all of the “provably-∆2
1” sets of reals are universally

Baire.
29One might worry that what is really going on here is that large cardinal axioms throw a

wrench into the forcing machinery. But this is not so. Under large cardinal assumptions one has
more generic extensions. What is really going on is that large cardinal axioms generate trees that
are robust and act as oracles for truth.

30For a definition of x# see Jech [2003] or Kanamori [1997].
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stressed that whereas definable determinacy axioms are simple, the formula-
tion of the relevant inner models for large cardinals is extraordinarily complex;
moreover, as far as surface features are concerned the two have nothing to do
with each other. This ultimate convergence of two entirely distinct domains is
evidence that both are on the right track.

The connection between definable determinacy and inner models of large
cardinals leads to a method—Woodin’s core model induction—for propagat-
ing determinacy up the hierarchy of complexity. This machinery can be used
to show that virtually every natural mathematical theory of sufficiently strong
consistency strength actually implies ADL(R). Here are two representative
examples:

Theorem 18 (Woodin). Assume ZFC + there is an #1-dense ideal on #1.
Then ADL(R).

Theorem 19 (Steel). Assume ZFC + PFA. Then ADL(R).

These two theories are incompatible31 and yet both imply ADL(R). There
are many other examples. For instance, the axioms of Foreman [1998] (which
imply CH) also imply ADL(R). Definable determinacy is inevitable in that it
lies in the overlapping consensus of all sufficiently strong natural mathematical
theories.

3.5. Summary. The first goal of this section was to set forth some of the
strongest extrinsic justifications of new axioms, in particular, axioms of defin-
able determinacy. Let me bring together some of the main points, concentrat-
ing on ADL(R) for definiteness:

(1) ADL(R) lifts the structure theory that can be established in ZFC to the
level of L(R). This fruitful consequence provides extrinsic support for the
axiom. The concern that there might be many axioms with the same fruitful
consequence and that there is no reason for selecting one over the other is
addressed by the recovery result (Theorem 9) which shows that ADL(R) is
necessary for this task.

(2) ADL(R) is implied by large cardinals and so inherits the considerations in
favour of the latter. Conversely, ADL(R) implies the existence of inner models
of large cardinals. Ultimately, ADL(R) is equivalent to the existence of certain
inner models of large cardinals. This sort of convergence of conceptually
distinct domains is striking and unlikely to be an accident.

(3) ADL(R) yields an “effectively complete” axiom for L(R) in a sense
explained in Theorem 12. Moreover, in the sense of Theorem 15, ADL(R) is
“necessary” if one is to have this sort of effective completeness.

31Todorĉević showed that PFA implies 2# = ℵ2. Hence PFA implies MA + ¬CH which in
turn implies that there is no #1-dense ideal on #1. Cf. Taylor [1979].
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(4) ADL(R) in inevitable in that it lies in the overlapping consensus of all
sufficiently strong, natural theories. This includes incompatible theories from
radically distinct domains.32

All of this amounts to a compelling extrinsic case for ADL(R) and a similar
case holds for higher forms of definable determinacy.

The second goal of this section was to assess the extent of the program
for large cardinals. We saw that the program fails at the level of CH and
hence there can be no generalized completeness theorem of the sort Gödel
entertained. But we also saw in §3.3 that there is a sense in which the pro-
gram is a complete success below CH, viz. Theorem 14 combined with the
result that large cardinals imply that absolutely ∆2

1 sets of reals are universally
Baire.33 (The case is further strengthened by combining this last fact with the
considerations in footnote 27).

§4. The continuum hypothesis. One must go beyond large cardinals in order
to make an advance on CH and any case for the resolution of CH is going
to look quite different than the above case for ADL(R). For example, unlike
ADL(R), CH cannot be inevitable in the sense of being implied by every suf-
ficiently strong natural theory.34 Surprisingly, it is possible that in the case
of CH one can have something parallel to the third point above, that is, it is
possible that one can give a case of the form: there is a ‘good’ theory and
all ‘good’ theories imply ¬CH. This approach is due to Woodin and it is
grounded in a series of striking results of which I will give only the barest
sketch in the hope of conveying the central ideas and illustrating the kind of
justification it involves.35

4.1. Ω-logic. Woodin’s approach is to extract the abstract features of the
situation with regard to definable determinacy and put them to use in isolating

32It should be stressed that regularity properties, definable determinacy axioms and inner
models of large cardinals are from conceptually distinct domains that have on their face nothing
to do with one another. Their ultimate convergence is quite striking. It is made more striking
by the fact that there is not even a direct proof of the recovery theorems in (1), (3) and (4) that
connect these domains. The only known proofs proceed through inner model theory. This kind of
convergence is quite different from the kind of convergence involved when two number theorists
arrive at the same result. The latter arises from the fact that the number theorists are proceeding
on the basis of the same assumptions, while in our present case we are dealing with steps beyond
the currently accepted axioms. It is quite remarkable that steps in what appear to be completely
different directions lead to the same place.

33In Sections 4 and 5 this will be reformulated in terms of a “logic of large cardinals”, the
result being that large cardinal axioms provide a “complete” theory of L(R) (and beyond).

34Again, in all of this I am referring to large cardinal axioms which resemble those currently
known in that they are invariant under small forcing.

35For more on the subject see Woodin [1999], Woodin [2005a], and Woodin [2005b]. Also
see Dehornoy [2004] for an overview and Bagaria, Castells, and Larson [2006] for a detailed
introduction (with proofs) to Ω-logic.
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an asymmetry between CH and its negation. This involves characterizing
generic absoluteness in terms of a strong logic—Ω-logic.

Definition 1. Suppose there is a proper class of strongly inaccessible car-
dinals. Suppose T is a theory and ϕ is a sentence, both in the language of set
theory. Let us write

T |=Ω ϕ

if whenever P is a partial order, α is an ordinal, and G ⊆ P is V -generic, then

if V [G ]α |= T then V [G ]α |= ϕ.

Now in order for a logic to play a foundational role (from the point of view
of its consequences) it must be robust in that the question of what implies what
cannot be altered by forcing. Fortunately, in the context of a proper class of
Woodin cardinals, this is the case for Ω-logic.36

Theorem 20 (Woodin). Assume there is a proper class of Woodin cardinals.
Suppose T is a theory, ϕ is a sentence, P is a partial order and G ⊆ P is
V -generic. Then

V |= “T |=Ω ϕ”

if and only if

V [G ] |= “T |=Ω ϕ”.

When T |=Ω ϕ we say that ϕ is ΩT -valid and when T ̸|=Ω ¬ϕ we say
that ϕ is ΩT -satisfiable. For a collection Γ of sentences we say that T is
Ω-complete for Γ if for all ϕ ∈ Γ either T |=Ω ϕ or T |=Ω ¬ϕ. Two cases
of interest are when Γ is the set of sentences of the form H (#2) |= ϕ and
when Γ is the set of sentences of the form L(R) |= ϕ. We will use Γ(H (#2))
to abbreviate the former and Γ(L(R)) to abbreviate the latter. Using this
terminology we can rephrase Theorem 12 by saying that in the presence of
a proper class of Woodin cardinals ZFC is Ω-complete for Γ(L(R)). This is
a partial realization of Gödel’s conjectured completeness theorem for large
cardinals. We will return to the subject in Section 5.

4.2. The continuum hypothesis. The interest of the structure H (#2) is that
CH is equivalent to a statement in Γ(H (#2)). The main conjecture concerning
CH is the following:

CH Conjecture. Assume there is a proper class of Woodin cardinals.
(1) There is an axiom A such that

(i) A is ΩZFC-satisfiable and
(ii) ZFC +A is Ω-complete for Γ(H (#2)).

36It is of interest to note that second-order logic does not meet this requirement under any
large cardinal assumptions.
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(2) Any such axiom A has the feature that

ZFC +A |=Ω “H (#2) |= ¬CH ”.

A convenient (and tendentious) way to rephrase this is as follows: Call an
axiom A ‘good’ if it satisfies (1) above. Then the conjecture says:
(1) There is a good axiom.
(2) All good axioms Ω-imply ¬CH.

Woodin has proved the CH Conjecture assuming a conjecture which for the
purposes of this exposition we will call the Strong Ω Conjecture. The Strong
Ω Conjecture is a conjunction of two other conjectures—the Ω Conjecture
and the statement that the AD+ Conjecture is Ω-valid. We shall now describe
these terms.37

Recall that validity for first order logic is Π1 in the universe of sets and the
Gödel completeness theorem reduces this to a finitary notion. Now, validity
for Ω-logic is Π2 in the universe of sets and the Ω Conjecture reduces this to an
“Ω-finitary” notion, one where the proofs are sets of reals that are sufficiently
robust (i.e. universally Baire). The “syntactic” notion of proof for Ω-logic is
defined as follows:

Definition 2. Let A ∈ Γ∞ andM be a countable transitive model of ZFC.
M is A-closed if for all set generic extensionsM [G ] ofM ,

A ∩M [G ] ∈M [G ].

Definition 3. LetT be a set of sentences andϕ be a sentence. ThenT ⊢Ω ϕ
if there is a set A ⊆ R such that
(1) L(A,R) |= AD+,
(2) P(R) ∩ L(A,R) ⊆ Γ∞, and
(3) for all countable transitive A-closedM ,

M |= “T |=Ω ϕ”.

This notion of provability (like the semantic notion of consequence) is
sufficiently robust:

Theorem 21 (Woodin). Assume there is a proper class of Woodin cardinals.
Suppose T is a set of sentences, ϕ is a sentence, P is a partial order, and G ⊆ P
is V -generic. Then

V |= “T ⊢Ω ϕ”

if and only if

V [G ] |= “T ⊢Ω ϕ”.

37Woodin originally thought that he could prove the CH Conjecture assuming only the Ω
Conjecture but he recently discovered that the proof needed the additional assumption.
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Furthermore, the soundness theorem for Ω-logic is known to hold:
Theorem 22 (Woodin). Suppose T is a set of sentences and ϕ is a sentence.

If T ⊢Ω ϕ then T |=Ω ϕ.
The corresponding completeness theorem is open:
Ω Conjecture (Woodin). Assume there is a proper class of Woodin cardi-

nals. Then for each sentence ϕ,

∅ |=Ω ϕ

if and only if

∅ ⊢Ω ϕ.

To define the Strong Ω Conjecture we need to introduce the AD+ Conjec-
ture:

AD+ Conjecture (Woodin). Suppose that A and B are sets of reals such
that L(A,R) and L(B,R) satisfy AD+. Suppose every set

X ∈ P(R) ∩
(
L(A,R) ∪ L(B,R)

)

is #1-universally Baire. Then either

(∆∼
2
1)L(A,R) ⊆ (∆∼

2
1)L(B,R)

or
(∆∼

2
1)L(B,R) ⊆ (∆∼

2
1)L(A,R).

Strong Ω Conjecture (Woodin). Assume there is a proper class of Woodin
cardinals. Then the Ω Conjecture holds and the AD+ Conjecture is Ω-valid.

We are now in a position to say what is known about the CH Conjecture.
First, we need a candidate for a ‘good’ axiom.

Definition 4. Let INS be the non-stationary ideal on #1. Let (∗)0 be the
sentence:

For each projective set A and for each Π2-sentence ϕ, if

“⟨H (#2),∈, INS, A⟩ |= ϕ”

is ΩZFC-consistent, then

⟨H (#2),∈, INS, A⟩ |= ϕ.

(A statement ϕ is said to be ΩZFC-consistent if its negation is not ΩZFC-
provable, that is, if ZFC !Ω ¬ϕ.) The axiom (∗)0 states a “maximum prop-
erty” forH (#2) of the kind entertained by Gödel:

. . . from an axiom in some sense opposite to [V =L], the negation
of Cantor’s conjecture could perhaps be derived. I am thinking
of an axiom which (similar to Hilbert’s completeness axiom in
geometry) would state some maximum property of the system of
all sets, whereas [V =L] states a minimum property. Note that only
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a maximum property would seem to harmonize with the concept
of set . . . (Gödel [1964, fn. 23, pp. 262–3])

Theorem 23 (Woodin). Assume there is a proper class of Woodin cardinals.
Then

(i) (∗)0 is ΩZFC-consistent and
(ii) for every sentence ϕ either

ZFC + (∗)0 ⊢Ω “H (#2) |= ϕ”

or

ZFC + (∗)0 ⊢Ω “H (#2) |= ¬ϕ”

It follows from Ω-soundness that (∗)0 freezes the theory of H (#2). Thus
to prove the first part of the CH Conjecture it suffices to show that (∗)0 is
ΩZFC-satisfiable. This is open. (It is known that (∗)0 can be forced over
L(R) under suitable large cardinal assumptions. The question is whether it
can be forced over V .) So, we almost have that (∗)0 is good. Moreover, this
maximum property settles CH.

Theorem 24 (Woodin). Assume there is a proper class of Woodin cardinals
and that (∗)0 holds. Then 2ℵ0 = ℵ2.

Finally, we almost have that all good axioms refute CH.
Theorem 25 (Woodin). Assume there is a proper class of Woodin cardinals

and that the AD+ Conjecture is Ω-provable in ZFC. Suppose A is an axiom
such that

(i) A is ΩZFC-consistent and
(ii) for every sentence ϕ either

ZFC + A ⊢Ω “H (#2) |= ϕ”

or

ZFC + A ⊢Ω “H (#2) |= ¬ϕ”.

Then

ZFC + A ⊢Ω ¬CH.

If one replaces the syntactic notions in Theorems 23 and 25 with the seman-
tic notions then one has the CH Conjecture. Thus:

Corollary 1. The Strong Ω Conjecture implies the CH Conjecture.
So, granting the Strong Ω Conjecture, all good axioms refute CH.
A possible worry is that the Strong Ω Conjecture is as intractable as CH.

But this is unlikely in light of the following result.
Theorem 26. Assume there is a proper class of Woodin cardinals. Suppose P

is a partial order and G ⊆ P is V -generic. Then

V |= “Strong Ω Conjecture”
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if and only if

V [G ] |= “Strong Ω Conjecture”.

To summarize:

(1) The Strong Ω Conjecture implies that there is a good axiom and all good
axioms Ω-imply ¬CH.

(2) The Strong Ω Conjecture is unlikely to be as intractable as CH.

The above case for ¬CH is weaker than the case for ADL(R) in that ¬CH
lacks the inevitability had by ADL(R). This, however, is simply an inevitable
consequence of the fact that CH is not settled by large cardinal axioms. With
CH one reaches a transition point in the kind of justification that can be
given—the case is necessarily going to have to be more subtle. As a symptom
of this consider the following scenario: Suppose that inner model theory
reaches “L-like” models L[E] that can accommodate all large cardinals and
have much of the rich combinatorial structure of current inner models. An
axiom of the form V = L[E] would then be a plausible new axiom—it could
not be refuted in the way that V = L was and it would have the virtue of
settling many undecided questions, in particular, it would imply CH. If one
could also force (∗)0 over L[E] thenV = L[E] andV = L[E][G ] would close
competitors.

To strengthen the case for ¬CH we need a proof of the Strong Ω Conjecture
and an analysis of the structure theory of H (#2) under (∗)0. It is hard to
resist quoting the words with which Gödel closed his paper on the continuum
problem: “I believe that adding up all that has been said one has good reason
for suspecting that the role of the continuum problem in set theory will be to
lead to the discovery of new axioms which will make it possible to disprove
Cantor’s conjecture.” (Gödel [1964, p. 264])

§5. Three prospects. We have seen that there is a compelling case for axioms
that settleV =L and PM and that there is a good case for axioms settling CH.
There is at present not a strong case for absolute undecidability. I want now
to consider three scenarios for how the subject might unfold.

5.1. The Ω conjecture. Suppose it turns out that the Ω Conjecture is true. In
this case, Woodin has shown (as we shall see below) that Ω-logic is essentially
the “logic of large cardinals”. It thus provides a precise explication of the
version of absolute provability that Gödel proposed in 1946.

We first need to render precise the notion of a large cardinal axiom. Fol-
lowing Woodin let us say that a large cardinal axiom is a statement of the form
∃x ϕ(x) where ϕ(x) is Σ2 and (as a theorem of ZFC) if κ is a cardinal and
V |= ϕ[κ] then κ is strongly inaccessible and for all partial orders P ∈ Vκ and
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allV -genericsG ⊆ P,V [G ] |= ϕ[κ].38 For a large cardinal axiom ∃x ϕ(x) we
say that V is ϕ-closed if for every setX there is a transitive setM and an ordi-
nal κ such that X ∈ VMκ ,M |= ZFC, andM |= ϕ[κ]. Notice that if ∃x ϕ(x)
is a large cardinal axiom and ϕ[κ] holds for a proper class of inaccessible
cardinals then V is ϕ-closed.

Lemma 5 (Woodin). Assume there is a proper class of Woodin cardinals.
Suppose that ' is Π2. Then ZFC ⊢Ω ' iff there is a large cardinal axiom
∃x ϕ(x) such that

(i) ZFC ⊢Ω “V is ϕ-closed”
(ii) ZFC + “V is ϕ-closed” ⊢ '.

(Notice that the statement “V is ϕ-closed” is Π2.) One can show from
this that (assuming a proper class of Woodin cardinals) the Ω Conjecture is
equivalent to the statement that ifV is ϕ-closed for some large cardinal axiom
ϕ then ZFC ⊢Ω “V is ϕ-closed”.

So, assuming the Ω Conjecture and a proper class of Woodin cardinals,
if V is ϕ-closed for some large cardinal axiom ∃x ϕ(x), then ZFC ⊢Ω
“V is ϕ-closed”; and if ' is a Π2 sentence that is a first-order consequence
of ZFC + “V is ϕ-closed”, then ZFC ⊢Ω '. Thus, under the Ω Conjecture
and a proper class of Woodin cardinals, Ω-logic is simply the logic of large
cardinal axioms under which V is ϕ-closed. It is therefore a reasonable reg-
imentation of Gödel’s 1946 proposal of absolute provability (with respect to
Π2 sentences). But can it really be considered absolute?

In the case of the view of 1939 we provided a characterization of absolute
provability in terms of reflection principles and we saw that on this conception
V =L is indeed absolutely undecidable. Gödel came to think that the notion
of absolute provability outstripped this notion and we saw that there are
strong extrinsic justifications for axioms of definable determinacy and these,
of course, imply inner models of large cardinals that violate V =L. We now
have a partial reconstruction of his 1946 notion of absolute provability (one
that accommodates all large cardinals) in terms of Ω-logic. We know that CH
is beyond its reach (just as V =L is beyond the reach of the earlier notion).
But there are two views one can have on the matter. First, in parallel with
the view of 1939, one can hold onto the idea that the notion of provability
really is absolute and maintain that CH is absolutely undecidable and signals a
bifurcation in set theory. Second, one can reject the absoluteness of the notion,
maintaining that there are extrinsic justifications that outstrip provability in
Ω-logic.

38This directly captures most of the standard large cardinal axioms—for example, “κ is mea-
surable”, “κ is a Woodin cardinal”, “κ is the critical point of a non-trivial elementary embedding
j : V" → V"”. It does not capture “κ is supercompact” directly but one can remedy this by
considering “∃& V& |= κ is supercompact”.
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There are a number of difficulties with the first position even in this richer
context. First, Woodin has shown that the Strong Ω Conjecture and the
assumption of a proper class of Woodin cardinals implies that {ϕ | ∅ |=Ω ϕ}
is definable in ⟨H (c+),∈⟩, where c is the cardinality of the continuum.39 So
the view in question amounts to a rejection of the transfinite beyond the
continuum. As Woodin puts it, such a view is just formalism “two steps up”.
Second, it overlooks the fact that there might be arguments that enable us to
leverage certain asymmetries and provide reasons for a statement despite the
fact that neither it nor its negation is ΩZFC-valid. An example of this is the
argument against CH presented in the last section, an argument in which the
very notion of ΩZFC-validity plays a central role. Furthermore, there might
be other arguments. We will consider one in §5.3.

5.2. Incompatible Ω-complete theories. The above discussion was condi-
tioned on the truth of the Strong Ω Conjecture. But it could turn out to be
false and in this case there is another approach to CH.

The paradigm result in this direction is the following early result of Woodin:
Theorem 27 (Woodin, 1985). Assume there is a proper class of measurable

Woodin cardinals. Then ZFC + CH is Ω-complete for Σ2
1.

Thus, under large cardinals we have that ZFC + (∗)0 is Ω-complete for
Γ(H (#2)) and ZFC+CH is Ω-complete for Σ2

1. Two questions naturally arise.
First, are there recursive theories with higher degrees of Ω-completeness? Sec-
ond, is there a unique such theory (with respect to a given level of complexity)?
Regarding the first question, Abraham and Shelah have shown:

Theorem 28 (Abraham-Shelah, 1993). ZFC + CH is not Ω-complete for
Σ2

2.
It is open whether there is a strengthening of CH that is Ω-complete for Σ2

2.40

However, if the Strong Ω Conjecture is true then a recursive theory that is Ω-
complete for Σ2

2 is the most that one could hope for.
Theorem 29 (Woodin). If there is a proper class of Woodin cardinals and the

Strong Ω Conjecture holds then there is no recursive theory that is Ω-complete
for Σ2

3.
But if the Strong Ω Conjecture fails then there might exist recursive theories
Tn ⊆ Tn+1 such that ZFC + Tn is Ω-complete for Σ2

n for each n < #, that is,
for third-order arithmetic. Steel [2004] conjectures that this is the case (and
hence that the Strong Ω-conjecture is false). He maintains that if (i) all large
cardinals are preserved under small forcing, (ii) every interesting theory can be
forced relative to large cardinals, and (iii) the theories Tn are extendible to Tα

39Contrast this with the case of second-order logic where, by a result of Väänänen [2001], the
set of valid sentences is Π2-complete over V . Of course, this could be the case with Ω-logic if the
Strong Ω Conjecture fails.

40A conjectured candidate is the statement ♦G assertingH (#1) ≡ H (#1)Coll(#1 ,R).
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for arbitrarily large α, then one would have solved the continuum problem.
Now, if there were a unique such sequence of theories (in the sense that all
such theories agreed on their Ω-consequences for third-order arithmetic) and
they implied, say, CH then this would make a very strong case for CH.

But there might be two such sequences—sayTα andSα—that are incompat-
ible. For example, one might imply CH while the other implies ¬CH. Would
this amount to the absolute undecidability of CH? There are two views that
one might have of the scenario. On the first view the generic intertranslatabil-
ity of the two theories shows that there is no meaningful difference between
them.41 On the second view a meaningful difference remains. On neither view
do we have a clear case of an absolutely undecidable sentence. This is because
on the first view CH is not a genuine instance of absolute undecidability since
it is not even a meaningful statement, while on the second view a meaningful
difference remains and this opens up the possibility that there might be con-
siderations that one could advance in favour of one theory over the other. In
the next section I will present a scenario for how this might happen.42

5.3. The structure theory of L(V"+1). Recall that ADL(R) was first proved
from the assumption of a non-trivial elementary embedding j : L(V"+1) →
L(V"+1) with critical point less than ". It turns out that there is a striking

41This is Steel’s view. See Steel [2004] and Maddy [2005] for further discussion.
42Although it is not necessary for my purposes here to determine which view is correct, the

question is of independent interest and has bearing on the search for new axioms. For example,
it has bearing on whether in the scenario discussed at the end of §4 there is a substantive issue
in deciding between V = L[E] and V = L[E][G ]. So let me say something to bring out
the issues involved. Our background assumptions imply that large cardinal axioms will not
distinguish between the Sα -sequence and the Tα -sequence. So there is no help from above.
They also imply that the two sequences have the same arithmetical consequences. So there is no
help from below. One might try looking at other consequences. For example, the Tα -sequence
might have illuminating consequences for the theory of L(R) that we can subsequently verify in
a weaker theory. But since the Tα -sequence and the Sα -sequence have the same consequences
for L(R), the advocate of the Sα -sequence can incorporate anything the advocate of the Tα-
sequence does by first forcing Tα and then applying an absoluteness argument. Moreover, should
it turn out that the Tα -sequence leads to a much simpler and elegant account of the universe,
one can say that the advocate of the Sα -sequence recognizes these virtues through the generic
interpretation. All of this might incline one to the first view. But the generic interpretation—
regarded either through Boolean valued models or countable models—is non-standard and since
both parties recognize this they are not taking each other’s statements at face value. In analogous
situations we would not be inclined to conclude that mutual interpretability implies that there
is no substantive disagreement. For example, consider (a) HA and PA, (b) Euclidean geometry
and hyperbolic geometry, and (c) two physical theories that are mutually interpretable, have
the same empirical consequences, and yet such that one is simple and elegant while the other is
cumbersome and ad hoc. These pairs of theories are mutually interpretable and yet there seems to
be a substantive difference in each case. Why should anything be different in the present context?
The difference between the two views ultimately rests on differing views concerning the nature of
real mathematical content and how it is determined. It is more than we can hope to answer here.
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parallel between the structure theory of L(R) under the assumption of deter-
minacy and that of L(V"+1) under the embedding assumption. Here " is the
analogue of #, "+ is the analogue of #1 and fragments of the embedding are
analogues of game strategies. Some examples that flesh out the parallel are
the following:

(1) Measurability: (Woodin) "+ is measurable in L(V"+1).
(2) Perfect Set Property: (Woodin) Suppose X ⊆ P(") is “projective”,

i.e. definable with parameters in ⟨H ("+),∈⟩. Then either |X | ≤ " or
|X | = 2" and X contains a “perfect set”.

(3) Periodicity: (Martin) Suppose j : V" → V" is a non-trivial elementary
embedding. If j is Π1

2n+1 elementary then j is Π1
2n+2 elementary. (Here

the superscript refers to quantification over subsets of V".)
(4) Coding: (Woodin) For each & < ΘL(V"+1) there exists ( ∈ L(V"+1) such

that

( : V"+1
onto−→ P(&) ∩ L(V"+1).

Hence ΘL(V"+1) is weakly inaccessible in L(V"+1).
(5) Stability: (Woodin) Let & = (&∼

2
1)L(V"+1) be the least ) such that

L)(V"+1) ≺Σ1 L(V"+1). Then & is measurable in L(V"+1).

The analogue of each of these statements is known to hold in L(R) under
ADL(R). There are many more examples and many are sure to follow.43

Some things are known to hold inL(V"+1) under the embedding assumption
that are conjectured for L(R) under ADL(R). For example, for each & such
that " < & < ΘL(V"+1) and & is regular in L(V"+1)

(P(&)/NS&)L(V"+1)

is atomic.
Some things are known to hold in L(R) under AD that are plausible candi-

dates for L(V"+1). For example,

(A) for each infinite regular cardinal κ < "+, the club filter in L(V"+1) is an
ultrafilter on {α < "+ | cof(α) = κ} and

(B) every club A ∈ P("+) ∩ L(V"+1) is definable from parameters in
⟨H ("+),∈⟩.

The parallel between the structure theories is already rich and remarkable.
The understanding of one structure theory provides insight into the other and
in this way the two hypotheses are mutually supporting. The development of
the parallel that can be established under existing axioms (namely, ADL(R) and

43See Woodin [2005a] for more on L(V"+1).
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the embedding axiom) provides evidence that the parallel extends. And as we
establish further theorems to this effect the case becomes stronger. But it could
be the case that the embedding axiom is insufficient to flesh out the parallel just
as it is the case that ZFC is insufficient to lift the structure theory of ∆∼

1
1 sets to

the projective level. Suppose it turns out that the embedding axiom is not the
full analogue of ADL(R) but that if we supplement it with new axioms then we
“complete the picture” and “round out the analogy”. This would provide an
extrinsic justification of the new axioms. For definiteness let us suppose that
filling in the missing pieces of the puzzle involves the addition of (A) and (B)—
the analogues of which hold in L(R) under ADL(R). Suppose further that the
development of the parallel under the new axioms provides insight into the
structure theory of L(R). Of course, since the theory of L(R) is generically
invariant under large cardinal assumptions it is unlikely that the new axioms
would have new consequences but they might have abundant “verifiable”
consequences, that is, “consequences demonstrable without the new axiom,
whose proofs with the help of the new axiom, however, are considerably
simpler and easier to discover, and make it possible to contract into one proof
many different proofs” (Gödel [1964, p. 261]). All of this would make a strong
case for the new axioms (A) and (B).

The following question (asked by Woodin) is open: Does the embedding
axiom in conjunction with (A) and (B) settle CH? Notice that we do not here
mean the analogue of CH but rather CH itself.44 This is one way in which
Woodin’s case against CH could be strengthened. But it also has bearing on
the scenario considered in §5.2. This is because if, say, Tα includes (A) and (B)
while Sα does not, then the two theories are not on a par—Sα is ignoring the
structural parallel. Although the two theories are generically intertranslatable
we have here a case where there is further structure that we can leverage to
provide reason for favouring one theory over the other.

I do not want to place too much weight on the particulars of this possible
scenario. The purpose of the discussion is twofold. First, to isolate a new
kind of reason that might be given in support of new axioms—one involving
the rounding out of an almost complete structural parallel. Second, to argue
that one might be able to distinguish between incompatible theories that are
Ω-complete for third-order arithmetic.

We have seen that a compelling case can be made for new axioms that settle
many of the proposed candidates for absolutely undecidable sentences. This
is true of V =L and PD and the advances on CH are promising. There is
at present no solid argument to the effect that a given statement is absolutely
undecidable. We do not even have a clear scenario for how such an argument
might go.

44The axioms (A) and (B) appear to interfere with the standard ways of altering the value of
the continuum via forcing.
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Postscript. Added June 14, 2009. In this postscript I would like to briefly
discuss some recent developments that bear on the topics treated in this paper.
They concern (1) general reflection principles, (2) the prospect of incompatible
Ω-complete theories, (3) the prospect of an ultimate inner model, and (4) the
structure theory of L(V"+1).

1. Reflection Principles. In Section 2, I state a theorem to the effect that
a certain class of Tait’s general reflection principles are weak; more precisely,
Γn-reflection (for each n) is consistent relative to the existence of the Erdös
cardinal κ(#) and hence such reflection principles are compatible withV =L.
The reflection principles covered by this theorem are only a small fragment of
a broad class of general reflection principles introduced by Tait and my reason
for focusing on them in the paper is that the remaining reflection principles
were not known to be consistent relative to large cardinal axioms. It turns
out that the theorem in the paper is optimal. For the remaining reflection
principles in Tait’s hierarchy turn out to be inconsistent; moreover, one can
refine Tait’s hierarchy and prove a dichotomy theorem to the effect that the
refined hierarchy of general reflection principles neatly divides into those that
are weak (in that they are consistent relative to the Erdös cardinal κ(#)) and
those that are inconsistent. See Koellner [2009a].

2. Incompatible Ω-Complete Theories. In Section 5.2, I discuss a very op-
timistic scenario for supplementing large cardinal axioms. According to this
scenario, for each specifiable fragmentV" of the universe of sets (such asV#+2
orVκ, where κ is the least inaccessible cardinal) there is a large cardinal axiom
L and a recursively enumerable sequence of axioms T⃗ such that ZFC +L+ T⃗
is Ω-complete for the theory of V"; moreover, there is a unique such theory in
that any other theory ZFC +L+ S⃗ with this feature agrees with ZFC +L+ T⃗
on the Ω-computation of the theory ofV". Were this to be the case there would
be a “unique Ω-complete picture” of V". It is now known that uniqueness
must fail: If there is one such theory then there must be another with the same
degree of Ω-completeness but which gives a different “Ω-complete picture”
of V"; in particular, one can arrange that the two theories differ on CH and
many other statements. Thus, should there exist one such theory there would
be many and one would have a radical bifurcation of Ω-complete theories (a
possibility entertained in the last paragraph of Section 5.2). One way to rule
out such a bifurcation is to prove the Strong Ω Conjecture. See Koellner and
Woodin [2009] and Koellner [2009b] for more on this subject.

3. The Prospect of an Ultimate Inner Model. In the penultimate paragraph
of Section 4, I consider the prospect of an ultimate inner model, one that
is “L-like” and yet compatible with all large cardinals. Until quite recently
such a prospect seemed quite far-fetched. To see why let us briefly recall
the general pattern of inner model theory: Given a certain initial stretch
of the large cardinal hierarchy one defines an “L-like” inner model that is
able to accommodate large cardinals in this initial stretch by “absorbing”
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them from V . But for every such model, there are slightly stronger large
cardinals that cannot be accommodated by the model and which, moreover,
imply that the model is a poor approximation to V . To accommodate these
additional large cardinals one must define a new inner model. But it too will
be transcended by other large cardinal axioms. Thus, on this picture, there is
a succession of inner models that provide better and better approximations to
the universe of sets but there is no single model that is “close to V ” and can
accommodate all large cardinal axioms.

Recent developments of Hugh Woodin indicate that this picture could
change dramatically. One of the main outcomes of his recent work (contained
in his forthcoming Suitable Extender Sequences) is the following dichotomy
theorem: Either there is no “L-like” inner model for one supercompact car-
dinal (which would amount to a failure of inner model theory) or there is an
“L-like” inner model that is both “close to V ” and able to accommodate all
large cardinal axioms in the traditional hierarchy (and, in fact, in a recently
discovered extension of this hierarchy). The precise details of this theorem—
in particular, the minimal conditions required to count as “L-like”, the notion
of being “close to V ”, and the transfer theorems that describe the extent of
the large cardinal axioms that are accommodated—are spelled out in Suitable
Extender Sequences. Thus, if inner model theory (in anything like its present
form) succeeds in producing an inner model that reaches one supercompact
cardinal, then this model, call it LΩ, will be (a) “close to V ”, (b) able to
accommodate all large cardinals that have been investigated to date, and (c)
such that its inner structure is very well understood (in particular, it would
satisfy CH and, for any traditional statement of set theory, ϕ, one would gen-
erally be able to determine whether or not ϕ held in LΩ). This would make
V = LΩ a compelling axiom, one that along with large cardinal axioms would
(arguably) provide the ultimate completion of the axioms of ZFC.

However, there are also competing candidates for the ultimate inner model.
To begin with, there is a “strategic” version LΩ

S of LΩ, one that is modeled
on the analysis of HOD in determinacy models. The possibility of this model
is opened up by the oversight mentioned in the introductory footnote to this
paper. In addition toLΩ andLΩ

S there are also the models obtained by forcing
(∗)0 over these models. All of these models would share the virtues of LΩ but
they would give different answers to certain questions. For example,LΩ

S would
have information aboutLΩ thatLΩ could not have about itself and while both
of these models would satisfy CH the (∗)0-extensions of these models would
satisfy ¬CH. The question then arises as to how one would sort between
them.

4. The Structure Theory of L(V"+1). In Section 5.3, I discuss a structural
parallel between the theory of L(R) under the assumption of AD and the
theory of L(V"+1) under the assumption of a non-trivial elementary embed-
ding from L(V"+1) into itself with critical point below ". On the basis of
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the existing parallel and guided by axioms of determinacy stronger than AD,
Woodin (in Suitable Extender Sequences) has recently discovered an entire
hierarchy of much stronger large cardinal axioms. Moreover, guided by the
analogy, he has isolated a series of conjectures concerning the structure theory
of L(V"+1) that may (like the axioms A and B mentioned in the text) settle
CH. The models LΩ, LΩ

S and their (∗)0-extensions, should they exist, will
be able to accommodate the embedding axioms for L(V"+1) and, within this
context, one will have answers to questions concerning the structure theory
of L(V"+1). In this way, by isolating the correct structure theory for L(V"+1),
one may be able to select from among LΩ, LΩ

S and their (∗)0-extensions and
find the true candidate for V . Indeed, it is already known that under reason-
able assumptions a very optimistic analogue of the structure theory of L(R)
under AD cannot hold in LΩ or the (∗)0-extensions. However, it may hold
in LΩ

S . Should this be the case it would be striking affirmation of the axiom
V = LΩ

S .
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