
P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

9

A Précis of First-Order Logic: Syntax

This chapter and the next contain a summary of material, mainly definitions, needed for
later chapters, of a kind that can be found expounded more fully and at a more relaxed
pace in introductory-level logic textbooks. Section 9.1 gives an overview of the two
groups of notions from logical theory that will be of most concern: notions pertaining
to formulas and sentences, and notions pertaining to truth under an interpretation. The
former group of notions, called syntactic, will be further studied in section 9.2, and the
latter group, called semantic, in the next chapter.

9.1 First-Order Logic

Logic has traditionally been concerned with relations among statements, and with
properties of statements, that hold by virtue of ‘form’ alone, regardless of ‘content’.
For instance, consider the following argument:

(1) A mother or father of a person is an ancestor of that person.
(2) An ancestor of an ancestor of a person is an ancestor of that person.
(3) Sarah is the mother of Isaac, and Isaac is the father of Jacob.
(4) Therefore, Sarah is an ancestor of Jacob.

Logic teaches that the premisses (1)–(3) (logically) imply or have as a (logical)
consequence the conclusion (4), because in any argument of the same form, if the
premisses are true, then the conclusion is true. An example of another argument of
the same form would be the following:

(5) A square or cube of a number is a power of that number.
(6) A power of a power of a number is a power of that number.
(7) Sixty-four is the cube of four and four is the square of two.
(8) Therefore, sixty-four is a power of two.

Modern logic represents the forms of statements by certain algebraic-looking sym-
bolic expressions called formulas, involving special signs. The special signs we are
going to be using are shown in Table 9-1.

101

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

102 A PR ÉCIS OF FIRST-ORDER LOGIC: SYNTAX

Table 9-1. Logical symbols

∼ Negation ‘not . . . ’
& Conjunction ‘. . . and . . . ’
∨ Disjunction ‘. . . or . . . ’
→ Conditional ‘if . . . then . . . ’
↔ Biconditional ‘. . . if and only if . . . ’
∀x, ∀y, ∀z, . . . Universal quantification ‘for every x’, ‘for every y’, ‘for every z’, . . .

∃x, ∃y, ∃z, . . . Existential quantification ‘for some x’, ‘for some y’, ‘for some z’, . . .

In this symbolism, the form shared by the arguments (1)–(4) and (5)–(8) above
might be represented as follows:

(9) ∀x∀y((Pyx ∨ Qyx) → Ryx)
(10) ∀x∀y(∃z(Ryz & Rzx) → Ryx)
(11) Pab & Qbc
(12) Rac

Content is put back into the forms by providing an interpretation. Specifying
an interpretation involves specifying what sorts of things the xs and ys and zs are
supposed to stand for, which of these things a and b and c are supposed to stand for,
and which relations among these things P and Q and R are supposed to stand for. One
interpretation would let the xs and ys and zs stand for (human) persons, a and b and c
for the persons Sarah and Isaac and Jacob, and P and Q and R for the relations among
persons of mother to child, father to child, and ancestor to descendent, respectively.
With this interpretation, (9) and (10) would amount to the following more stilted
versions of (1) and (2):

(13) For any person x and any person y, if either y is the mother of x or y is the father
of x , then y is an ancestor of x .

(14) For any person x and any person y, if there is a person z such that y is an ancestor
of z and z is an ancestor of x , then y is an ancestor of x .

(11) and (12) would amount to (3) and (4).
A different interpretation would let the xs and ys and zs stand for (natural) numbers,

a and b and c for the numbers sixty-four and four and two, and P and Q and R for the
relations of the cube or the square or a power of a number to that number, respectively.
With this interpretation, (9)–(12) would amount to (5)–(8). We say that (9)–(11) imply
(12) because in any interpretation in which (9)–(11) come out true, (12) comes out
true.

Our goal in this chapter will be to make the notions of formula and interpretation
rigorous and precise. In seeking the degree of clarity and explicitness that will be
needed for our later work, the first notion we need is a division of the symbols that
may occur in formulas into two sorts: logical and nonlogical. The logical symbols
are the logical operators we listed above, the connective symbols (the tilde ∼, the
ampersand &, the wedge ∨, the arrow →, the double arrow ↔), the quantifier symbols
(the inverted ay ∀, the reversed ee ∃), plus the variables x , y, z, . . . that go with the
quantifiers, plus left and right parentheses and commas for punctuation.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

9.1. FIRST-ORDER LOGIC 103

The nonlogical symbols are to begin with of two sorts: constants or individual
symbols, and predicates or relation symbols. Each predicate comes with a fixed
positive number of places. (It is possible to consider zero-place predicates, called
sentence letters, but we have no need for them here.) As we were using them above,
a and b and c were constants, and P and Q and R were two-place predicates.

Especially though not exclusively when dealing with mathematical material, some
further apparatus is often necessary or useful. Hence we often include one more
logical symbol, a special two-place predicate, the identity symbol or equals sign =,
for ‘. . . is (the very same thing as) . . . ’. To repeat, the equals sign, though a two-
place predicate, is counted as a logical symbol, but it is the only exception: all other
predicates count as nonlogical symbols. Also, we often include one more category
of nonlogical symbols, called function symbols. Each function symbol comes with a
fixed number of places. (Occasionally, constants are regarded as zero-place function
symbols, though usually we don’t so regard them.)

We conscript the word ‘language’ to mean an enumerable set of nonlogical sym-
bols. A special case is the empty language L∅, which is just the empty set under
another name, with no nonlogical symbols. Here is another important case.

9.1 Example (The language of arithmetic). One language that will be of especial interest
to us in later chapters is called the language of arithmetic, L*. Its nonlogical symbols are
the constant zero 0, the two-place predicate less-than <, the one-place function symbol
successor ′, and the two-place function symbols addition + and multiplication · .

Intuitively, formulas are just the sequences of symbols that correspond to grammat-
ically well-formed sentences of English. Those that, like (9)–(12) above, correspond
to English sentences that make a complete statement capable of being true or false
are called closed formulas. Those that, like (Pyz ∨ Qyx), correspond to English
sentences involving unidentified xs and ys and zs that would have to be identified
before the sentences could be said to be true or false, are called open formulas.

The terms are sequences of symbols, such as 0 or 0 + 0 or x or x ′′, that correspond
to grammatically well-formed phrases of English of the kind that grammarians call
‘singular noun phrases’. The closed terms are the ones that involve no variables, and
the open terms are the ones that involve variables whose values would have to be
specified before the term as a whole could be said to have a denotation. When no
function symbols are present, the only closed terms are constants, and the only open
terms are variables. When function symbols are present, the closed terms also include
such expressions as 0 + 0, and the open terms such expressions as x ′′.

The formulas and terms of a given language are simply the ones all of whose
nonlogical symbols belong to that language. Since languages are enumerable and
each formula of a language is a finite string of symbols from the language plus
variables and logical symbols, the set of formulas is enumerable, too. (One might at
first guess that the empty language would have no formulas, but at least when identity
is present, in fact it has infinitely many, among them ∀x x = x , ∀y y = y, ∀z z = z,
and so on.)

An interpretation M for a language L consists of two components. On the one
hand, there is a nonempty set |M| called the domain or universe of discourse of the

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

104 A PR ÉCIS OF FIRST-ORDER LOGIC: SYNTAX

interpretation, the set of things M interprets the language to be talking about. When
we say ‘for every x’ or ‘for some x’, what we mean, according to interpretation M,
is ‘for every x in |M|’ or ‘there exists an x in |M|’. On the other hand, there is for
each nonlogical symbol a denotation assigned to it. For a constant c, the denotation
cM is to be some individual in the domain |M|. For an n-place nonlogical predicate
R, the denotation RM is to be some n-place relation on |M| (which is officially
just a set of n-tuples of elements of |M|, a one-place relation being simply a subset
of |M|).

For example, for the language LG with constants a and b and c and two-place
predicates P and Q and R, the genealogical interpretation G of LG indicated above
would now be described by saying that the domain |G| is the set of all persons, aG is
Sarah, bG is Isaac, cG is Jacob, PG is set of ordered pairs of persons where the first is
the mother of the second, and analogously for QG and RG. Under this interpretation,
the open formula ∃z(Pyz & Qzx) amounts to ‘y is the paternal grandmother of x’,
while ∃z(Qyz & Pzx) amounts to ‘y is the maternal grandfather of x’. The closed
formula ∼∃x Pxx amounts to ‘no one is her own mother’, which is true, while
∃x Qxx amounts to ‘someone is his own father’, which is false.

When the identity symbol is present, it is not treated like the other, nonlogical
predicates: one is not free to assign it an arbitrary two-place relation on the domain
as its denotation; rather, its denotation must be the genuine identity relation on that
domain, the relation each thing bears to itself and to nothing else. When function
symbols are present, for an n-place function symbol f , the denotation f M is an
n-argument function from |M| to |M|.

9.2 Example (The standard interpretation of the language of arithmetic). One interpreta-
tion that will be of especial interest to us in later chapters is called the standard interpretation
N ∗ of the language of the language of arithmetic L∗. Its domain |N ∗| is the set of natural
numbers; the denotation 0N ∗

of the cipher 0 is the number zero; the denotation < N ∗
of the

less-than sign is the usual strict less-than order relation; the denotation ′N ∗
of the accent is

the successor function, which takes each number to the next larger number; and the denota-
tions +N ∗

and ·N ∗
of the plus sign and times sign are the usual addition and multiplication

functions. Then such an open term as x · y would stand for the product of x and y, whatever
they are; while such a closed term as 0′′ would stand for the successor of the successor of
zero, which is to say the successor of one, which is to say two. And such a closed formula as

(15) ∀x∀y(x · y = 0 ′′ → (x = 0 ′′ ∨ y = 0 ′′))

would stand for ‘for every x and every y, if the product of x and y is two, then either x
is two or y is two’ or ‘a product is two only if one of the factors is two’. This happens to
be true (given that our domain consists of natural numbers, with no negatives or fractions).
Other closed formulas that come out true on this interpretation include the following:

(16) ∀x∃y(x < y&∼∃z(x < z&z < y))

(17) ∀x(x < x ′ & ∼∃z(x < z&z < x ′)).

Here (16) says that for any number x there is a next larger number, and (17) that
x ′ is precisely this next larger number.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

9.1. FIRST-ORDER LOGIC 105

(For the empty language L∅, there are no nonlogical symbols to be assigned
denotations, but an interpretation must still specify a domain, and that specification
makes a difference as to truth for closed formulas involving =. For instance, ∃x∃y ∼
x = y will be true if the domain has at least two distinct elements, but false if it has
only one.)

Closed formulas, which are also called sentences, have truth values, true or false,
when supplied with an interpretation. But they may have different truth values un-
der different interpretations. For our original example (9)–(12), on the genealogical
interpretation we have since named G (and equally on the alternative arithmetical
interpretation that we have left nameless) all four sentences came out true. But alter-
native interpretations are possible. For instance, if we kept everything else the same
as in the genealogical interpretation, but took R to denote the relation of descendant
to ancestor rather than vice versa, (10) and (11) would remain true, but (9) and (12)
would become false: descendants of descendants are descendants, but parents and
grandparents are not descendants. Various other combinations are possible. What
one will not find is any interpretation that makes (9)–(11) all true, but (12) false.
Precisely that, to repeat, is what is meant by saying that (9)–(11) imply (12).

9.3 Example (Alternative interpretations of the language of arithmetic). For the language
of arithmetic, there is an alternative interpretation Q in which the domain is the nonnegative
rational numbers, but the denotation of 0 is still zero, the denotation of ′ is still the function
that adds one to a number, the denotations of + and · are the usual addition and multiplication
operations, and the denotation of < is still the less-than relation among the numbers in
question. On this interpretation, (16) and (17) above are both false (because there are lots
of rational numbers between x and any larger y in general, and lots of rational numbers
between x and x plus one in particular). There is another alternative interpretation P in
which the domain consists of the nonnegative half integers 0, 1/2, 1, 11/2 , 2, 21/2, 3, and so
on, but the denotation of 0 is still zero, the denotation of ′ is still the function that adds one
to a number, the denotation of + is still the usual addition operation, and the denotation
of < is still the less-than relation among the numbers in question. (Multiplication cannot
be interpreted in the usual way, since a product of two half integers is not in general a half
integer, but for purposes of this example it does not matter how multiplication is interpreted.)
On this interpretation, (16) would be true (because there is no half integer between x and
y = x plus one-half), but (17) would be false (because there is a half integer between x and
x plus one, namely x plus one-half). What you won’t find is an interpretation that makes
(17) true but (16) false. And again, that is what it means to say that (16) is a consequence
of (17).

The explanations given so far provide part of the precision and rigor that will be
needed in our later work, but only part. For they still rely on an intuitive understanding
of what it is to be a sentence of a language, and what it is for a sentence be true in an
interpretation. There are two reasons why we want to avoid this reliance on intuition.
The first is that when we come to apply our work on computability to logic, we
are going to want the notion of sentence to be so precisely defined that a machine
could tell whether or not a given string of symbols is a sentence. The second is that

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

106 A PR ÉCIS OF FIRST-ORDER LOGIC: SYNTAX

the notion of truth was historically under a certain cloud of suspicion, owing to the
occurrence of certain contradictions, euphemistically called ‘paradoxes’, such as the
ancient Epimenides or liar paradox: If I say, ‘what I am now saying is not true’, is
what I am saying true? We are therefore going to want to give, for sentences of the
kind of formal language we are considering, a definition of truth just as rigorous
as the definition of any other notion in mathematics, making the notion of truth, as
applied to the kind of formal language we are considering, as respectable as any other
mathematical notion.

The next section will be devoted to giving precise and rigorous definitions of the
notions of formula and sentence, and more generally to giving definitions of notions
pertaining to syntax, that is, pertaining to the internal structure of formulas. The
next chapter will be devoted to giving the definition of truth, and more generally to
giving definitions of notions pertaining to semantics, that is, pertaining to the external
interpretation of formulas.

9.2 Syntax

Officially we think of ourselves as working for each k > 0 with a fixed denumerable
stock of k-place predicates:

A1
0 A1

1 A1
2 · · ·

A2
0 A2

1 A2
2 · · ·

A3
0 A3

1 A3
2 · · ·

...
...

...

and with a fixed denumerable stock of constants:

f 0
0 f 0

1 f 0
2

When function symbols are being used, we are also going to want for each k > 0 a fixed
denumerable stock of k-place function symbols:

f 1
0 f 1

1 f 1
2 . . .

f 2
0 f 2

1 f 2
2 . . .

f 3
0 f 3

1 f 3
2 . . .

...
...

... .

Any language will be a subset of this fixed stock. (In some contexts in later chapters
where we are working with a language L we will want to be able to assume that there
are infinitely many constants available that have not been used in L . This is no real
difficulty, even if L itself needs to contain infinitely many constants, since we can
either add the new constants to our basic stock, or assume that L used only every
other constant of our original stock to begin with.)

We also work with a fixed denumerable stock of variables:

v0 v1 v2

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

9.2. SYNTAX 107

Thus the more or less traditional 0 and < and ′ and + and · we have been writing—
and in practice, are going to continue to write—are in principle to be thought of as
merely nicknames for f 0

0 and A2
0 and f 1

0 and f 2
0 and f 2

1 ; while even writing x and y
and z rather than vi and v j and vk , we are using nicknames, too.

The official definition of the notion of formula begins by defining the notion of
an atomic formula, which will be given first for the case where identity and function
symbols are absent, then for the case where they are present. (If sentence letters were
admitted, they would count as atomic formulas, too; but, as we have said, we generally
are not going to admit them.) If identity and function symbols are absent, then an
atomic formula is simply a string of symbols R(t1 , . . . , tn) consisting of a predicate,
followed by a left parenthesis, followed by n constants or variables, where n is the
number of places of the predicate, with commas separating the successive terms, all
followed by a right parenthesis. Further, if F is a formula, then so is its negation
∼F , consisting of a tilde followed by F . Also, if F and G are formulas, then so is
their conjunction (F & G), consisting of a left parenthesis, followed by F , which is
called the left or first conjunct, followed by the ampersand, followed by G, which
is called the right or second conjunct, followed by a right parenthesis. Similarly for
disjunction. Also, if F is a formula and x is a variable, the universal quantification
∀xF is a formula, consisting of an inverted ay, followed by x , followed by F . Similarly
for existential quantification.

And that is all: the definition of (first-order) formula is completed by saying
that anything that is a (first-order) formula can be built up from atomic formulas in a
sequence of finitely many steps—called a formation sequence—by applying negation,
junctions, and quantifications to simpler formulas. (Until a much later chapter, where
we consider what are called second-order formulas, ‘first-order’ will generally be
omitted.)

Where identity is present, the atomic formulas will include ones of the kind
=(t1, t2). Where function symbols are present, we require a preliminary definition of
terms. Variables and constants are atomic terms. If f is an n-place function symbol
and t1 , . . . , tn are terms, then f (t1 , . . . , tn) is a term. And that is all: the definition
of term is completed by stipulating that anything that is a term can be built up from
atomic terms in a sequence of finitely many steps—called a formation sequence—by
applying function symbols to simpler terms. Terms that contain variables are said to
be open, while terms that do not are said to be closed. An atomic formula is now
something of the type R(t1 , . . . , tn) where the ti may be any terms, not just constants
or variables; but otherwise the definition of formula is unchanged.

Note that officially predicates are supposed to be written in front of the terms to
which they apply, so writing x < y rather than < (x, y) is an unofficial colloquial-
ism. We make use of several more such colloquialisms below. Thus we sometimes
omit the parentheses around and commas separating terms in atomic formulas, and
we generally write multiple conjunctions like (A & (B & (C & D))) simply as
(A & B & C & D), and similarly for disjunctions, as well as sometimes omitting
the outer parentheses on conjunctions and disjunctions (F & G) and (F ∨ G) when
these stand alone rather than as parts of more complicated formulas. All this is slang,
from the official point of view. Note that → and ↔ have been left out of the official

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

108 A PR ÉCIS OF FIRST-ORDER LOGIC: SYNTAX

Table 9-2. Some terms of the language of
arithmetic

v0 x
f 0
0 0

f 1
0(f 0

0) 1
f 1
0(f 1

0 (f 0
0)) 2

f 2
1(f 1

0 (f 1
0 (f 0

0)), v0) 2 · x

f 2
0(f 2

1 (f 1
0 (f 1

0 (f 0
0)), v0), f 2

1 (f 1
0 (f 1

0 (f 0
0)), v0)) 2 · x + 2 · x

language entirely: (F → G) and (F ↔ G) are to be considered unofficial abbrevia-
tions for (∼F ∨ G) and ((∼F ∨ G) & (∼G ∨ F)). In connection with the language of
arithmetic we allow ourselves two further such abbreviations, the bounded quantifiers
∀y < x for ∀y(y < x → . . .) and ∃y < x for ∃y(y < x & . . .).

Where identity is present, we also write x = y and x ̸= y rather than =(x, y) and
∼==(x, y). Where function symbols are present, they also are supposed to be written
in front of the terms to which they apply. So our writing x ′ rather than ′(x) and x + y
and x · y rather than +(x, y) and ·(x , y) is a colloquial departure from officialese.
And if we adopt—as we do—the usual conventions of algebra that allow us to omit
certain parenthesis, so that x + y · z is conventionally understood to mean x + (y · z)
rather than (x + y) · z without our having to write the parentheses in explicitly, that
is another such departure. And if we go further—as we do—and abbreviate 0′, 0 ′′,
0 ′′′, . . . , as 1, 2, 3, . . . , that is yet another departure.

Some terms of L* in official and unofficial notation are shown in Table 9-2. The
left column is a formation sequence for a fairly complex term.

Some formulas of L∗ in official (or rather, semiofficial, since the the terms have
been written colloquially) notation are shown in Table 9-3. The left column is a
formation sequence for a fairly complex formula.

No one writing about anything, whether about family trees or natural numbers,
will write in the official notation illustrated above (any more than anyone filling out
a scholarship application or a tax return is going to do the necessary calculations in
the rigid format established in our chapters on computability). The reader may well
wonder why, if the official notation is so awkward, we don’t just take the abbreviated

Table 9-3. Some formulas of the language of arithmetic

A2
0(x, 0) x < 0

A2
0(x, 1) x < 1

A2
0(x, 2) x < 2

A2
0(x, 3) x < 3

∼A2
0(x, 3)) ∼x < 3

(= (x, 1)∨ = (x, 2)) x == 1 ∨ x == 2
(= (x, 0) ∨ (= (x, 1)∨ = (x, 2))) x == 0 ∨ x == 1 ∨ x == 2
(∼A2

0(x, 3) ∨ (= (x, 0) ∨ (= (x, 1)∨ = (x, 2)))) x < 3 → (x == 0 ∨ x == 1 ∨ x == 2)
∀x((∼A2

0(x, 3) ∨ (= (x, 0) ∨ (= (x, 1)∨ = (x, 2))))) ∀x < 3(x == 0 ∨ x == 1 ∨ x == 2)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

9.2. SYNTAX 109

notation as the official one. The reason is that in proving things about the terms and
formulas of a language, it is easiest if the language has a very rigid format (just as,
in proving things about computability, it is easiest if the computations take place in
a very rigid format). In writing examples of terms and formulas in the language, it
is on the contrary easiest if the language has a very flexible format. The traditional
strategy of logicians is to make the official language about which one proves theorems
a very austere and rigid one, and to make the unofficial language in which one writes
examples a very generous and flexible one. Of course, for the theorems proved about
the austere idiom to be applicable to the generous idiom, one has to have confidence
that all the abbreviations permitted by the latter but not the former could in principle
be undone. But there is no need actually to undo them in practice.

The main method of proving theorems about terms and formulas in a language is
called induction on complexity. We can prove that all formulas have a property by
proving

Base Step: Atomic formulas have the property.
Induction Step: If a more complex formula is formed by applying a logical operator

to a simpler formula or formulas, then, assuming (as induction hypothesis) that the
simpler formula or formulas have the property, so does the more complex formula.
The induction step will usually be divided into cases, according as the operator is ∼
or & or ∨ or ∀ or ∃.

Typically the proof will first be given for the situation where identity and func-
tion symbols are absent, then for the situation with identity present but function
symbols absent, and then for the case with both identity and function symbols present.
Identity typically requires very little extra work if any, but where function symbols
are present, we generally need to prove some preliminary result about terms, which is
also done by induction on complexity: we can prove that all terms have some property
by proving that atomic terms have the property, and that if a more complex term is
formed by applying a function symbol to simpler terms, then, assuming the simpler
terms have the property, so does the more complex term.

The method of proof by induction on complexity is so important that we want to
illustrate it now by very simple examples. The following lemma may tell us more
than we want to know about punctuation, but is good practice.

9.4 Lemma (Parenthesis lemma). When formulas are written in official notation the
following hold:

(a) Every formula ends in a right parenthesis.
(b) Every formula has equally many left and right parentheses.
(c) If a formula is divided into a left part and a right part, both nonempty, then there

are at least as many left as right parentheses in the left part, and more if that part
contains at least one parenthesis.

Proof: We give first the proof for (a). Base step: An atomic formula R(t1 , . . . , tn)
or =(t1, t2) of course ends in a right parenthesis. Induction step, negation case: If
F ends in a right parenthesis, then so does ∼F , since the only new symbol is at
the beginning. Induction step, junction case: A conjunction (F & G) or disjunction
(F ∨ G) of course ends in a right parenthesis. Induction step, quantification case: If

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

110 A PR ÉCIS OF FIRST-ORDER LOGIC: SYNTAX

F ends in a right parenthesis, then so do ∀xF or ∃xF, for the same reason as in the
case of negation, namely, that the only new symbols are at the beginning.

In giving the proof for (b), we allow ourselves to be a little less rigid about the
format. We consider first the case where function symbols are absent. First note
that an atomic formula R(t1 , . . . , tn) or =(t1, t2) has equal numbers of left and right
parentheses, namely, one of each. Then note that F has equal numbers of left and
right parentheses, then so does ∼F , since there are no new parentheses. Then note
that if F has m of each kind of parenthesis, and G has n of each, then (F & G) has
m + n + 1 of each, the only new ones being the outer ones. The proof for disjunction
is the same as for conjunction, and the proofs for quantifications essentially the same
as for negation.

If function symbols are present, we need the preliminary result that every term
has equally many left and right parentheses. This is established by induction on
complexity. An atomic term has equal numbers of left and right parentheses, namely
zero of each. The nonatomic case resembles the conjunction case above: if s has m
each of left and right parentheses, and t has n each, then f (s, t) has m + n + 1 each;
and similarly for f (t1 , . . . , tk) for values of k other than two. Having this preliminary
result, we must go back and reconsider the atomic case in the proof of (b). The
argument now runs as follows: if s has m each of left and right parentheses, and t has
n each, then R(s, t) has m + n + 1 each, and similarly for R(t1 , . . . , tk) for values of
k other than two. No change is needed in the nonatomic cases of the proof of (b).

In giving the proof for (c), we also first consider the case where function symbols
are absent. First suppose an atomic formula R(t1, . . . , tn) or =(t1, t2) is divided into
a left part λ and a right part ρ, both nonempty. If λ is just R or =, it contains zero
parentheses of each kind. Otherwise, λ contains the one and only left parenthesis and
not the one and only right parenthesis. In either case, (c) holds. Next assume (c) holds
for F , and suppose ∼F is divided. If λ consists just of ∼, and ρ of all of F , then λ

contains zero parentheses of each kind. Otherwise, λ is of the form ∼λ0, where λ0

is a left part of F , and ρ is the right part of F . By assumption, then λ0 and hence λ

has at least as many left as right parentheses, and more if it contains any parentheses
at all. Thus in all cases, (c) holds for ∼F . Next assume (c) holds for F and G, and
suppose (F & G) is divided. The possible cases for the left part λ are:

Case1 Case 2 Case 3 Case 4 Case 5 Case 6
((λ0 (F (F & (F & λ1 (F & G

where in case 2, λ0 is a left part of F , and in case 5, λ1 is a left part of G. In every
case, the part of λ after the initial left parenthesis has at least as many left as right
parentheses: obviously in case 1, by the assumption of (c) for F in case (2), by part
(b) in case (3), and so on. So the whole left part λ has at least one more left than right
parenthesis, and (c) holds for (F & G). The proof for disjunction is the same as for
conjunction, and the proofs for quantifications essentially the same as for negation.
We leave the case where function symbols are present to the reader.

We conclude this section with the official definitions of four more important
syntactic notions. First, we officially define a string of consecutive symbols within a

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

9.2. SYNTAX 111

given formula to be a subformula of the given formula if it is itself a formula. Where
function symbols are present, we can similarly define a notion of subterm. We stop
to note one result about subformulas.

9.5 Lemma (Unique readability lemma).

(a) The only subformula of an atomic formula R(t1 , . . . , tn) or =(t1, t2) is itself.
(b) The only subformulas of ∼F are itself and the subformulas of F .
(c) The only subformulas of (F & G) or (F ∨ G) are itself and the subformulas of F

and G.
(d) The only subformulas of ∀xF or ∃xF are itself and the subformulas of F .

These assertions may seem obvious, but they only hold because we use enough
parentheses. If we used none at all, the disjunction of F & G with H , that is, F &
G ∨ H , would have the subformula G ∨ H , which is neither the whole conjunction
nor a subformula of either conjunct. Indeed, the whole formula would be the same
as the conjunction of F with G ∨ H , and we would have a serious ambiguity. A
rigorous proof of the unique readability lemma requires the parenthesis lemma.

Proof: For (a), a subformula of R(t1, . . . , tn) or =(t1, t2) must contain the initial
predicate R or =, and so, if it is not the whole formula, it will be a left part of it.
Being a formula, it must contain (and in fact end in) a parenthesis by 9.4(a), and so,
if it is not the whole formula but only a left part, must contain an excess of left over
right parentheses by 9.4(c), which is impossible for a formula by 9.4(b).

For (b), a subformula of ∼F that is not a subformula of F must contain the
initial negation sign ∼, and so, if it is not the whole formula ∼F , it will be a left
part of it, and from this point the argument is essentially the same as in the atomic
case (a).

For (c), we relegate the proof to the problems at the end of the chapter.
For (d), the argument is essentially the same as for (b).

Resuming our series of definitions, second, using the notion of subformula, we
state the official definition of which occurrences of a variable x in a formula F are free
and which are bound: an occurrence of variable x is bound if it is part of a subformula
beginning ∀x . . . or ∃x . . . , in which case the quantifier ∀ or ∃ in question is said to
bind that occurrence of the variable x , and otherwise the occurrence of the variable
x is free. As an example, in

x < y & ∼∃ z(x < z & z < y)

all the occurrences of x and y are free, and all the occurrences of z are bound; while
in

Fx → ∀xFx

the first occurrence of x is free, and the other two occurrences of x are bound. [The
difference between the role of a free variable x and the role of a bound variable u in

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

112 A PR ÉCIS OF FIRST-ORDER LOGIC: SYNTAX

a formula like ∀u R(x, u) or ∃u R(x, u) is not unlike the difference between the roles
of x and of u in mathematical expressions like

∫ x

1

du
u

x∑

u=1

1
u

For some readers this analogy may be helpful, and those readers who do not find it
so may ignore it.]

In general, any and all occurrences of variables in an atomic formula R(t1 , . . . , tn)
are free, since there are no quantifiers in the formula; the free occurrences of a variable
in a negation ∼F are just the free occurrences in F , since any subformula of ∼F
beginning ∀x or ∃x is a proper subformula of ∼F and so a subformula of F ; and
similarly, the free occurrences of a variable in a junction (F & G) or (F ∨ G) are just
those in F and G; and similarly, the free occurrences of a variable other than x in a
quantification ∀xF or ∃xF are just those in F , while of course none of the occurrences
of x in ∀xF or ∃xF is free.

Third, using the notion of free and bound occurrence of variables, we state the
official definition of the notion of an instance of a formula. But before giving that
definition, let us mention a convenient notational convention. When we write some-
thing like ‘Let F(x) be a formula’, we are to be understood as meaning ‘Let F be a
formula in which no variables occur free except x’. That is, we indicate which vari-
ables occur free in the formula we are calling F by displaying them immediately after
the name F we are using for that formula. Similarly, if we go on to write something
like ‘Let c be a constant, and consider F(c)’, we are to be understood as meaning,
‘Let c be a constant, and consider the result of substituting c for all free occurrences
of x in the formula F’. That is, we indicate what substitution is to be made in the
formula we are calling F(x) by making that very substitution in the expression F(x).
Thus if F(x) is ∀y ∼ y < x , then F(0) is ∀y ∼ y < 0. Then the official definition of
instance is just this: an instance of a formula F(x) is any formula of form F(t) for
t a closed term. Similar notations apply where there is more than one free variable,
and to terms as well as formulas.

Fourth and finally, again using the notion of free and bound occurrence of variables,
we state the official definition of sentence: a formula is a sentence if no occurrence
of any variable in it is free. A subsentence is a subformula that is a sentence.

Problems

9.1 Indicate the form of the following argument—traditionally called ‘syllogism in
Felapton’—using formulas:
(a) No centaurs are allowed to vote.
(b) All centaurs are intelligent beings.
(c) Therefore, some intelligent beings are not allowed to vote.
Do the premisses (a) and (b) in the preceding argument imply the conclusion (c)?

9.2 Consider (9)–(12) of at the beginning of the chapter, and give an alternative to
the genealogical interpretation that makes (9) true, (10) false, (11) true, and (12)
false.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

PROBLEMS 113

9.3 Consider a language with a two-place predicate P and a one-place predicate F,
and an interpretation in which the domain is the set of persons, the denotation
of P is the relation of parent to child, and the denotation of F is the set of all
female persons. What do the following amount to, in colloquial terms, under that
interpretation?
(a) ∃z∃u∃v(u ̸= v & Puy & Pvy & Puz & Pvz & Pzx & ∼F y)
(b) ∃z∃u∃v(u ̸= v & Pux & Pvx & Puz & Pvz & Pzy & F y)

9.4 Officially, a formation sequence is a sequence of formulas in which each either
is atomic, or is obtained by some earlier formula(s) in the sequence by negation,
conjunction, disjunction, or universal or existential quantification. A formation
sequence for a formula F is just a formation sequence whose last formula is F .
Prove that in a formation sequence for a formula F , every subformula of F must
appear.

9.5 Prove that every formula F has a formation sequence in which the only formulas
that appear are subformulas of F , and the number of formulas that appear is no
greater than the number of symbols in F .

9.6 Here is an outline of a proof that the only subformulas of (F & G) are itself and
the subformulas of F and of G. Suppose H is some other kind of subformula. If
H does not contain the displayed ampersand, then H must be of one of the two
forms:
(a) (λ where λ is a left part of F , or
(b) ρ) where ρ is a right part of G.
If H does contain the displayed ampersand, then some subformula of H (possibly
H itself) is a conjunction (A & B) where A and B are formulas and either
(c) A = F and B is a left part λ of G,
(d) A is a right part ρ of F and B = G, or
(e) A is a right part ρ of F and B is a left part λ of G.
Show that (a) and (b) are impossible.

9.7 Continuing the preceding problem, show that (c)–(e) are all impossible.
9.8 Our definition allows the same variable to occur both bound and free in a formula,

as in P(x) & ∀xQ(x). How could we change the definition to prevent this?

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

10

A Précis of First-Order Logic: Semantics

This chapter continues the summary of background material on logic needed for later
chapters. Section 10.1 studies the notions of truth and satisfaction, and section 10.2 the
so-called metalogical notions of validity, implication or consequence, and (un)satisfia-
bility.

10.1 Semantics

Let us now turn from the official definitions of syntactical notions in the preceding
chapter to the official definitions of semantic notions. The task must be to introduce
the same level of precision and rigor into the definition of truth of a sentence in or
on or under an interpretation as we have introduced into the notion of sentence itself.
The definition we present is a version or variant of the Tarski definition of what it
is for a sentence F to be true in an interpretation M, written M |= F . (The double
turnstile |= may be pronounced ‘makes true’.)

The first step is to define truth for atomic sentences. The official definition will
be given first for the case where identity and function symbols are absent, then for
the case where they are present. (If sentence letters were admitted, they would be
atomic sentences, and specifying which of them are true and which not would be part
of specifying an interpretation; but, as we have said, we generally are not going to
admit them.) Where identity and function symbols are absent, so that every atomic
sentence has the form R(t1, . . . , tn) for some nonlogical predicate R and constants
ti , the definition is straightforward:

M |= R(t1, . . . , tn) if and only if RM(
tM1 , . . . , tMn

)
.(1a)

The atomic sentence is true in the interpretation just in case the relation that the
predicate is interpreted as denoting holds of the individuals that the constants are
interpreted as denoting.

When identity is present, there is another kind of atomic sentence for which a
definition of truth must be given:

M |= =(t1, t2) if and only if tM1 = tM2 .(1b)

114

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

10.1. SEMANTICS 115

The atomic sentence is true in the interpretation just in case the individuals the
constants are interpreted as denoting are the same.

When function symbols are present, we need a preliminary definition of the de-
notation tM of a closed term t of a language L under an interpretation M. Clauses
(1a) and (1b) then apply, where the ti may be any closed terms, and not just constants.
For an atomic closed term, that is, for a constant c, specifying the denotation cM of c
is part of what is meant by specifying an interpretation. For more complex terms, we
proceed as follows. If f is an n-place function symbol, then specifying the denota-
tion f M is again part of what is meant by specifying an interpretation. Suppose the
denotations tM1 , . . . , tMn of terms t1, . . . , tn have been defined. Then we define the
denotation of the complex term f (t1, . . . , tn) to be the value of the function f M that
is the denotation of f applied to the individuals tM1 , . . . , tMn that are the denotations
of t1, . . . , tn as arguments:

(f (t1, . . . , tn))M = f M
(
tM1 , . . . , tMn

)
.(1c)

Since every term is built up from constants by applying function symbols a finite
number of times, these specifications determine the denotation of every term.

So, for example, in the standard interpretation of the language of arithmetic, since
0 denotes the number zero and ′ denotes the successor function, according to (1c) 0′

denotes the value obtained on applying the successor function to zero as argument,
which is to say the number one, a fact we have anticipated in abbreviating 0′ as 1.
Likewise, the denotation of 0′′ is the value obtained on applying the successor func-
tion to the denotation of 0′, namely one, as argument, and this value is of course the
number two, again a fact we have been anticipating in abbreviating 0′′ as 2. Simi-
larly, the denotation of 0′′′ is three, as is, for instance, the denotation of 0′ + 0′′. No
surprises here.

According to (1b), continuing the example, since the denotations of 0′′′ or 3 and of
0′ + 0′′ or 1 + 2 are the same, 0′′′ = 0′ + 0′′ or 3 = 1 + 2 is true, while by contrast
0′′ = 0′ + 0′′ or 2 = 1 + 2 is false. Again no surprises. According to (1a), further
continuing the example, since the denotation of < is the strict less-than relation, and
the denotations of 0′′′ or 3 and of 0′ + 0′′ or 1 + 2 are both three, the atomic
sentence 0′′′ < 0′ + 0′′ or 3 < 1 + 2 is false, while by contrast 0′′ < 0′ + 0′′ is
true. Yet again, no surprises.

There is only one candidate for what the definition should be in each of the cases
of negation and of the two junctions:

M |= ∼F if and only if not M |= F(2a)

M |= (F & G) if and only if M |= F and M |= G(2b)

M |= (F ∨ G) if and only if M |= F or M |= G.(2c)

So, for example, in the standard interpretation of the language of arithmetic, since
0 = 0 and 0 < 0′ are true while 0 < 0 is false, we have that (0 = 0 ∨ 0 < 0′) is true,
(0 < 0 & 0 = 0) is false, (0 < 0 & (0 = 0 ∨ 0 < 0′)) is false, and ((0 < 0 & 0 = 0) ∨
0 < 0′) is true. Still no surprises.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

116 A PR ÉCIS OF FIRST-ORDER LOGIC: SEMANTICS

One consequence of (2a)–(2c) worth mentioning is that (F & G) is true if and only
if ∼(∼F ∨ ∼G) is true, and (F ∨ G) is true if and only if ∼(∼F & ∼G) is true. We
could therefore if we wished drop one of the pair &, ∨ from the official language,
and treat it as an unofficial abbreviation (for an expression involving ∼ and the other
of the pair) on a par with → and ↔.

The only slight subtlety in the business arises at the level of quantification. Here is a
simple, tempting, and wrong approach to defining truth for the case of quantification,
called the substitutional approach:

M |= ∀x F(x) if and only if for every closed term t, M |= F(t)
M |= ∃x F(x) if and only if for some closed term t, M |= F(t).

In other words, under this definition a universal quantification is true if and only if
every substitution instance is true, and an existential quantification is true if and only
if some substitution instance is true. This definition in general produces results not
in agreement with intuition, unless it happens that every individual in the domain of
the interpretation is denoted by some term of the language. If the domain of the inter-
pretation is enumerable, we could always expand the language to add more constants
and extend the interpretation so that each individual in the domain is the denotation
of one of them. But we cannot do this when the domain is nonenumerable. (At least
we cannot do so while continuing to insist that a language is supposed to involve
only a finite or enumerable set of symbols. Of course, to allow a ‘language’ with a
nonenumerable set of symbols would involve a considerable stretching of the con-
cept. We will briefly consider this extended concept of ‘language’ in a later chapter,
but for the moment we set it aside.)

10.1 Example. Consider the language L* of arithmetic and three different inter-
pretations of it: first, the standard interpretation N*; second, the alternative interpretation
Q we considered earlier, with domain the nonnegative rational numbers; third, the similar
alternative interpretation R with domain the nonnegative real numbers. Now in fact the
substitutional approach gives the intuitively correct results for N* in all cases. Not so, how-
ever, for the other two interpretations. For, all closed terms in the language have the same
denotation in all three interpretations, and from this it follows that all closed terms denote
natural numbers. And from this it follows that t + t = 1 is false for all closed terms t ,
since there is no natural number that, added to itself, yields one. So on the substitutional
approach, ∃x(x + x = 1) would come out false on all three interpretations. But intuitively
‘there is something (in the domain) that added to itself yields one’ is false only on the
standard interpretation N*, and true on the rational and real interpretations Q and R.

We could try to fix this by adding more constants to the language, so that there is one
denoting each nonnegative rational number. If this were done, then on the rational and
real interpretations, 1/2 + 1/2 = 1 would come out true, and hence ∃x(x + x = 1) would
come out true using the substitutional approach, and this particular example of a problem
with the substitutional approach would be fixed. Indeed, the substitutional approach would
then give the intuitively correct results for Q in all cases. Not so, however, for R. For, all
terms in the language would denote rational numbers, and from this it would follow that
t · t = 2 is false for all terms t , since there is no rational number that, multiplied by itself,

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

10.1. SEMANTICS 117

yields two. So on the substitutional approach, ∃x(x · x = 2) would come out false. But
intuitively, though ‘there is something (in the domain) that multiplied by itself yields two’
is false on the rational interpretation, it is true on the real interpretation. We could try to fix
this by adding yet more terms to the language, but by Cantor’s theorem there are too many
real numbers to add a term for each of them while keeping the language enumerable.

The right definition for the case of quantification has to be a little more indirect.
In defining when M |= ∀x F(x) we do not attempt to extend the given language L
so as to provide constants for every individual in the domain of the interpretation at
once. In general, that cannot be done without making the language nonenumerable.
However, if we consider any particular individual in the domain, we could extend the
language and interpretation to give just it a name, and what we do in defining when
M |= ∀xF(x) is to consider all possible extensions of the language and interpretation
by adding just one new constant and assigning it a denotation.

Let us say that in the interpretation M the individual m satisfies F(x), and write
M |= F[m], to mean ‘if we considered the extended language L ∪ {c} obtained by
adding a new constant c in to our given language L , and if among all the extensions
of our given interpretation M to an interpretation of this extended language we
considered the one Mc

m that assigns c the denotation m, then F(c) would be true’:

M |= F[m] if and only if Mc
m |= F(c).(3*)

(For definiteness, let us say the constant to be added should be the first constant not
in L in our fixed enumeration of the stock of constants.)

For example, if F(x) is x · x = 2, then on the real interpretation of the language
of arithmetic

√
2 satisfies F(x), because if we extended the language by adding a

constant c and extended the interpretation by taking c to denote
√

2, then c · c = 2
would be true, because the real number denoted by c would be one that, multiplied
by itself, yields two. This definition of satisfaction can be extended to formulas with
more than one free variable. For instance, if F(x, y, z) is x · y = z, then

√
2,

√
3,

√
6

satisfy F(x, y, z), because if we added c, d, e denoting them, c · d = e would be true.
Here, then, is the right definition, called the objectual approach:

M |= ∀xF(x) if and only if for every m in the domain, M |= F[m](3a)

M |= ∃xF(x) if and only if for some m in the domain, M |= F[m].(3b)

SoR |= ∃xF(x) under the above definitions, in agreement with intuition, even though
there is no term t in the actual language such that R |= F(t), because R |= F[

√
2].

One immediate implication of the above definitions worth mentioning is that ∀xF
turns out to be true just in case ∼∃x ∼ F is true, and ∃x F turns out to be true just
in case ∼∀x ∼F is true, so it would be possible to drop one of the pair ∀, ∃ from the
official language, and treat it as an unofficial abbreviation.

The method of proof by induction on complexity can be used to prove semantic
as well as syntactic results. The following result can serve as a warm-up for more
substantial proofs later, and provides an occasion to review the definition of truth
clause by clause.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

118 A PR ÉCIS OF FIRST-ORDER LOGIC: SEMANTICS

10.2 Proposition (Extensionality lemma).

(a) Whether a sentence A is true depends only on the domain and denotations of the
nonlogical symbols in A.

(b) Whether a formula F(x) is satisfied by an element m of the domain depends only
on the domain, the denotations of the nonlogical symbols in F , and the element m.

(c) Whether a sentence F(t) is true depends only on the domain, the denotations of
the nonlogical symbols in F(x), and the denotation of the closed term t .

Here (a), for instance, means that the truth value of A does not depend on what
the nonlogical symbols in A themselves are, but only on what their denotations are,
and does not depend on the denotations of nonlogical symbols not in A. (So a more
formal statement would be: If we start with a sentence A and interpretation I , and
change A to B by changing zero or more nonlogical symbols to others of the same
kind, and change I to J , then the truth value of B in J will be the same as the truth
value of A in I provided J has the same domain as I , J assigns each unchanged
nonlogical symbol the same denotation I did, and whenever a nonlogical symbol S
is changed to T , then J assigns to T the same denotation I assigned to S. The proof,
as will be seen, is hardly longer than this formal statement!)

Proof: In proving (a) we consider first the case where function symbols are absent,
so the only closed terms are constants, and proceed by induction on complexity. By
the atomic clause in the definition of truth, the truth value of an atomic sentence
depends only on the denotation of the predicate in it (which in the case of the identity
predicate cannot be changed) and the denotations of the constants in it. For a negation
∼B, assuming as induction hypothesis that (a) holds for B, then (a) holds for ∼B
as well, since by the negation clause in the definition of truth, the truth value of ∼B
depends only on the truth value of B. The cases of disjunction and conjunction are
similar.

For a universal quantification ∀x B(x), assuming as induction hypothesis that
(a) holds for sentences of form B(c), then (b) holds for B(x), for the following
reason. By the definition of satisfaction, whether m satisfies B(x) depends on the
truth value of B(c) where c is a constant not in B(x) that is assigned denotation m.
[For definiteness, we specified which constant was to be used, but the assumption of
(a) for sentences of form B(c) implies that it does not matter what constant is used,
so long as it is assigned denotation m.] By the induction hypothesis, the truth value
of B(c) depends only on the domain and the denotations of the nonlogical symbols
in B(c), which is to say, the denotations of the nonlogical symbols in B(x) and the
element m that is the denotation of the nonlogical symbol c, just as asserted by (b) for
B(x). This preliminary observation made, (a) for ∀x B(x) follows at once, since by
the universal quantification clause in the definition of truth, the truth value of ∀x B(x)
depends only on the domain and which of its elements satisfy B(x). The case of
existential quantification is the same.

If function symbols are present, we must as a preliminary establish by induction
on complexity of terms that the denotation of a term depends only on the denotations
of the nonlogical symbols occurring in it. This is trivial in the case of a constant. If it

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

10.2. METALOGICAL NOTIONS 119

is true for terms t1, . . . , tn , then it is true for the term f (t1, . . . , tn), since the definition
of denotation of term mentions only the denotation of the nonlogical symbol f and
the denotations of the terms t1, . . . , tn . This preliminary observation made, (a) for
atomic sentences follows, since by the atomic clause in the definition of truth, the
truth value of an atomic sentence depends only on the denotation of its predicate and
the denotations of its terms. The nonatomic cases in the proof require no change.

We have proved (b) in the course of proving (a). Having (b), the proof of (c) reduces
to showing that whether a sentence F(t) is true depends only on whether the element
m denoted by t satisfies F(x), which by the definition of satisfaction is to say, on
whether F(c) is true, where c is a constant having the same denotation m as t . The
proof that F(c) and F(t) have the same truth value if c and t have the same denotation
is relegated to the problems at the end of the chapter.

It is also extensionality (specifically, part (c) of Proposition 10.2) that justifies
our earlier passing remarks to the effect that the substitutional approach to defining
quantification does work when every element of the domain is the denotation of some
closed term. If for some closed term t the sentence B(t) is true, then letting m be the
denotation of t , it follows by extensionality that m satisfies B(x), and hence ∃x B(x) is
true; and conversely, if ∃x B(x) is true, then some m satisfies B(x), and assuming that
every element of the domain is the denotation of some closed term, then some term
t denotes m, and by extensionality, B(t) is true. Thus under the indicated assumption,
∃xB(x) is true if and only if for some term t , B(t) is true, and similarly ∀x B(x) is
true if and only if for every term t, B(t) is true.

Similarly, if every element of the domain is the denotation of a closed term of
some special kind then ∃x B(x) is true if and only if B(t) is true for some closed term
t that is of that special kind. In particular, for the standard interpretation N* of the
language of arithmetic L*, where every element of the domain is the denotation of
one of the terms 0, 1, 2, . . . , we have

N* |= ∀x F(x) if and only if for every natural number m,N* |= F(m)

N* |= ∃x F(x) if and only if for some natural number m,N* |= F(m)

where m is the numeral for the number m (that is, the term consisting of the cipher
0 followed by m copies of the accent ′).

10.2 Metalogical Notions

Now that rigorous definitions of formula and sentence, and of satisfaction and truth,
have been given, we can proceed to the definitions of the main notions of logical
theory. A set of sentences ! implies or has as a consequence the sentence D if there
is no interpretation that makes every sentence in ! true, but makes D false. This
is the same as saying that every interpretation that makes every sentence in ! true
makes D true. (Or almost the same. Actually, if D contains a nonlogical symbol not
in !, an interpretation might make ! true but assign no denotation to this symbol and
therefore no truth value to D. But in such a case, however the denotation is extended
to assign a denotation to any such symbols and therewith a truth value to D, ! will

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

120 A PR ÉCIS OF FIRST-ORDER LOGIC: SEMANTICS

still be true by the extensionality lemma, so D cannot be false and must be true. To
avoid fuss over such points, in future we tacitly understand ‘every interpretation’ to
mean ‘every interpretation that assigns denotations to all the nonlogical symbols in
whatever sentences we are considering’.) We use ‘makes every sentence in ! true’
and ‘makes ! true’ interchangeably, and likewise ‘the sentences in the set ! imply
D’ and ‘! implies D’. When ! contains but a single sentence C (in symbols, when
! = {C}), we use ‘! implies D’ and ‘C implies D’ interchangeably. Let us give a
few examples. There are more in the problems at the end of the chapter (and many,
many, many more in introductory textbooks).

10.3 Example. Some implication principles
(a) ∼∼B implies B.

(b) B implies (B ∨ C) and C implies (B ∨ C).

(c) ∼(B ∨ C) implies ∼B and ∼C .

(d) B(t) implies ∃x B(x).

(e) ∼∃x B(x) implies ∼B(t).

(f) s = t and B(s) imply B(t).

Proofs: For (a), by the negation clause in the definition of truth, in any interpre-
tation, if ∼∼B is true, then ∼B must be false, and B must be true. For (b), by the
disjunction clause in the definition of truth, in any interpretation, if B is true, then
(B ∨ C) is true; similarly for C . For (c), by what we have just shown, any interpre-
tation that does not make (B ∨ C) true cannot make B true; hence any intepretation
that makes ∼(B ∨ C) true makes ∼B true; and similarly for ∼C . For (d), in any
interpretation, by the extensionality lemma B(t) is true if and only if the element m
of the domain that is denoted by t satisfies B(x), in which case ∃x B(x) is true. As
for (e), it follows from what we have just shown much as (c) follows from (b). For
(f), by the identity clause in the definition of truth, in any interpretation, if s = t is
true, then s and t denote the same element of the domain. Then by the extensionality
lemma B(s) is true if and only if B(t) is true.

There are two more important notions to go with implication or consequence.
A sentence D is valid if no interpretation makes D false. In this case, a fortiori
no interpretation makes ! true and D false; ! implies D for any !. Conversely, if
every ! implies D, then since for every interpretation there is a set of sentences ! it
makes true, no interpretation can make D false, and D is valid. A set of sentences ! is
unsatisfiable if no interpretation makes ! true (and is satisfiable if some interpretation
does). In this case, a fortiori no interpretation makes ! true and D false, so ! implies
D for any D. Conversely, if ! implies every D, then since for every interpretation
there is a sentence it makes false, there can be no interpretation making ! true, and
! is unsatisfiable.

Notions such as consequence, unsatisfiability, and validity are often called ‘meta-
logical’ in contrast to the notions of negation, conjunction, disjunction, and univer-
sal and existential quantification, which are simply called ‘logical’. Terminology
aside, the difference is that there are symbols ∼, &, ∨, ∀, ∃ in our formal language

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

10.2. METALOGICAL NOTIONS 121

(the ‘object language’) for negation and the rest, whereas words like ‘consequence’
only appear in the unformalized prose, the mathematical English, in which we talk
about the formal language (the ‘metalanguage’).

Just as for implication or consequence, so for validity and for unsatisfiability
and satisfiability, there are innumerable little principles that follow directly from
the definitions. For instance: if a set is satisfiable, then so is every subset (since an
interpretation making every sentence in the set true will make every sentence in the
subset true); no set containing both a sentence and its negation is satisfiable (since no
interpretation makes them both true); and so on. The plain assertions of Example 10.3
can each be elaborated into fancier versions about validity and (un)satisfiability, as
we next illustrate in the case of 10.3(a).

10.4 Example. Variations on a theme
(a) ∼∼B implies B.

(b) If ! implies ∼∼B, then ! implies B.

(c) If B implies D, then ∼∼B implies D.

(d) If ! ∪ {B} implies D, then ! ∪ {∼∼B} implies D.

(e) If ∼∼B is valid, then B is valid.

(f) If ! ∪ {B} is unsatisfiable, then ! ∪ {∼∼B} is unsatisfiable.

(g) If ! ∪ {∼∼B} is satisfiable, then ! ∪ {B} is satisfiable.

Proof: (a) is a restatement of 10.3(a). For (b), we are given that every interpretation
that makes ! true makes ∼∼B true, and want to show that any interpretation that
makes ! true makes B true. But this is immediate from (a), which says that any
interpretation that makes ∼∼B true makes B true. For (c), we are given that any
interpretation that makes B true makes D true, and want to show that any interpretation
that makes ∼∼B true makes D true. But again, this is immediate from the fact that
any interpretation that makes ∼∼B true makes B true. In (d), ! ∪ {B} denotes the
result of adding B to !. The proof in this case is a combination of the proofs of (b)
and (c). For (e), we are given that every interpretation makes ∼∼B true, and want
to show that every interpretation makes B true, while for (f), we are given that no
interpretation makes ! and B true, and want to show that no interpretation makes !

and ∼∼B true. But again both are immediate from (a), that is, from the fact that every
interpretation that makes ∼∼B true makes B true. Finally, (g) is immediate from (f).

We could play the same game with any of 10.3(b)–10.3(f). Some results exist only
in the fancy versions, so to speak.

10.5 Example. Some satisfiability principles
(a) If ! ∪ {(A ∨ B)} is satisfiable, then either ! ∪ {A} is satisfiable, or ! ∪ {B} is

satisfiable.

(b) If ! ∪ {∃xB(x)} is satisfiable, then for any constant c not occurring in ! or ∃xB(x),
! ∪ {B(c)} is satisfiable.

(c) If ! is satisfiable, then ! ∪ {t = t} is satisfiable.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

122 A PR ÉCIS OF FIRST-ORDER LOGIC: SEMANTICS

Proof: For (a), we are given that some interpretation makes ! and A ∨ B true,
and want to show that some interpretation makes ! and A true, or some makes !

and B true. In fact, the same interpretation that makes ! and A ∨ B true either
makes A true or makes B true, by the disjunction clause in the definition of truth. For
(b), we are given that some interpretation makes ! and ∃x B(x) true, and want to show
that some interpretation makes ! and B(c) true, assuming c does not occur in ! or
∃x B(x). Well, since ∃x B(x) is true, some element m of the domain satisfies B(x).
And since c does not occur in ! or ∃x B(x), we can change the interpretation to make
m the denotation of c, without changing the denotations of any nonlogical symbols in
! or ∃x B(x), and so by extensionality not changing their truth values. But then ! is
still true, and since m satisfies B(x), B(c) is also true. For (c), we are given that some
interpretation makes ! true and want to show that some interpretation makes ! and
t = t true. But any interpretation makes t = t true, so long as it assigns a denotation
to each nonlogical symbol in t , and if our given interpretation does not, it at least
assigns a denotation to every nonlogical symbol in t that occurs in !, and if we extend
it to assign denotations to any other nonlogical symbols in t , by extensionality ! will
still be true, and now t = t will be true also.

There is one more important metalogical notion: two sentences are equivalent over
an interpretation M if they have the same truth value. Two formulas F(x) and G(x)
are equivalent over M if, taking a constant c occurring in neither, the sentences F(c)
and G(c) are equivalent over every interpretation Mc

mobtained by extending M to
provide some denotation m for c. Two sentences are (logically) equivalent if they
are equivalent over all interpretations. Two formulas F(x) and G(x) are (logically)
equivalent if, taking a constant c occurring in neither, the sentences F(c) and G(c) are
(logically) equivalent. A little thought shows that formulas are (logically) equivalent
if they are equivalent over every interpretation. The definitions may be extended to
formulas with more than one free variable. We leave the development of the basic
properties of equivalence entirely to the problems.

Before closing this chapter and bringing on those problems, a remark will be in
order. The method of induction on complexity we have used in this chapter and
the preceding to prove such unexciting results as the parenthesis and extensionality
lemmas will eventually be used to prove some less obvious and more interesting
results. Much of the interest of such results about formal languages depends on their
being applicable to ordinary language. We have been concerned here mainly with
how to read sentences of our formal language in ordinary language, and much less
with writing sentences of ordinary language in our formal language, so we need to
say a word about the latter topic.

In later chapters of this book there will be many examples of writing assertions
from number theory, the branch of mathematics concerned with the natural numbers,
as first-order sentences in the language of arithmetic. But the full scope of what can
be done with first-order languages will not be apparent from these examples, or this
book, alone. Works on set theory give examples of writing assertions from other
branches of mathematics as first-order sentences in a language of set theory, and
make it plausible that in virtually all branches of mathematics, what we want to say

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

PROBLEMS 123

can be said in a first-order language. Works on logic at the introductory level contain
a wealth of examples of how to say what we want to say in a first-order language
from outside mathematics (as in our genealogical examples).

But this cannot always be done outside of mathematics, and some of our results do
not apply unrestrictedly to ordinary language. A case in point is unique readability.
In ordinary language, ambiguous sentences of the type ‘A and B or C’ are perfectly
possible. Of course, though possible, they are not desirable: the sentence ought to
be rewritten to indicate whether ‘A, and either B or C’ or ‘Either A and B, or C’
is meant. A more serious case in point is extensionality. In ordinary language it is
not always the case that one expression can be changed to another denoting the same
thing without altering truth values. To give the classic example, Sir Walter Scott was
the author of the historical novel Waverley, but there was a time when this fact was
unknown, since the work was originally published anonymously. At that time, ‘It is
known that Scott is Scott’ was as always true, but ‘It is known that the author of
Waverley is Scott’ was false, even though ‘Scott’ and ‘the author of Waverly’ had the
same denotation.

To put the matter another way, writing s for ‘Scott’ and t for ‘the author of
Waverley’, and writing A(x) for ‘x is Scott’ and ! for ‘it is known that’, what we have
just said is that s = t and !A(s) may be true without !A(t) being true, in contrast to
one of our examples above, according to which, in our formal languages, s = t and
B(s) always imply B(t). There is no contradiction with our example, of course, since
our formal languages do not contain any operator like !; but for precisely this reason,
not everything that can be expressed in ordinary language can be expressed in our
formal languages. There is a separate branch of logic, called modal logic, devoted to
operators like !, and we are eventually going to get a peek at a corner of this branch
of logic, though only in the last chapter of the book.

Problems

10.1 Complete the proof of the extensionality lemma (Proposition 10.2) by show-
ing that if c is a constant and t a closed term having the same denotation,
then substituting t for c in a sentence does not change the truth value of the
sentence.

10.2 Show that ∃y∀x R(x, y) implies ∀x∃y R(x, y).
10.3 Show that ∀x∃yF(x, y) does not imply ∃y∀x F(x, y) .
10.4 Show that:

(a) If the sentence E is implied by the set of sentences " and every sentence
D in " is implied by the set of sentences !, then E is implied by !.

(b) If the sentence E is implied by the set of sentences ! ∪ " and every
sentence D in " is implied by the set of sentences !, then E is implied
by !.

10.5 Let ∅ be the empty set of sentences, and let ⊥ be any sentence that is not true
on any interpretation. Show that:
(a) A sentence D is valid if and only if D is a consequence of ∅.
(b) A set of sentences ! is unsatisfiable if and only if ⊥ is a consequence of !.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

124 A PR ÉCIS OF FIRST-ORDER LOGIC: SEMANTICS

10.6 Show that:
(a) {C1, . . . , Cm} is unsatisfiable if and only if ∼C1 ∨ · · · ∨ ∼Cm is valid.
(b) D is a consequence of {C1, . . . , Cm} if and only if ∼C1 ∨ · · · ∨ ∼Cm∨ D

is valid.
(c) D is a consequence of {C1, . . . , Cm} if and only if {C1, . . . , Cm, ∼D} is

unsatisfiable.
(d) D is valid if and only if ∼D is unsatisfiable.

10.7 Show that B(t) and ∃x(x = t & B(x)) are logically equivalent.
10.8 Show that:

(a) (B & C) implies B and implies C .
(b) ∼B implies ∼(B & C), and ∼C implies ∼(B & C).
(c) ∀x B(x) implies B(t).
(d) ∼B(t) implies ∼∀x B(x).

10.9 Show that:
(a) If ! ∪ {∼(B & C)} is satisfiable, then either ! ∪ {∼B} is satisfiable or

! ∪ {∼C} is satisfiable.
(b) If ! ∪ {∼∀x B(x)} is satisfiable, then for any constant c not occurring in

! or ∀x B(x), ! ∪ {∼B(c)} is satisfiable.
10.10 Show that the following hold for equivalence over any interpretation (and hence

for logical equivalence), for any sentences (and hence for any formulas):
(a) F is equivalent to F .
(b) If F is equivalent to G, then G is equivalent to F .
(c) If F is equivalent to G and G is equivalent to H , then F is equivalent to H .
(d) If F and G are equivalent, then ∼F and ∼G are equivalent.
(e) If F1 and G1 are equivalent, and F2 and G2 are equivalent, then F1 & F2

and G1 & G2 are equivalent, and similarly for ∨.
(f) If c does not occur in F(x) or G(x), and F(c) and G(c) are equivalent,

then ∀x F(x) and ∀xG(x) are equivalent, and similarly for ∃.
10.11 (Substitution of equivalents.) Show that the following hold for equivalence

over any interpretation (and hence for logical equivalence):
(a) If sentence G results from sentence F on replacing each occurrence of an

atomic sentence A by an equivalent sentence B, then F and G are
equivalent.

(b) Show that the same holds for an atomic formula A and an equivalent
formula B (provided, to avoid complications, that no variable occurring
in A occurs bound in B or F).

(c) Show that the same holds even when A is not atomic.
10.12 Show that F(x) is (logically) equivalent to G(x) if and only if∀x(F(x) ↔ G(x))

is valid.
10.13 (Relettering bound variables.) Show that:

(a) If F is a formula and y a variable not occurring free in F , then F is
(logically) equivalent to a formula in which y does not occur at all. The
same applies to any number of variables y1, . . . , yn .

(b) Every formula is logically equivalent to a formula having no subformulas
in which the same variable occurs both free and bound.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

PROBLEMS 125

10.14 Show that the following pairs are equivalent:
(a) ∀x F(x) & ∀yG(y) and ∀u(F(u) & G(u)).
(b) ∀x F(x) ∨ ∀yG(y) and ∀u∀v(F(u) ∨ G(v)).
(c) ∃x F(x) & ∃yG(y) and ∃u∃v(F(u) & G(v)).
(d) ∃x F(x) ∨ ∃yG(y) and ∃u(F(u) ∨ G(u)).
[In (a), it is to be understood that u may be a variable not occurring free in
∀x F(x) or ∀yG(y); in particular, if x and y are the same variable, u may be
that same variable. In (b) it is to be understood that u and v may be any distinct
variables not occurring free in ∀x F(x) ∨ ∀yG(y); in particular, if x does not
occur in free in ∀yG(y) and y does not occur free in ∀x F(x), then u may be
x and y may be v . Analogously for (d) and (c).]

