
Identification of replication origins
in prokaryotic genomes
Natalia V. Sernova and Mikhail S.Gelfand
Submitted: 8th April 2008; Received (in revised form): 2nd July 2008

Abstract
The availability of hundreds of complete bacterial genomes has created new challenges and simultaneously opportu-
nities for bioinformatics. In the area of statistical analysis of genomic sequences, the studies of nucleotide composi-
tional bias and gene bias between strands and replichores paved way to the development of tools for prediction of
bacterial replication origins. Only a few (about 20) origin regions for eubacteria and archaea have been proven
experimentally. One reason for that may be that this is now considered as an essentially bioinformatics problem,
where predictions are sufficiently reliable not to run labor-intensive experiments, unless specifically needed. Here
we describe the main existing approaches to the identification of replication origin (oriC) and termination (terC) loci
in prokaryotic chromosomes and characterize a number of computational tools based on various skew types and
other types of evidence. We also classify the eubacterial and archaeal chromosomes by predictability of their
replication origins using skew plots. Finally, we discuss possible combined approaches to the identification of the
oriC sites that may be used to improve the prediction tools, in particular, the analysis of DnaA binding sites using the
comparative genomic methods.
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OVERVIEW
The replication of genomic DNA is arguably the

most important task performed by a cell. Prokaryotic

genomes contain one or several chromosomes [1],

most of which are circular [2]. The chromosomes

consist of two anti-parallel DNA strands, and are

supposed to have a single origin of replication

(eubacteria) [3] or may have single or multiple

origins (archaea) [4]. In eubacteria, the origin locus,

oriC, is relatively short, from 100 to 1000 bp [5].

The replication starts there and then proceeds

bi-directionally, carried out by two replication

forks that copy the chromosome in two arcs called

replichores and (in circular chromosomes) meet at

the replication terminus (terC) [6, 7]. The DNA

replication in archaea is described in [8].

Semi-conservative DNA synthesis implies that

polymerization of a new strand in a replichore

involves using each of the old strands as a template.

Since elongation is possible only in the 50 ! 30

direction, the new strands are synthesized using

different mechanisms: the leading strand is replicated

continuously, while the lagging strand is replicated in

a fragmented manner, through the assembly of the

Okazaki fragments [3, 9].

The first Chargaff parity rule, experimentally

established about 60 years ago, says that, in a two-

stranded DNA molecule, %A¼%T and %C¼%G

[10]. Later, the same equalities were shown to hold

approximately for each separate DNA strand of a

bacterial chromosome (Bacillus subtilis), yielding the

second Chargaff parity rule [11]. The fact that the
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same approximate equalities, %A�%T and %C�%G

should be observed within each strand at the equi-

librium state, was later derived theoretically [12, 13].

Statistical analyses of the genomic sequences

demonstrated local deviations from the second

Chargaff rule. One type of such deviations is the

differences in the nucleotide composition of the

leading and lagging strands [14, 15]. Such differences

were observed in almost all bacterial genomes and

were called asymmetry (skew).

The hypotheses that could explain the composi-

tional strand bias were listed and discussed in [14, 16].

The diverse mutational biases leading to composi-

tional skews were reviewed in detail in [17]. The list

includes cytosine deamination, DNA polymerase

processivity, strand-specific protein-binding sites,

genome rearrangements, the length of the Okazaki

fragments; strand preferences of protein-coding

genes, uneven codon usage and transcription-related

mutation bias. The current consensus explanation

seems to be single-strand cytosine deamination,

which causes C!T mutations, and hence the deficit

of C in the leading strand that spends more time in

the single-strand state [15, 18, 19]. However, most

authors agree that the bias is multifactorial.

In many genomes, more genes are transcribed

from the leading strand [15, 20], this bias being

especially marked for essential or highly expressed

genes [21, 22], the transcription biases are combined

with replication ones in nonobvious ways. In partic-

ular, in B. subtilis, A and T are preferred in third

codon positions, but not overall on the leading

strand [20]. A technique of decoupling of replication

and transcription or translation effects using the

artificial genome rearrangement approach [23] was

developed in [24]. The method allows one to

discriminate visually between the contributions of

replication-related and coding sequence-related

mechanisms to base composition asymmetry.

The accumulated bias is diluted by genome

rearrangements, such as insertions, inversions (espe-

cially gene switches between strands), deletions and

gene losses, etc. Such rearrangements were studied in

many bacterial genomes, in particular, the Neisseria
spp. (translocations, inversions and insertion/dele-

tions) [25], Salmonella paratyphi C (insertions and

deletions) [26], the Thermotogales (large-scale inver-

sions) [27], Rickettsia typhi (insertions and inversions)

[28], chromosome 2 of Brucella abortus (inversions and

deletions) [29], the Leptospira spp. (gene inversions,

duplications and losses) [30], Yersinia pestis (insertions,

accompanied by recombinations, gene loss and

inversions of gene blocks) [31], etc. The genomic

rearrangements rarely happen in the vicinity of oriC,

and usually they are symmetric relative to the axis

between the replication origin and terminus [32, 33].

On the other hand, rearrangements in the neighbor-

hood of the replication origin may mask its position,

e.g. as in Helicobacter pylori [34].

One consequence of the nucleotide skew is the

general preference of G-rich oligonucleotides on the

leading strand [35]. However, in some cases one may

observe uneven distribution of oligonucleotides on

the leading and lagging strand that cannot be reduced

to the nucleotide skew [36–39]. For example, in

Escherichia coli, 75% of the ChiEc sites GCTGGTGG

occur in the leading strand [40]. Similarly, in

Lactococcus lactis, 78% of ChiLl sites GCGCGTG

occur in the leading strand [41]. The information on

Chi sites for several bacteria is summarized in [42].

However, the prevalence of Chi sites on the leading

strand is not universal: e.g. it is much less pro-

nounced in the genome of Haemophilus influenzae
where the Chi-like sites are GNTGGTGG and

GSTGGAGG [43, 44]. Other oligonucleotides with

clear biological effect and uneven distribution on the

leading and lagging strands (around the dif site) are

KOPS motifs GGGNAGGG directing the move-

ment of the E. coli translocase FtsK [39, 45, 46].

Whatever the cause, this skew can be used to

distinguish between the leading and lagging strands

and hence to identify candidate replication origins

and termini. This analysis was pioneered in 1996 by

J. Lobry who studied the replication origins of E. coli,
H. influenzae, B. subtilis, Mycoplasma genitalium and the

replication terminus of H.influenzae and observed that

the relative CG-skew¼ (C�G)/(CþG) changes the

sign crossing the oriC and terC regions [47, 48]. These

observations were confirmed for the complete

genomes of B. subtilis [49] and E. coli [50]. The

developed computational tools identify the replica-

tion origins and termini using the single nucleotide

(CG and AT) skews [47, 48], as well as keto-amino

skew, [(AþC)� (GþT)], or purine–pyrimidine

skew, [(AþG)� (CþT)] [51]. We shall use the

term nucleotide skew for all measures of this type.

The nucleotide skew is maintained in evolution,

since genes that move to a different strand adapt their

nucleotide composition to the new (receiving) strand.

Indeed, orthologous genes of Borrelia burgdorferi and

Treponema pallidum that changed strand after the

divergence of these two Spirochaetes have the
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amino acid and codon usage corresponding to their

current replication strand [52]. Similarly, switched

genes acquired the skew of their new replication

strand in the Chlamydia species [53]. The highest

divergence rate for genes in closely related genomes

was observed for the genes that had changed strand,

since they had acquired more substitutions than

sequences staying on the same DNA strand [54].

Some software tools use also oligonucleotide-

based approaches and either search for particular

oligonucleotides with the most pronounced differ-

ence in the leading and lagging strand frequencies, as

identified by preliminary analysis [55], or consider all

oligonucleotides of some fixed length [36, 56].

The biology of replication initiation in prokar-

yotes was reviewed in many papers that addressed,

e.g. regulation of replication initiation in E. coli [57];

recent studies with the emphasis on organisms other

than E. coli [58]; structural features of DNA repli-

cation in bacteria and especially traits common to all

three domains of life [59]. Details of the archaeal

DNA-replication machinery with the emphasis on

structural features of the major proteins involved

were described in a recent review [8].

Initiation of replication is a tightly regulated

process. E. coli is conventionally used as a model

bacterium for replication studies [60]. The dnaA
gene, almost ubiquitous in bacteria, encodes the

major component of the DNA-replication machin-

ery, the replication initiation factor DnaA. DnaA is

a member of the ATPase family (AAAþ), it may

bind both ATP and ADP, but initiates replication

only as ATP–DnaA. Complexed with ATP, DnaA

binds to DnaA-boxes, which are repeated several

times in the oriC region. In E. coli, the interactions

between DnaA and DnaA-boxes start the replication

process and determine all subsequent events at oriC,

in particular, DNA duplex unwinding and formation

of replication forks [61]. The processes in other

bacteria are assumed to be the same. Importantly,

replication should happen only once per cell cycle

[62], and this is guaranteed by multiple mechanisms,

such as sequestration of the chromosomal replication

origin, oriC, autogenous repression, and DnaA-

excess titration [58, 63].

The DnaA-boxes are 9-nt nonpalindromic sites

[58]. Experimentally proven DnaA-boxes are limited

to E. coli [64] and few other bacteria, in particular,

Thermus thermophilus [65], H.pylori [66], Mycobacterium
tuberculosis [67]. On the genome scale, the ChIP–chip

technique, based on the chromatin affinity

precipitation assay was applied to find DnaA-binding

sites in B. subtilis [68]. The crystal structure of the

complex of DnaA with a DNA fragment was

determined, and it elucidated the interactions of

DnaA protein with the DnaA-box [69]. This DNA

fragment was derived from the DnaA-binding site

R1 of the E. coli oriC region and contained the

consensus DnaA-box of E. coli.
The skew characteristics are often only rough

indicators of the replication origin position in a

chromosome [70], and when more accurate localiza-

tion of oriC is needed recognition of clusters of

DnaA-boxes may be attempted. Indeed, the DnaA-

box motif in most considered cases is an over-

represented word within the oriC locus [70]. On the

other hand, in several cases where the replication

origin was identified experimentally, it did not

contain any candidate boxes similar to the E. coli
DnaA-box motif, e.g. in B. burgdorferi [71] and

endosymbionts [72]. In some bacteria, like H. pylori
[66], the DnaA-binding motif is known to be differ-

ent from the E. coli one. Nevertheless, to identify

DnaA-sites computationally, genome-wide search

for sites similar (up to one mismatch) to the E. coli
DnaA-box consensus have been applied [70; 73,

http://tubic.tju.edu.cn/doric/].

All experimentally confirmed origins are in

intergenic regions [70, 74]. The global sequence

similarity in these loci is limited to close relatives, as is

the case for all intergenic regions. In many cases, the

dnaA gene is positioned near the oriC site, but this is

not a universal rule [74, 75]. For instance, oriC in

Coxiella burnetii is between the gidA and rpmH genes

[76], and in Caulobacter crescentus it is in the hemE/
RP001 region [77]. Similar to the eubacteria, the

origins in the archaea are commonly located adjacent

to genes for initiator proteins Orc1/Cdc6. Almost

all archaeal genomes sequenced to date contain at

least one gene with homology to both Orc1 and

Cdc6 [8].

Much less is known about terC. The strand

asymmetry switches polarity at the terC region

[47, 48]. In the past, the main role in the termination

of replication has been ascribed to Ter-sites [78],

but recently this view has been challenged, and

currently, the replication termination is believed

to occur in the vicinity (within a kilobase) of the

dif site [6]. The alignment of dif-sites from the

g-proteobacteria, Firmicutes and Actinobacteria,

produced a consensus sequence DBBBCSBATAAT

RTAYATTATGTHAANT [6].
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Until recently, it was generally accepted, that

archaea follow the bacterial mode of replication,

with a single origin and terminus. Indeed, a single

origin was found in Pyrococcus abyssi [37]. However,

subsequent studies demonstrated the existence of

multiple replication origins in Sulfolobus solfataricus
[79, 80] and Sulfolobus acidocaldarius [80].

METHODS
The skew calculation is performed as follows.

Relative CG-skew¼ (C�G)/(CþG) [47], is mea-

sured in percentage. It is different from the

absolute skew CG-skew¼C�G, GC-skew¼G�C,

AT-skew¼A�T, TA-skew¼T�A; purine–pyrimi-

dine [(AþG)�(CþT)]-skew; keto–amino [(AþC)

�(GþT)]-skew; weak hydrogen (H) bond�

strong H bond bases [(AþT)� (GþC)]-skew.

Cumulative GC-skew is the sum of (G�C) in

adjacent windows from an arbitrary start to a given

point in a sequence [81], and similarly for other kinds

of skew. Most of the considered programs calculate

the absolute cumulative skew, measured in kb

(Table 1).

Sequences for 486 complete genomes were taken

from GenBank [87, ftp://ftp.ncbi.nih.gov/genomes/

Bacteria].

Sequence alignments were constructed using

Muscle [88, http://www.drive5.com/muscle]. To

display multiple sequence alignments, program

GeneDoc Editor version 2.6.002 was used (Nicholas,

Karl B and Nicholas, Hugh B. Jr. 1997, GeneDoc: a

tool for editing and annotating multiple sequence

alignments. Distributed by the authors). Positional

weight matrices were constructed using SignalX [89].

Sequence logos were drawn using WebLogo [90].

Clusters of motifs were constructed using ClusterTree-
RS [91]. Mycobacterial trees were drawn with the

help of NJplot program [92]. The skew-curves

for eubacteria were downloaded from the Compara-
tive Genometrics website (http://www2.unil.ch/

comparativegenometrics/index.html) on 01 July

2007, and for the archaebacteria on 20 March 2008.

PROGRAMS
In this section, we review six freely available compu-

tational tools for the analysis of bacterial composi-

tional skew and the prediction of the putative oriC
and terC position [56, 73, 74, 82–86] (Table 1).

The programs can process the genomes in the

FASTA, GenBank or EMBL formats. The prediction Ta
bl
e
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algorithms are based on computation of various skew

types (Table 1) and present output data as plots

and/or tables of plot coordinates. The websites differ

in the type of information they provide. Most of

them contain collections of plots for pre-processed

chromosomes, and allow the user to download

the source code of corresponding programs, so that

a plot may be built for a sequence missing in the

database.

The initial step of the analysis for most of the

programs is construction of a DNA-walk, a plot

based on the nucleotide distribution along a chro-

mosome [83, http://www2.unil.ch/comparative

genometrics/DNA_walk.html; 93]. The genome

sequence is broken into windows, and DNA-walk

detects local changes of nucleotide composition for

each window. The DNA-walk forms the base for

calculation of various cumulative skews to build

skew-plots, similar to the ones suggested for the

cumulative GC-skew [81]. (See Methods section and

Table 1 for differences in the skew calculations

between the programs.) As a result, all these

programs build different cumulative skew plots.

Windows in Oriloc are genes taken from a

GenBank file (for annotated genomes) or predicted

with Glimmer2 or Glimmer3 (for nonannotated

genomes). Oriloc examines only third codon posi-

tions in each gene. Intergenic sequences are not

considered. Then Oriloc constructs the ‘combined’

CG(TA) plot [82, http://pbil.univ-lyon1.fr/

software/Oriloc/howto.html], which is used as the

main plot for the oriC/terC prediction. This plot,

together with CG-skew, TA-skew and CDS-skew-

plots is presented at the Oriloc website.

In the CG-software (Comparative Genometrics soft-
ware), the sequence is also broken into windows,

defined as overlapping sequence fragments (1000 nt),

but, unlike Oriloc, disregarding the gene annotation.

This program calculates the GC-skew and TA-skew

and draws the corresponding plots. It also draws the

DNA-walk plot and provides all plot coordinates,

which is convenient from the user’s point of view.

A similar DNA-walk procedure is implemented

in the GraphDNA program. This program allows the

user to select between many skew types (Table 1).

The Z-curve analysis is based on a 3D DNA-walk,

where the three dimensions correspond to the

[(AþG)� (CþT)] skew, [(AþC)� (GþT)]-

skew, and [(AþT)� (GþC)]-skew [94]. The

corresponding website contains also an accessory

program Z-plotter, which is a web server that accepts

sequences supplied by a user and returns the set of

plot coordinates (http://202.113.12.55/zcurve/).

The approach to the oriC prediction implemented

in four programs discussed above is determina-

tion of turning points in DNA-walk plots, which

correspond to global extrema in the cumulative-

skew plots.

At the terminus region, the skew changes sign in

the opposite direction. Thus, in general, the same

programs may also be used to identify the replication

termination site.

Dependent on the details of the computational

procedure and the type of the cumulative skew, the

origin may correspond to the global minimum or the

global maximum of the plot; the reverse holds for

the terminus, respectively.

For the ‘combined’ skew plots in Oriloc, the

putative origin corresponds to the global maxi-

mum (http://pbil.univ-lyon1.fr/software/SeqinR/

SEQINR_CRAN/DOC/html/Oriloc.html); for

the GC-skew plots in CG-software, to the global

minimum [83]. It relates to the use of CG-skew in

Oriloc, and GC-skew in CG-software (Table 1). For

GraphDNA, it depends on the skew type selected by

the user (for example, for the purine-skew, to the

global minimum) [95]. The identification criteria of

the origins are not well defined for Z-curve. The

origin is expected to be an extremum, but it may be

either the minimum or the maximum [94].

As mentioned above, in some species the direc-

tion of the skew for chromosomal DNA (all

nucleotides) is opposite to that for the third codon

positions (in genes). In particular, this has been

observed in B. subtilis for the AT-skew and in

M. genitalium and Mycoplasma pneumoniae for the

AT- and GC-skew [20]. We have extended the list

of such bacteria. A total of 357 chromosomes (Oriloc
curves currently available) were analyzed in detail for

this ‘inverted skew’ relation between the third codon

position skew and the overall nucleotide skew.

To accomplish that, plots, corresponding to partic-

ular skew-types in Oriloc and CG-software were

compared. The ‘inverted skew’ relation was found

in 14 cases (13 if strains are merged) for the GC-skew

and 37 (respectively, 27) cases for the TA-skew, of

which 6 cases had both GC-skew and TA-skew

inverted. The complete list of these bacteria is

presented in Supplementary List 3. While we could

not find a general rule that explained this set of

genomes, some observations could be made. Both

skews are inverted for many Mycoplasma spp., and the
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TA-skew is inverted for many other Firmicutes

(Bacillus spp., Lactobacillus spp. and Streptococcus spp.).

In any case, simultaneous use of two programs, Oriloc
and CG-software allows one to check for this

phenomenon in any genome.

Differences in computational procedures influ-

ence not only the direction of the skew, but also the

range of plot amplitude. In particular, the amplitudes

for the CG-skew plot in Oriloc are approximately

3-fold smaller, than the amplitudes of the corre-

sponding GC-skew plots in other programs (as an

example Figure 1A–C) and also links to the colored

plots for B. subtilis in the Oriloc (http://

pbil.univ-lyon1.fr/software/Oriloc/NC_000964.

png), Z-curve (http://202.113.12.55/zcurve/img/

bacteria/AL009126_xpy.png) and DoriC (http://

tubic.tju.edu.cn/doric/img/NC_000964.o1.png)

collections).

In the Oligonucleotide skew method [56], the DNA-

walk is not used. Instead, the program selects the

optimal oriC positions among a set of candidate

positions spaced by 1000 bp. For each position, a

large window (50–100% of the genome) centered at

this position is considered and all oligonucleotides

A B

C

Figure 1: The range of plot amplitudes for B. subtilis. (A) CG(TA)-skewplot (black curve) for B. subtilis from the Oriloc
website. (The plot was taken from the Oriloc website, with permission). (B) GC-skew plot for B. subtilis from
CG-software website. (The plot was taken from the Comparative Genometrics website, with permission). (C) GC-skew
plot for B. subtilis,GraphDNA (the softwarewas downloaded from the corresponding website).
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with lengths up to 8 are counted separately on the

leading and lagging strand. Then the weighted

double Kullback–Leibler distance between the two

frequency distributions is calculated as the sum over

all such oligonucleotides. It measures the difference

between oligonucleotide frequencies in the lagging

and leading strands for a given candidate position.

Finally, the program output coordinates of candidate

origins and the corresponding Kullback–Leibler

distances. For oligonucleotide skew both origin and

terminus corresponds to maximuma.

From the user’s point of view, it is somewhat

inconvenient when a program does not provide the

extremum coordinates, because the scale unit of the

horizontal axis, reflecting the genome position, is

0.2 Mb through 1 Mb. The GraphDNA program

provides a special tool that allows the user to

determine the coordinate of any point of the plot,

and it is useful when the plot contains sharp peaks.

The Oligonucleotide skew site presents the origin

coordinates with the precision of 1 kb, but only for

325 analyzed bacterial chromosomes. The users of

the remaining programs, Oriloc, CG-software and Z-
curve, have to resort to the analysis of the attached

coordinate tables.

The computational tools considered above were

based only on the global statistical measures of

genomic DNA. However, other types of data may

also be used to supplement this analysis. The

distribution of DnaA-boxes and the location of the

dnaA gene were used to improve the precision of

mapping of the oriC sites [70]. These features were

used in the DoriC database [73] and the Ori-Finder
web server [74], created by the same group.

The DoriC database (http://tubic.tju.edu.cn/doric/)

currently contains 578 eubacterial genomes

(632 chromosomes). The predictions were made

based on compositional strand asymmetry (estimated

using the Z-curve program), the distribution of

DnaA-boxes (either of the E. coli type or species-

specific), location of the indicator genes (dnaA, hemE,

gidA, dnaN, hemB, maf, repC, etc.), and the dif
sequences.

The Ori-Finder site (http://202.113.12.55/Ori-

Finder/) contains a separate database of newly

sequenced bacterial genomes. The program uses

Z-curve, DnaA-boxes, indicator genes, takes into

account phylogenetic relationships, but does not

consider dif sites.

Most programs considered above were also used

to predict putative replication origin and terminus

sites in the archaea. Archaeal predictions were

made by Z-curve [94]; CG-software, which produced

numerous archaeal skew plots [83 and Comparative
genometrics website]; Oligonucleotide skew method that

also was used to predict whether an archaeal genome

contains single or multiple replication origins [56];

and Oriloc (http://pbil.univ-lyon1.fr/software/

Oriloc/index.html). The origin prediction is com-

plicated by the fact that some archaeal chromosomes

may have multiple replication origins [80]. However,

several origins predicted by computer programs were

proven experimentally [24, 94]. A recent list of

experimentally confirmed origins in archaea includes

Archaeoglobus fulgidus [96], Halobacterium NRC-1 [97],

Haloferax volcanii [98], P. abyssi [37], S. acidocaldarius
[80] and S. solfataricus [79, 80].

CLASSIFICATIONOF GC-SKEW
PREDICTIONCURVESOF
PROKARYOTES
We classified 486 eubacterial chromosomes from the

Comparative Genometrics website collection of asym-

metry curves [83] into several classes according to the

overall shape of the plots (Supplementary List 1 and

Table 2).

The ideal curve is �-shaped when the chromo-

somal sequence starts at the oriC site (Figure 2A).

If the sequence starts at an arbitrary point of the

chromosome, the corresponding curve has one

minimum and one maximum (Figure 2B).

The ordinates of the points at the beginning and

the end of the curve in the majority of cases are

about the same. If this is not the case, it would mean

either that the statistical properties of the replichores

Table 2: Distribution of prokaryotic chromosomes in
the GC-curve classes

Class The number of chromosomes

Eubacterial chromosomes
1A 284
1B 56
2A 71
2B 39
3A 19
3B 17
Total 486

Archaeal chromosomes
2B 22
3A 3
3B 20
Total 45
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are different (which is unlikely due to the inherent

symmetry of the genome) or, more likely, that the

replichores in the analyzed chromosome have

different lengths. Visually, this manifests in terC
being not directly opposite to oriC in the circular

representation of the chromosome.

Genomic rearrangements, in particular, inver-

sions, create a mosaic of ancestral leading and lagging

strands and such genomes yield plots with multiple

minima and maxima corresponding to the recombi-

nation sites.

The main criterion used to assign a genome to

Class 2 is the presence of the global minimum,

accompanied by additional local extrema, and,

dependent on the intensity of recombinations, we

subdivide Class 2 further into Class 2A with few

rearrangements, expressed as several local extrema

(Figure 3A) and Class 2B with multiple rearrange-

ments, seen as multiple local extrema (Figure 3B).

Class 3 contains genomes without a clear global

minimum in the GC-skew plots, and at the same

time these plots have several positions with

Figure 3: GC-skew curves for Class 2 genomes. (A) Class 2A, plotswith a globalminimum and several local extrema:
Shigella flexneri 5 str. 8401. (B) Class 2B, plots with a globalminimum andmultiple local extrema:Nocardioides sp. JS614.
The plots were taken from the Comparative Genometricswebsite, with permission.

Figure 2: GC-skew curves for Class 1 genomes. (A) Class 1A, �-shaped curves: B. subtilis subsp. subtilis str. 168.
(B) Class 1B, curves with a single minimum and single maximum: E. coli K12. The plots were taken from the
Comparative Genometricswebsite, with permission.
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approximately equal minimal values. At that time,

the Class 3A GC-skew plots have several local

extrema (Figure 4A), whereas in Class 3B, the GC-

skew plots have multiple local extrema (Figure 4B).

Naturally, the plot amplitudes for the GC-skew

depend on the class: the more rearrangements

have happened the smaller are the amplitudes. The

average amplitudes for different classes are presented

in Table 3.

Notably, according to our classification, chromo-

somes of numerous close relatives (species or strain

level) may be assigned either to the same class, or to

different classes. As an example, bacterial chromo-

somes of the Bacillus or Staphylococcus species are

assigned to Class 1A. At the same time, bacterial

chromosomes from the Burkholderia genus are distri-

buted among different classes. Most Burkholderia
representatives belong to Class 1A, among them

Burkholderia mallei ATCC 23344 chromosome 2 and

B.mallei NCTC 10247 chromosome II. At the same

time, B. mallei ATCC 23344 chromosome 1 and

B. mallei NCTC 10247 chromosome I belong to

Class 2A. Class 3A also contains representatives of

this genus, B. mallei SAVP1 chromosome I and

B. mallei NCTC 10229 chromosome I. The genus

Synechococcus also is represented in all classes. Synecho-
coccus sp. WH8102 belongs to Class 1A, Synechococcus
sp. CC9311 and Synechococcus sp. CC9605 to class 2A,

Synechococcus sp. JA-3-3Ab to Class 2B, S. elongatus
PCC 6301 to Class 3A, and Synechococcus sp.

JA-2-3B’a(2–13) to Class 3B.

Using the established eubacterial classification,

we also classified the archaeal chromosomes. We

assigned 45 archeal plots to different classes of our

classification (Supplement 2, Table 2). All considered

archaeal chromosomes belonged to Classes 2B,

3A and 3B.

The skew plots of eubacterial and archaeal

chromosomes are rather similar. Considering plots

assigned to class 2B, it is possible to suggest the

presence of a single origin in these chromosomes,

and indeed this has been proven experimentally for

P. abyssi [37]. Plots of Classes 3A and 3B yield the

presence of several origins in corresponding chro-

mosomes, also proven experimentally [79]. The

impossibility to distinguish between the trace of

recent recombinations and the impact of multiple

origins in the absence of closely related genomes has

lead to the suggestion of existence of ‘anomalous’

eubacteria with multiple replication origins [23].

No such bacteria have been yet observed in

experiment.

Figure 4: GC-skew curves for Class 3 genomes. (A) Class 3A, plotswithout awell-definedglobalminimum, butwith
several positions of approximately equalminimal values and several local extrema:Syntrophobacter fumaroxidansMPOB.
(B) Class 3B, plots without a well-defined globalminimum, but with several positions of approximately equalminimal
values and multiple local extrema; Synechococcus sp. JA-2-3B’a(2^13). The plots were taken from the Comparative
Genometricswebsite, with permission.

Table 3: The mean range of amplitude for GC-skew
plots (plots of 486 genomes, presented by CG-software
website, were used)

Class 1A 1B 2A 2B 3A 3B

Mean range of amplitude (kb) 50 37 24 12 22 8
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Analysis of the GC-skew plots of the Comparative
Genometrics website demonstrates that information

given by the asymmetry curves sometimes is not

sufficient for identification of the origin. Indeed,

only Class 1 and probably, Class 2A plots yield

reliable predictions. Class 2B chromosomes with

their multiple chromosomal rearrangements are

problematic, and Class 3 curves do not allow one

to make a prediction.

Currenly, to predict the replication origins in

archaea, procedures developed for eubacteria are

used. There are too few experimentally defined

archaeal origins to develop special computational

procedures.

IDENTIFICATIONOF DNAA BOXES
Since the replication initiation regions usually

contain clusters of DnaA-boxes [70], this property

can be used to identify the oriC sites. However, the

DnaA-binding motifs may be taxon-specific, as

observed in M. tuberculosis [67, 99] and H. pylori [66]

and expected for B. burgdorpheri [71]. Thus the use of

the standard E. coli consensus TTATNCACA may

produce inconclusive results. To account for this

possibility, the following combined approach may be

used. For a taxon under analysis, the regions of the

replication initiation may be defined for genomes

from Class 1 and 2A using the GC-skew plots and

location of the dnaA gene. Over-represented motifs

identified in this region are likely DnaA-boxes. The

positional weight matrix (PWM) may be derived

from these boxes and used to find clusters of

candidate DnaA-boxes in the remaining genomes

from this taxon.

Two cautionary notes should be made at this

point. First, in chromosomes of likely plasmid origin,

such as chromosome II of Vibrio cholerae, the structure

of the replication origin may be different from that of

the bona fide bacterial chromosomes [100]. Second,

clusters of the DnaA-boxes may occur not only at

the replication origins, but also in other loci. For

example, the datA locus of E. coli contains a cluster of

the DnaA-boxes that are involved in the regulation

of replication initiation, more exactly, control of

over-initiation [101, 102].

As a proof of principle, we demonstrate the

general applicability of this approach on a set of

the Streptomyces species. This taxon contains a genome

with an experimentally determined oriC site

(Streptomyces coelicolor) [103] and a genome belonging

to Class 3A of our classification (S. avermilitis). The

replication origin of S. coelicolor contains more than

10 sites with the consensus TTSTCCACA (S¼G or

C) (Figure 5A). Nineteen putative DnaA-boxes for

S.lividans, whose oriC sequence is identical to the oriC
sequence of S.coelicolor [104], were suggested in [105].

We selected 13 sites with the length of 9 nt; all sites

had at most two mismatches to the E. coli consensus

TTATNCACA (the logo is presented in Figure 5B).

We constructed a PWM [89] using these sites

and then used this PWM to scan the genome of

S. avermilitis. A cluster of 14 candidate DnaA-boxes

was identified (Figure 6A); the logo of these sites is

presented in Figure 6B. There are two dnaA genes in

S. avermilitis, and one is localized upstream of the

identified cluster; this may be considered as inde-

pendent collaboration, since we did not use the dnaA
location at previous steps. The GC-skew plot is

presented on Figure 6C, and the predicted oriC

A B

Figure 5: Candidate DnaA-boxes of S. coelicolor. (A) Alignmentof candidateDnaAboxes identified in the oriC region.
(B) Sequence logo of the DnaA-boxes.
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region coincides with the prediction in the DoriC
database [73].

We further considered the Synechococcus genus as

an example of a taxon with no experimentally

studied replication origins. This taxon includes

genomes from different classes in our classification.

The candidate replication oriC regions could be

identified by visual analysis of the GC-skew curves

for Synechococcus sp. CC9311 (Class 2A) and

Synechococcus sp. CC9605 (Class 2A). Analysis of

over-represented oligonucleotides (searching for

matrices with the maximal informational content)

yielded six candidate DnaA-boxes in Synechococcus sp.

CC9311 and five candidate DnaA-boxes in

Synechococcus sp. CC9605. The logos are presented

in Figure 7A (a,b).

Thus we identified a conserved, over-represented

motif TTTTCCMCA (M¼A or C) common to

both genomes [Figure 7A (a,b)]. The constructed

PWM was then used to identify clusters of candidate

DnaA-boxes in Synechococcus sp. JA-2-3B’a(2–13)

(http://www.genome.jp/dbget-bin/www_bget?

refseqþNC_007775) belonging to Class 3A and

Synechococcus sp. JA-3-3Ab (http://www.genome.

jp/dbget-bin/www_bget?refseqþNC_007776)

from Class 2B [Figure 7B (a,b) and C (a,b),

respectively].

Again, the predicted origin locations coincided

with the predictions of DoriC. In both cases, the

search for clusters of potential DnaA-boxes was done

in the whole GenBank sequence of corresponding

chromosomes, not just in intergenic sequences

(to account for possible genome annotation

inaccuracies).

Note that the obtained motifs show some minor

species-specific differences, but this has not influ-

enced the result.

Finally, we considered the replication origins of

the Mycobacterium species. The oriC locus, situated

between the dnaA and dnaN genes, was determined

experimentally for M. tuberculosis, as well as for

M. smegmatis and M. leprae [99]. In an experimental

paper [67], 13 previously proposed boxes [106] as

well as 2 newly predicted ones, were tested on their

ability to bind the DnaA protein by dimethylsulfate

(DMS) footprinting and surface plasmon resonance

(SPR). Binding of the DnaA protein was confirmed

for 10 of them.

A B

C

Figure 6: Candidate oriC region of Streptomyces avermitilis. (A) Candidate DnaA boxes identified in the
oriC region. (B) Sequence logo of the DnaA-boxes. (C) GC-skew plot (Comparative Genometrics website, with
permission). The arrow shows the locations of the predicted oriC region and the dotted linesçthe location of two
dnaA genes.
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In an attempt to identify candidate DnaA-sites for

other mycobacteria, we aligned this region to the

corresponding regions (defined by synteny) of other

Mycobacterium species. The visual analysis of this

alignment identified a cluster of conserved islands

containing CACA motifs similar to the DnaA motifs

from other species. It allowed us to select seven

motifs of the type N5-CACA-N5. Five of seven

M. tuberculosis boxes, derived from the alignment,

coincided with experimentally determined sites [67]

(Figure 8A). However, positions near this motif,

while conserved between species, showed little

conservation between individual islands (Figure 8B).

Thus, the exact span of the mycobacterial

DnaA-motif remains unknown. Since the resolution

of the footprinting experiments is not very high,

further experimental analysis is needed to explain

the discrepancies. However, they do not put into

doubt the usefulness of such analysis, since both the

general motif and the oriC location were identified

correctly.

CONCLUSIONS
We considered six currently available in silico tools

for the prediction of eubacterial replication origins

and termini, and classified the skew-curves from one

of the largest on-line collections (Comparative
Genometrics). The majority of the curves are perfectly

�-shaped, while the rest are disturbed by inter-

genomic rearrangements of varying intensity.

We observed clusters of putative DnaA-boxes,

A(a)

B(a)

C(a)

(b)

(b)

(b)

Figure 7: Candidate DnaA-boxes and oriC regions of Synechococcus spp. (A) Logo of candidate DnaA-boxes of
Synechococcus sp.CC9311 (a), Synechococcus sp.CC9605 (b). (B) GC-skew plots of Synechococcus sp. JA-2-3B’a(2^13) (a),
Synechococcus sp. JA-3-3Ab (b). (Comparative Genometrics website, with permission).The arrow shows the locations
of the predicted oriC region and the dotted lineçthe location of dnaA gene. (C) Logo of candidate DnaA-boxes of
Synechococcus sp. JA-2-3B’a(2^13) (a), Synechococcus sp. JA-3-3Ab (b).
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common to the predicted oriC sites within separate

taxonomic groups, but sometimes varying between

groups. As a result we suggested an additional

approach which may facilitate identification of the

replication oriC in cases of ambiguous or ‘fuzzy’

skew-based predictions in eubacteria, independent

of synteny or ‘typical neighborhood’ gene

arrangements.

A B(a)

B(b)

Figure 8: Candidate DnaA-boxes of Mycobacterium spp. (A) Alignment of the dnaA^dnaN intergenic regions
with seven conserved motifs N5-CACA-N5, experimental (***) DnaA-boxes in the oriC-site of M. tuberculosis [67]
and predicted (XXX) DnaA-boxes. (Only 9/10 experimental boxes are shown, the 10th one is located at a distance
exceeding 250nt from the region in the picture). (Genome abbreviations: Myv, Mycobacterium_vanbaalenii_PYR-1;
Mul, Mycobacterium_ulcerans_Agy99; MtH, Mycobacterium_tuberculosis_H37Rv; MtC, Mycobacterium_
tuberculosis_CDC1551; Mys, Mycobacterium_smegmatis_MC2_155; MCS, Mycobacterium_MCS; Myl,
Mycobacterium_leprae; KMS, Mycobacterium_KMS; JLS, Mycobacterium_JLS; Myg, Mycobacterium_gilvum_PYR-
GCK; MBC, Mycobacterium_bovis_BCG_Pasteur_1173P2; Myb, Mycobacterium_bovis; Map, Mycobacterium_avium_
paratuberculosis; Mya, Mycobacterium_avium_104). (B) Cluster trees of individual motifs constructed by ClusterTree-
RS. Sequence logos are shown for each node. The two trees correspond to different definitions of the DnaA-motif
[N5CACA (a) and CACAN5 (b)].
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104.Zakrzewska-Czerwińska J, Majka J, Schrempf H. Minimal
requirements of the Streptomyces lividans 66 oriC region
and its transcriptional and translational activities. J Bacteriol
1995;177:4765–71.

105. Jakimowicz D, Majka J, Messer W, et al. Structural
elements of the Streptomyces oriC region and their
interactions with the DnaA protein. Microbiol 1998;144:
1281–90.

106.Dziadek J, Rajagopalan M, Parish T, et al. Mutations
in the CCGTTCACA DnaA box of Mycobacterium tuber-
culosis oriC that abolish replication of oriC plasmids
are tolerated on the chromosome. J Bacteriol 2002;184:
3848–55.

Replication origins in prokaryotic genomes 391
 by guest on February 5, 2015

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/

