
CMSC131
Lecture Set 1:
Introduction to Tools

Topics in this set:
1.Tools needed for this course
2.How to get Started

1

CMSC 131- Lecture Slides – set 1

Announcements
1) WaitList -- size has been raised to the capacity of the room (continue to

attend and if people drop you will be moved in)
!

2) Canvas setup – should have access to syllabus and slides etc. Things
will be added there on a regular basis.

!
1) Piazza – invitations sent

1) for communication
1) to all individual
2) to all instructors
3) to all students

2) better than email
1) faster response time
2) others see the answer so don’t have to ask as much

!
!

CMSC 131- Lecture Slides – set 1

Programming Languages
❖ Used to write programs that run on

computers
❖ Generations of programming languages

❖ 1st (1GL): machine code
❖ 2nd (2GL): assembly code
❖ 3rd (3GL): procedural languages
❖ 4th (4GL): application-specific languages
❖ 5th (5GL): constraint languages

3

CMSC 131- Lecture Slides – set 1

1st Generation: Machine Code
❖ Recall: computer data is 0’s and 1’s.
❖ In machine code, so are programs!

❖ Program: sequence of instructions
❖ Machine code: instructions consist of 0’s and 1’s

❖ Next slide: example machine code instruction from
MIPS (= “Microprocessor without interlocked
pipeline stages”) architecture
❖ Popular in mid-, late 90s
❖ Instructions are 4 bytes long

4

CMSC 131- Lecture Slides – set 1

2nd Generation: Assembly
❖ Problem with 1GLs: Who can remember those

opcodes, addresses, etc. as 0’s, 1’s?
❖ Solution (1950s): assembly language

❖ mnemonics = descriptive character strings for opcodes
❖ Let programmers give descriptive names to addresses

❖ Needs an Assembler to translate

5

asm assembler obj

CMSC 131- Lecture Slides – set 1

3rd Generation: Procedural
Languages
❖ Problems with 2GLs

❖ Platform dependency
❖ Different kinds (architectures) of computers use different

instruction formats
❖ E.g. x86, Pentium, 68K, MIPS, SPARC, etc.
❖ 1GL / 2GL programs written for one kind of machine will

not work on another
❖ Low level: programs difficult to understand

6

source compiler
asm

(or exe)

CMSC 131- Lecture Slides – set 1

Interpreters
❖ Another way to execute 3GL programs

❖ Interpreters take source code as input
❖ Interpreters execute source directly
❖ Much slower than compiled programs
!

❖ Debuggers are based on interpreters
❖ Debuggers support step-by-step execution of

source code
❖ Internal behavior of program can be closely

inspected

7

CMSC 131- Lecture Slides – set 1

Object Oriented Terminology
❖ Original Procedural Languages

❖ have procedures that can be reused (“verb” centric)
!

❖ Object Oriented Languages
❖ centered on the objects (“noun” centric)
!

❖ object
❖ principal entities that are manipulated by the program (nouns)
!

❖ class
❖ a “blueprint” that defines the structure for one or more objects
!

❖ method
❖ java term for a “function”, a “procedure” or a “subroutine”
❖ this is the code that does something (verbs)
!

❖ main method
❖ a special method that defines where program execution begins
!

❖ statements
❖ individual instructions 8

CMSC 131- Lecture Slides – set 1

Tools for Writing Programs
!
●The old days

●Text editor: used to create files of source code
●Compiler: generate executables from source
●Debugger: trace programs to locate errors
!

●Today: IDE = “integrated development environment”
●Text editor / compiler / debugger rolled in one
●Examples: Eclipse, Visual Studio, NetBeans, etc.

9

CMSC 131- Lecture Slides – set 1

Basics of Eclipse
●http://www.cs.umd.edu/eclipse/EclipseTutorial/
❖ Eclipse is used to:

❖ Create
❖ Edit
❖ Compile
❖ Run
❖ Debug

programs (for this class, Java programs).

10

http://www.cs.umd.edu/eclipse/EclipseTutorial/

CMSC 131- Lecture Slides – set 1

Basics of Eclipse-speak
❖ Project: collection of related source files

❖ To create a program in Eclipse:
❖ Create a new project
❖ Create files in the project

❖ Perspective: framework for viewing and/or
manipulating programs
❖ Important perspectives in this class:

❖ Java: for creating, running programs
❖ Debug: for tracing, removing errors in programs
❖ CVS repository: for interacting with assignment-submission

system
❖ Workspace: Where your files are stored locally
❖ Buffer: Window where editing takes place

11

CMSC 131- Lecture Slides – set 1

Class Projects with CVS
❖ You will use Eclipse for Java programming in this course
❖ How will you:

❖ obtain (check-out) files that are supplied to you
❖ save (commit) the files for later work
❖ turn in (submit) when you are finished

❖ CVS (= Concurrent Versions System)
❖ Tool for project-file management
❖ Maintains versions, etc.
❖ Allows different sites to work on same project

12

CVS Worldview

13

Files in
“repository”

Server

Files
(local copies)

Client 1

Files
(local copies)

Client 2

“checkout”

“checkout”

“commit”

“commit”

CMSC 131 - Lecture Slides - set 1

CMSC 131- Lecture Slides – set 1

CVS in More Detail
❖ CVS server maintains current versions of files in

project (= “repository”)
❖ To access files from another machine (“client”),

repository files must be “checked out”
❖ Changes to files on client may be “committed” to

server, with changed files becoming new version
❖ (Once a repository is checked out by a client,

subsequent versions may be accessed via “update”)

14

CMSC 131- Lecture Slides – set 1

How CMSC Project Submission
Works
❖ Repository created for each student linuxlab

account
❖ You check out repository to start work on project
❖ When you “save” changes in Eclipse, “commit”

automatically invoked by plug-ins
❖ You “submit” when finished using Eclipse (UMD

plug-in handles relevant CVS commands)

15

EXAMPLE – only an example
Adding a CVS Repository

16

Common to everyone
but details change
on instructor & semester

Your linuxlab username

Your linuxlab password

Don’t forget to set this!

CMSC 131 - Lecture Slides – set 2

CMSC 131- Lecture Slides – set 1

Working on Project
❖ You do not have this project showing in the Java

perspective.
❖ You go to the CVS perspective and check it out.
❖ When you switch back to “Java” perspective,

your project is now there!
❖ Make sure you are in the Java perspective to

edit
❖ When you save in “Java” perspective, changes

are automatically committed to CVS repository.

17

CMSC 131- Lecture Slides – set 1

Submitting the Project
❖ Edit the file
❖ Make sure it runs correctly
❖ Submit the project for grading
❖ Go to submit.cs.umd.edu to see test results

❖ Public tests
❖ Private (Secret) tests
❖ Release tests

❖ give limited feedback (first two failed tests give more)
❖ costs you “tokens” – usually 3 to start with
❖ spent tokens regenerate in 24 hours

18

