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ABSTRACT

Motivation: Counting the number of occurrences of every k-mer
(substring of length k) in a long string is a central subproblem
in many applications, including genome assembly, error correction
of sequencing reads, fast multiple sequence alignment and repeat
detection. Recently, the deep sequence coverage generated by
next-generation sequencing technologies has caused the amount
of sequence to be processed during a genome project to grow
rapidly, and has rendered current k-mer counting tools too slow
and memory intensive. At the same time, large multicore computers
have become commonplace in research facilities allowing for a new
parallel computational paradigm.
Results: We propose a new k-mer counting algorithm and
associated implementation, called Jellyfish, which is fast and
memory efficient. It is based on a multithreaded, lock-free hash table
optimized for counting k-mers up to 31 bases in length. Due to
their flexibility, suffix arrays have been the data structure of choice
for solving many string problems. For the task of k-mer counting,
important in many biological applications, Jellyfish offers a much
faster and more memory-efficient solution.
Availability: The Jellyfish software is written in C++ and is GPL
licensed. It is available for download at http://www.cbcb.umd.edu/
software/jellyfish.
Contact: gmarcais@umd.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Given a string S, we are often interested in counting the number
of occurrences in S of every substring of length k. These length-
k substrings are called k-mers and the problem of determining the
number of their occurrences is called k-mer counting.

Counting the k-mers in a DNA sequence is an important step
in many applications. For example, genome assemblers using the
overlap-layout-consensus paradigm, such as the Celera (Miller et al.,
2008; Myers et al., 2000) andArachne (Jaffe et al., 2003) assemblers,
use k-mers shared by reads as seeds to find overlaps. Statistics
on the number of occurrences of each k-mer are first computed
and used to filter out which k-mers are used as seeds. Such k-mer
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count statistics are also used to estimate the genome size: if a large
fraction of k-mers occur c times, we can estimate the sequencing
coverage to be approximately c and derive an estimate of the
genome size from c and the total length of the reads. In addition,
in most short-read assembly projects, errors are corrected in the
sequencing reads to improve the quality of the final assembly. For
example, Kelley et al. (2010) use k-mer frequencies to assess the
likelihood that a misalignment between reads is a sequencing error
or a genuine difference in sequence. A third application is the
detection of repeated sequences, such as transposons, which play
an important biological role. De novo repeat annotation techniques
find candidate regions based on k-mer frequencies (Campagna et al.,
2005; Healy et al., 2003; Kurtz et al., 2008; Lefebvre et al., 2003).
The counts of k-mers are also used to seed fast multiple sequence
alignment (Edgar, 2004). Finally, k-mer distributions can produce
new biological insights directly. Sindi et al. (2008) used k-mers
frequencies with large k (20≤k≤100) to study the mechanisms of
sequence duplication in genomes.

We consider the k-mer counting problem in the context where
the input string S is either one DNA sequence or a concatenation
of many DNA sequences, and the alphabet is �={A,C,G,T}.
The main application to which we apply our new k-mer counting
algorithms here is counting k-mers in sequencing reads from large
genome sequencing projects where the length n of the sequence to
process is equal to the length g of the genome sequenced times the
coverage c of the sequencing project (n=g ·c). Recent sequencing
techniques, using shorter reads with a much deeper coverage (Schatz
et al., 2010), generate large amounts of sequence and provide with
a major challenge for genome assembly and for k-mer counting.
For example, the giant Panda (Li et al., 2010) sequencing project
generated 73× coverage yielding 176 GB of sequence, much larger
than the 5−10× coverage a sequencing project using traditional
Sanger methodology would generate.

Of course, k-mer counting can be naively implemented using
a simple hash table, where keys are the k-mers and the stored
values are the counts. However, this strategy is extremely slow and
implementing multithreaded access to the hash table via standard
locking mechanisms results in slower performance than a single-
threaded implementation (Michael and Scott, 1996; Purcell and
Harris, 2005). Typically, more advanced k-mer counters such as
Tallymer (Kurtz et al., 2008) have been based on the suffix array
data structure. Despite the recent algorithmic progress to compute
the suffix array of a string, it remains a relatively expensive
computational operation. Moreover, in sequencing applications,
memory requirements for a suffix array grow linearly with the
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product of the coverage and genome size. Meryl, the k-mer counter
built into the Celera assembler, uses a sorting-based approach that
sorts the k-mers in lexicographical order; however, sorting billions
of records quickly with limited memory is a challenging problem.

In order to process this huge increase in amount of sequence,
the increasing availability of parallelism must be exploited. While
the raw power of each processing core has leveled off, the number
of cores per CPU is rising. Shared memory machines with 16 or
more cores and 4 GB or more memory per core are commonly
available in research facilities. Creation of parallel algorithms taking
advantage of such a large number of cores in a shared memory
environment is both a challenge and an opportunity: on the one
hand, current programming paradigms either do not take advantage
of the parallelism available or are difficult to implement; on the
other hand, very fast programs using fine grain parallelism can be
implemented.

In recent years, the MapReduce programing paradigm (Dean
and Ghemawat, 2008) has been used to harness the computational
power of large clusters of machines. The problem of counting
k-mers is easy to implement on top of a MapReduce cluster, but
the straightforward implementation, where the map operation emits
all k-mers associated with a 1, incurs a large overhead. To reduce this
overhead, one needs to increase the amount of work done on each
node at the map stage by, for example, using a fast single-machine
k-mer counter like Jellyfish on each node. The map operation then
emits pairs of k-mers and their counts on a subset of the data. In that
sense, the use of the MapReduce paradigm and optimized k-mer
counters like Jellyfish are orthogonal.

Other processing architectures such as GPU computing have
also been recently exploited for achieving faster parallel execution.
However, the widespread availability of multi-core CPUs make them
the first and easiest choice to program, and this is likely to remain
true for some time to come. CPU development is not staying idle,
and facilities, such as the CAS operation (Section 3.2) and the SSE
extension (Section 3.4), are available in all modern CPUs to help
achieve greater parallel execution.

Our k-mer counting algorithm is designed for shared memory
parallel computers with more than one core. It uses several lock-free
data structures that exploit a widely available hardware operation
called ‘compare-and-swap’ (CAS) to implement efficient shared
access to the data structures. In particular, Jellyfish uses lock-
free queues (Ladan-mozes and Shavit, 2004; Michael and Scott,
1996) for communication between worker threads and a lock-free
hash table (Michael, 2002; Purcell and Harris, 2005) to store the
k-mer occurrences counts (see Section 3.2). Unlike a traditional data
structure where access by multiple threads must be serialized by the
use of a lock, lock-free data structures can be used concurrently
by many threads while still preserving a coherent internal state.
The lock-free data structure also provides better performance by
increasing the amount of time spent in parallel execution versus
serial execution. The efficient parallel data structures allow Jellyfish
to count k-mers much faster than existing k-mer counting software.
In our testing on a large assembly project (Section 4.1), Jellyfish
takes minutes instead of hours.

Jellyfish is also very memory efficient. It implements a key
compression scheme that allows it to use a constant amount of
memory per key in the hash table for most applications, regardless
of the length k of the k-mers counted (see Section 3.4). It also uses a
bit-packed data structure to reduce wasted memory due to memory

alignment requirements (see Section 3.3). In addition, unlike with
suffix arrays, the expected storage requirement for the hash table
does not grow linearly as the coverage increases. This property
makes hash tables extremely attractive for use in the context of
short-read sequencing projects. Jellyfish can be more than twice as
memory efficient as other programs (Section 4.1).

Our results show that Jellyfish can count k-mers an order of
magnitude or more faster than existing programs (Section 4.1).
This suggests that lock-free hash tables are valuable for k-mer
counting and possibly also in other problems where large strings
must be processed. In addition, Jellyfish’s novel memory-efficient
key compression approach (Section 3.4) allows the hash table to use
a similar amount of storage as suffix arrays in most common uses.
Jellyfish has been adopted by the Quake error corrector (Kelley
et al., 2010) and will be included in version 6.2 of the Celera
Assembler (Miller et al., 2008). Our implementation of the lock-free
hash table is general and may be of use in other applications.

2 METHODS

2.1 Execution profiling
All testing and timing was performed on a 64 bit x86 AMD Opteron machine
with 32 cores at 2.5 GHz and 256 GB of RAM running Linux kernel version
2.6.31. The disks are RAID-10 with sustained write throughput of 260 MB/s.
The time is the wall clock time measured with the GNU time utility
averaged over five runs (except runs that exceed 1 h which are run only
once).

To measure the memory usage, the programs were run under strace
which logs every system call made by a process and its threads. The logs
of the strace were parsed to compute the amount of memory used by the
process by looking for the following system calls, which are the only calls
available to request memory from the kernel on a Linux system: brk, mmap,
munmap and mremap. In addition, the script counts only the memory areas
that are writable for the process. Read-only pages are not counted as most of
them correspond to the shared libraries. In some cases, this undercounts the
true memory usage. For example, Tallymer maps the entire input sequence
into read-only memory and accesses it in a random fashion, so all these
read-only pages need to be present in memory. Jellyfish also maps the
entire input sequence into read-only memory, but the sequence is accessed
in a sequential fashion and only the current page needs to be present in
memory. Memory usage and running time are measured in different runs as
the strace mechanism can affect the running time of IO heavy programs.
The overall CPU and IO load are measured with the Linux vmstat utility.

2.2 Sequence datasets
The M.gallopavo reads were taken from the Turkey genome assembly
project (Dalloul et al., 2010). These short reads, from Roche 454 and Illumina
GAII technology, total ∼24 GB of sequence for a genome of 1 GB. To vary
coverage, we took a random sample of reads to obtain the desired amount
of sequence.

The sequence of Homo sapiens (3 GB), Drosophila ananassae (3.5 GB of
reads, genome of 189 MB), Coxiella burnetii (35.6 GB of reads, genome
of 1.99 MB) and Zea mays (33 GB of reads, genome of 2 GB) were
downloaded from the NCBI. The human sequence is the reference genome
hs_ref_GRCh37 and, unlike all other datasets, consists of assembled
chromosomes instead of sequencing reads.

2.3 Comparing with existing k-mer counters
We used two versions of Meryl (5.4 and 6.1) from the k-mer package of
the Celera assembler (Miller et al., 2008), with all default options and 32
threads. To work around an issue with Meryl version 5.4 when dealing with a
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multifasta file, all the reads where concatenated with a single N as a separator.
The original multifasta file was used with Meryl version 6.1.

Tallymer comes from version 1.3.4 of the genometools package (Kurtz
et al., 2008). It was run as shown in the example of Tallymer’s documentation
given in the distribution. The Tallymer subroutine suffixerator used
options -dna -pl -tis -suf -lcp, and the subroutine tallymer
mkindex used options -minocc 1 -maxocc 10000000000 so that
all k-mer counts would be written to disk.

3 ALGORITHM

3.1 A fast k-mer hash table
We design a lightweight, memory efficient, multithreaded hash table
for the k-mer counting problem. A hash table (Cormen et al., 1990)
is an array of (key,value) pairs, and, when applied to k-mer counting,
key is conceptually the sequence of the k-mer, and value is the
number of times that k-mer occurs. The position in the hash table
of a given key is determined by a hashing function hash and a re-
probing strategy to handle the case when two distinct keys map to
the same position. In Jellyfish, if M is the length of the hash table,
the i-th possible location for a given mer m is:

pos(m,i)= (hash(m)+reprobe(i)) mod M. (1)

In our implementation, we maintain the length n of the hash table
to be a power of two, M=2� for some �, and the key representing
the k-mer is encoded as an integer in the set Uk=[0,4k−1]. The
function hash is a function mapping Uk into [0,M−1]. The design
of a function hash is described in Section 3.4.

When a new mer is added to the hash table, we attempt to store
it in pos(m,0), and if that position is already filled with a different
key, we try pos(m,1) and so on up to some limit. Here, we use a
quadratic reprobing function: reprobe(i)= i(i+1)/2. This reprobing
function has a good behavior with respect to the usage of the hash
table (Cormen et al., 1990) while not growing too fast, which is
important for quickly sorting the hash table elements when writing
the results to disk (see Section 3.5).

This straightforward standard scheme is both extremely slow
when parallelized in the typical way using locks, and memory
inefficient. In order to make it practical, we implement a lock-
free strategy for allowing parallel insertions of keys and updates
to values. We also design an encoding scheme to limit the storage
used for both key and its associated counts. These are described in
the following sections.

3.2 Updating the lock-free hash table
A lock, such as POSIX’s pthread_mutex, can serialize access to
the hash table and permits its use in a multi-threaded environment.
However, if such a lock is used no concurrency is achieved, and
therefore there is no gain in speed in the updates of the hash table.
In addition, the overhead of maintaining the lock is incurred.

To allow concurrent update operations on the hash, we implement
a lock-free hash table with open addressing (Purcell and Harris,
2005). Such lock-free hash tables exploit the CAS assembly
instruction that is present in all modern multi-core CPUs. The CAS
instruction updates the value at a memory location provided that
the memory location has not been modified by another thread.
Technically (see Algorithm 1), a CAS operation does the following
three operations in an atomic fashion with respect to all of the

threads: reads a memory location, compare the read value to the
second parameter of the CAS instruction and if the two are equal,
write the memory location with the third parameter of the CAS
instruction. If two threads attempt to modify the same memory
location at the same time, the CAS operation can fail. The CAS
operation returns the value previously held at the memory location.
Hence, one can determine if the CAS operation succeeded by
checking that the returned value is equal to the old value. Unlike
a lock that serializes the access to some shared resource, the CAS
operation only detects simultaneous access to a shared memory
location. It is then the responsibility of the calling thread to take
appropriate action in the event that a conflict has been detected.

1 currentvalue← read at location;
2 if currentvalue=oldvalue then
3 set location to newvalue;
4 end
5 return currentvalue

Algorithm 1. CAS(location,oldvalue,newvalue)

The main operation (Algorithm 2) supported by the hash is to
increment the value associated with a key without using any locks.
The value increment algorithm works in two steps. First it finds the
location in the hash table that already holds the key or it claims an
empty slot to store the key if the key is not present in the hash table.
Second, it increments the value associated with the key.

Lines 1–7 in Algorithm 2 accomplish the first step. It finds an
appropriate slot using the hash function and then does a CAS
operation assuming that the entry in the hash is empty. If the returned
value of the CAS operation is either EMPTY or equal to key,
then that position is used for storing the key. Otherwise, there is
a key collision: the reprobe value is incremented and we start over.
The procedure fails if the maximum number of reprobes has been
reached. Lines 8–12 accomplish the second step: they increment the
value in an atomic way again using the CAS operation.

Data: K the array where the keys are stored
Data: V the array where the values are stored
// Claim key

1 i←0
2 repeat
3 if i≥max_reprobe then return False
4 x←pos(key,i)
5 i← i+1
6 current_key←CAS(K[x],EMPTY,key)
7 until current_key=EMPTY or current_key=key
// Increment value

8 cval←V [x]
9 repeat

10 oval←cval
11 cval←CAS(V [x],oval,oval+value)
12 until cval=oval
13 return True

Algorithm 2. Increment(key,value)

Two assumptions particular to k-mer counting simplify the design
of the hash table. First, no entry is ever deleted and there is no
need to maintain special information about deleted keys, such as
tombstones (Purcell and Harris, 2005). Second, for k-mer counting
the required size of the hash table should be easy to estimate or
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potentially the entire available memory is used. Hence, in the event
that the hash table is full, it will be written to disk instead of doubling
its size in memory (Gao et al., 2004; Shalev and Shavit, 2006). See
Section 3.5 for more details.

3.3 Reduced memory usage for a hash entry
Our implementation uses a bit-packed data structure, i.e. entries
in the hash table are packed tightly instead of being aligned with
computer words. Albeit more complex to implement, especially in
concert with the word-aligned CAS operation, and incurring a small
computational cost, such bit-packed design is much more memory
efficient and makes further memory saving schemes (variable length
field and key encoding) worthwhile.

In addition, using a value field large enough to encode the number
of occurrences of the most highly repeated k-mer is a waste of
memory. Typically, with a deep coverage sequencing of a genome
and a sufficiently large k, the majority of k-mers appear only once, as
they are unique due to sequencing errors and because most genomic
sequences are not composed of repeats. Most of the remaining
k-mers occur approximately c times, where c is the sequencing
coverage.Asmall number of k-mers, depending on the repetitiveness
of the genome, occur a large number of times. To account for this,
Jellyfish uses a small value field and allows a key to have more than
one entry in the hash table: key,v1 and key,v2. The value associated
with this key is then the number obtained by the concatenation of the
bits v1v2. Moreover, to avoid the repetition of the key in the second
entry, we only store a pointer (encoded as a number of reprobes)
back to the previous entry. The now unused bits in the key field are
used by the value field.

3.4 Space-efficient encoding of keys
The fact that an entry occurs at a known position in the hash
table can be exploited to compactly store keys in the hash table
in order to save a significant amount of additional memory. We
choose a function f :Uk→Uk that is a bijection for which we
can easily compute both f and its inverse, and set hash(m)= f (m)
mod M. The length M=2� of the hash table is a power of 2, and
the modulo M operation in the definition of the hash and pos
functions (Equation 1) merely selects the � lower bits of the sum
f (m)+reprobe(i). Hence, provided the value of reprobe(i) is known,
the position of a (key,value) pair in the hash table already encodes
for the lower � bits of f (m). Therefore, we store the 2k−� higher
bits of f (m) concatenated with bits representing the reprobe count
i+1 in the key field of the hash. We use i+1 rather than i since 0
is reserved to indicate the entries that are still empty (EMPTY in
Algorithm 2).

Conversely, given this content of the key field at position x, it is
easy to find the sequence of the corresponding k-mer that is stored
at this position. The key field contains the 2k−� high bits of f (m)
and the number of reprobes i. The lower � bits of the f (m) can be
therefore be retrieved by computing x−reprobe(i) mod M. Finally,
the k-mer m can be recovered by computing the inverse of f .

This scheme requires little modification to Algorithm 2.
In particular, the keys do not need to be computed using the
procedure described in the previous paragraph in order to be tested
for equality (line 7). This is because if the content to be stored in
the key field at a given position x for two k-mers m1 and m2 are

equal, then by definition the reprobe value for both k-mers, the 2k−�

higher bits of f (mi) and their position in the hash are equal, thus
f (m1)= f (m2) and m1=m2 by the assumption that f is a bijection.

For the bijective f function, we use f (m)=A·m, where A is a
2k×2k invertible matrix on Z/2Z. Here, m and A·m are interpreted
either as integers or as 2k binary vectors.

Let H={x �→A·x mod 2� |A is invertible} be the set of all
hash functions. This set is almost an universal set of hash
functions (Cormen et al., 1990) in the following sense: the size
of H and the number N of matrices A for which A·x≡A·y
(mod 2�) satisfy N≈|H|/2�, provided that 22k
1 and 22k−�
1
(see Appendix Section A.1 in Supplementary Material). In other
words, the definition of the universal set of hash functions is satisfied
within a small error, and the property of having few expected
collisions is preserved by this approximation. The cases where this
approximation breaks are the ‘easy’ cases corresponding to a small
number of possible k-mers (22k close to 1) or a hash table big enough
to contain almost all the k-mers (22k−� close to 1).

The matrix A is chosen by iteratively drawing uniformly a
random matrix out of the 24k2

possible binary matrices of this size,
until it is not singular. This process terminates after an expected
four iterations regardless of the size 2k (see Appendix A.1 in
Supplementary Material). Faster algorithms to find an invertible
matrix exist (Randall, 1991), but would have no impact on the
execution speed of Jellyfish. Thus, an invertible, bijective hash
function that is efficiently computable and that reduces the storage
per key significantly is achieved.

To compute the binary matrix product A·m, we use the Streaming
SIMD Extensions (SSE) instruction set of modern processors,
if available. SSE instructions work on large registers (128 bits),
treating them as vectors (e.g. of four 32 bit integers or two 64 bit
integers). An SSE instruction performs the same operation on each
element of the vector (or on each pair of elements of a pair of vectors)
in parallel. For a 44×44 binary matrix A required to hash 22-mers,
the SSE implementations computes 34.5 million multiplications
per second on our test system versus 19.4 million multiplications
per second for the C++ implementation that does not use SSE.

Surprisingly, in many applications, the above scheme uses an
amount of space per key that is independent of the length of the
k-mer and the length of the input string. Often k is chosen so
that the event that a given k-mer appears more than once in the
input sequence of size n is significant. For example, in sequencing
reads, where n=c ·g is the coverage times the genome length, such
a k permits discrimination between k-mers really coming from the
genome, which occur more than once, and error k-mers, which occur
only once with high probability.

So k is chosen large enough so that the expected number of
occurrences of a k-mer in a random string of length n is 1. In this
case, the length k and the size of the hash table M=2� are such that
the size of the key field |key|, which contains the 2k−� high bits of
f (key) and the reprobe count, is independent of k and n.

Suppose there are n k-mers in the input chosen at random,
then each has an expected number of occurrences of µk=
4−kn=1. Hence k=�log4(n)�. Under these conditions, the marginal
additional key space cost per extra nucleotide (�k/�n=1/(nlog4))
decreases to 0 as n→∞.

On the other hand, to accommodate all the k-mers in the input,
the size of the hash table M=2� satisfies �≥�log2n�+1. Hence,
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the number of bits to store for each key is

|Key| = 2k−�+�log2(max_reprobe+1)� (2)

≤ �log2(max_reprobe+1)�+2, (3)

which is independent of k and n.

3.5 Fast merging of intermediate hash tables
Once computed, the hash table is written to disk as a list of
(key,value) records. The list is sorted according to the lower l
bits of the hash value of the mers, which is pos(m,0), and ties
are broken lexicographically. Sorting the output has the advantage
that the results can be queried quickly using a binary search. More
interestingly, it has the advantage that it allows two or more hash
tables to be merged into one easily. This situation occurs when
there is not enough memory to carry out the entire computation and
intermediary results are saved to disk. Jellyfish will detect when the
hash table needs to expand beyond the available memory and will
instead write the current k-mer counts to disk, clear the hash table
and begin counting afresh. The intermediate results can be merged
in limited memory as described below.

In memory, the entries in the hash table are loosely sorted in the
following sense that can be exploited to sort the output in linear
time. Let pos(m) be the final position of a mer m in the hash
table. Then pos(m)=pos(m,i) for some i∈[0,max_reprobe−1].
If pos(m1,0)+reprobe(max_reprobe)<pos(m2,0), then pos(m1)<
pos(m2). Hence, in order to sort the output, we only need to
resolve the proper ordering of the entries within a window of
length reprobe(max_reprobe), which is a constant with respect to
the size of the hash table, the input size and k. To do so, we
create a min-heap of size reprobe(max_reprobe) using the ordering
pos(m1,0)<pos(m2,0) and lexicographic order to break ties. The
elements to write out to disk are read from the head of the heap, and
as elements are removed from the heap, new elements are read from
the hash table and inserted in the heap.

To parallelize the process of writing to disk, we designed a
distributed set of reader–writer locks that optimizes for the common
case of hash-table updates and only incurs a significant speed penalty
in the rarer case of writing the output. See Appendix Section A.2 in
Supplementary Material for details.

3.6 Analysis of running time
It takes a number of operations proportional to αk=2k�2k/w�,
where w is the length of a machine word, to compute the matrix-
vector multiplication, and the time to insert one k-mer in the hash
table is proportional to αk+max_reprobe. To tally n k-mers in
the hash takes O(n(αk+max_reprobe)) time. With the choice of
quadratic reprobing, the size of the min-heap used to sort the hash
table while writing to disk is O(max_reprobe2). Writing n elements
to disk involves n insert and deleteMin operations on the
min-heap, hence a cost of O(nlog(max_reprobe)). Hence, creating
the hash tables takes time linear in n.

In the case where t intermediary hash tables of size si,1≤ i≤ t with∑t
i=1si=n were written to disk, the time to create all t hash tables is

O(n(αk+max_reprobe+log(max_reprobe))). The time to merge the
t hash tables is O(nlogt). If a large amount of memory is available
and the number of hash tables created is constant (t=O(1)), then
the total runtime is linear in n. In this case, our algorithm is similar

to counting sort (Cormen et al., 1990; Seward, 1954) where the
array counting the number of occurrences of each element to sort is
replaced by a hash table.

At the other extreme, if a small amount of memory is available
and the number of hash tables created is proportional to n, then the
total runtime is O(nlogn). In this later case, the theoretical worst-
case performance of the algorithm has degenerated to that of a heap
sort (since the time to merge now dominates), although in practice
the memory usage and running time will be significantly faster.

4 RESULTS

4.1 Speed and memory usage on Turkey sequencing
reads

The memory usage and timing for counting k-mers on sequencing
reads of the 1 GB Turkey genome for various levels of coverage are
shown in Figures 1 and 2.

Jellyfish requires far less memory than the current versions of
either Meryl or Tallymer (Fig. 1). The memory usage of Jellyfish
is approximately the same for coverage 5× and 10× (or for 15×
and 20×) because the size of the hash table is constrained to be
a power of two and the same table size of 232 (or 233) entries is
used. Tallymer does not support multithreaded operation. When run
in serial mode, the memory usage for Jellyfish is almost identical
with the usage in multithreaded mode. Meryl version 5.4 contained
a software error that prevented it from correctly parsing large input
files and was run only up to 5× coverage. At coverage 5×, Jellyfish
used only slightly less memory than Meryl 5.4. Meryl version 6.1
ran out of memory for coverage 15× and 20×, and it appears that
tradeoffs between speed and memory usage were changed between
versions 5.4 and 6.1.

As a comparison, a naïve implementation of a k-mer counter in
Python would take >2 h to count coverage 1×. Jellyfish is also
much faster than Meryl and Tallymer (Fig. 2). At coverage 5×,
representing approximately 5 GB of sequence, Jellyfish counts 22-
mers in under 4 min, while the other approaches take between 30

Fig. 1. Memory usage for various levels of sequencing coverage on reads
generated during the Turkey genome project when counting 22-mers. Except
for Tallymer (which is inherently single threaded), all programs were run
using 32 threads. The memory usage for the serial and 32-thread versions of
Jellyfish is almost identical (results are shown using 32 threads).
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Fig. 2. Computation time versus sequencing coverage on reads generated
during the Turkey genome project. Except as noted all programs were run
using 32 threads.

min and 4.9 h. Jellyfish is also able to count 22-mers at coverages
>10× where the other programs fail or take over 5 h.

The figure in Appendix A.3 shows the impact of varying the
mer length k on computation time, showing the contribution of
both IO and the actual counting. As k increases from 5 to 30, the
counting time stays approximately the same, while the IO time grows
significantly because of the larger number of distinct k-mers that
must be output. For small values of k (here <15), Jellyfish uses direct
indexing (where there is one entry in the table for each of the 4k

possible k-mers). For very low k (here k=5), the effect of multiple
threads trying to increment the same location is compounded and
explains the longer counting time than for k=10.

4.2 Jellyfish’s architecture allows for a high degree of
parallelism

The CPU and IO usage of Jellyfish on 32 threads while counting
22-mers on coverage 5× of the turkey reads is shown in Figure 3.
There are three distinct phases in the trace. First, initialization, when
memory is zeroed out and the input file is aggressively preloaded
in cache by the operating system. This lasts 14 s. The second phase
is active counting which uses 100% of the 32 CPUs available on
the machine. Thanks to the lock-free design, the threads almost
never wait on each other. The CAS operation is a CPU operation,
not a system call that would require an expensive context switch.
Therefore, the counting phase is fast and the operating system uses
no computational resources during this phase. The final phase is
writing, where the results are sorted and written to disk. In this
phase, the operations are bounded by IO bandwidth. The default
output format, used when creating this trace, is designed to be easy
to parse rather than compact. A more compact file format would lead
to faster execution time in the third phase.

Figure 4 shows the speedup obtained when increasing the number
of threads used. Again, the k-mers are counted on coverage 5× of
the Turkey reads. On the upper curve (labeled ‘no IO’) takes into
account only the initialization and counting phases, i.e. only the hash
table operations. The lower curve (labeled ‘with IO’) also includes
the writing phase where the result is sorted and written to disk. The
hash operations have an almost linear speed-up up to 32 threads (the

Fig. 3. A trace of Jellyfish’s CPU usage and IO throughput on counting
22-mers on coverage 5× of the Turkey reads with 32 threads. CPU usage is
split into ‘system’ (corresponding to all system calls for memory allocation,
read/write from disk, etc.) and ‘user’ (the program). The ‘percent activity’ is
a global activity measure over all 32 cores. The IO throughput is split into
‘in’ for input and ‘out’ for output.

Fig. 4. Speedup versus number of threads on coverage 5× of the Turkey
reads. On this log–log scale plot, a perfectly linear speedup would correspond
to a diagonal line. The ‘no IO’ curves includes only the initialization and
counting phase times. The curve marked ‘with IO’ counts the total runtime.

number of cores on the test machine). When including the writing
to disk, the speed-up is linear up to four threads and nearly linear up
through eight threads. Then, the sorting is done fast enough that the
IO bandwidth is the bottleneck (as seen in Fig. 3) and the speed-up
levels off.

4.3 Timing results for other genomes
Jellyfish is able to process genomes or the reads from recent
sequencing projects in only a few minutes. Table 1 contains the
timing and memory usage of Jellyfish on several datasets, computed
with 32 threads. The number of different k-mers in each dataset is
reported as ‘distinct’, and the total number of k-mers is also shown.
The timing information for Turkey (M.gallopavo) at coverage 20×
is included for comparison. Even on the reads of a very repetitive
genome, such as Z.mays, Jellyfish takes <20 min, while computing
the suffix array with Tallymer would take ≈24 h.
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Table 1. Performance of Jellyfish on the chromosomes of the human genome
and the reads from several sequencing projects

Organism Time
m:s

RAM
GB

Number of 22mers (×106)

Distinct Total

Homo sapiens 3:33 11.8 2 351 2 861
Zea mays 18:14 55.9 7 161 26 653
Meleagris gallopavo 9:01 24.7 5 503 19 446
Drosophila ananassae 2:19 7.35 1 197 2 936
Coxiella burnetii 0:02 1.25 10.2 34.2

5 CONCLUSION
Increasingly, practical computation on large collections of genomic
sequences requires software which can use parallel computer
architectures that are commonly available today. The lock-free
operations used in Jellyfish permit the design of truly concurrent
data structures that are fast in serial mode and scale almost linearly
with the number of processors used.

Jellyfish can tackle k-mer counting on the large datasets available
today. As short-read sequencing projects become more common
and achieve larger and larger coverage, efficient k-mer counting
will become increasingly important. The hash table at the heart
of Jellyfish is a versatile and widely used data structure. Proper
optimizations make Jellyfish’s hash table competitive in both
time and space even when compared with other data structures
specifically designed for string processing, such as suffix arrays,
as implemented in competing k-mer counting packages.
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