
CMSC131
Lecture Set 0:
Course Introduction

Topics in this set:
1.Course information
2.Computer terminology basics
3.Tools needed for this course

1

CMSC 131 - Lecture Slides - set 1

CMSC 131- Lecture Slides – set 1

Basic Info
❖ Name: “Object-Oriented Programming I”
❖ Class meetings: Lab and Lecture
❖ Instructor: Tom Reinhardt
❖ 4 TAs: Ahmed Elgohary, Ujjwal Goel, Ugur Koc,

Xuetong Sun
❖ Office Hours

❖ Will be Posted
❖ All in AVW building:

❖ 1112 (TA’s), 3239 (Tom Reinhardt)

2

CMSC 131- Lecture Slides – set 1

What Is This Course?
❖ A fast-paced introduction to techniques for writing computer programs!

❖ Skill Development in Programming
❖ Conceptual Understanding of Programming
❖ Beginning of “computer science”

❖ Intensive, but assumes you are starting at level 0.
❖ Keys to success

❖ Attend all classes and lab sections
❖ Start assignments early – and continue until you truly understand
❖ Get help early if you are having trouble – instructor & TAs
❖ Study every day

❖ it doesn’t work to cram for these exams
❖ ask questions as soon as you realize you are confused

❖ Check announcements every day

3

CMSC 131- Lecture Slides – set 1

Course Software
❖ Eclipse

❖ An IDE (integrated development environment)
❖ We will use it for writing Java™ programs
❖ Access to Eclipse (it’s free!)

❖ You can install it on your own machine: http://
www.cs.umd.edu/eclipse

❖ Also accessible in some labs around campus
❖ CVS (Concurrent Versions System)

❖ A version-management system
❖ You will use it for submitting your projects

❖ Both of these – Demonstrations on Wednesday

4

http://www.cs.umd.edu/eclipse

CMSC 131- Lecture Slides – set 1

Computer Organization
❖ Hardware:

❖ physical parts of computer
❖ examples

❖ Monitor, mouse, keyboard
❖ Chips, boards
❖ Cables, cards
❖ etc.

❖ Software:
❖ non-physical (“logical”) parts of computer
❖ Programs = instructions for computer to perform

5

CMSC 131- Lecture Slides – set 1

How Programs Are Executed

6

foo.exe

Program “foo” initially
stored in secondary
storage

COPY

Program copied
into main memory

CPU

CPU executes
program instruction-
by-instruction

CMSC 131 - Lecture Slides - set 1

CMSC 131- Lecture Slides – set 1

Hardware Overview
❖ CPU = central processing unit

❖ Executes the "instructions“ in programs
❖ Main memory = random-access memory = “RAM”

❖ Stores data that CPU accesses, including instructions
❖ FAST, but smaller and temporary; wiped out when computer is shut off!

❖ Secondary memory: Hard disks, CDs, DVDs, flash memory, etc.
❖ Stores data that can be loaded into main memory
❖ SLOWER, but larger and permanent
!

❖ I/O devices
❖ How you communicate with your machine
❖ Keyboard, monitor, mouse, speakers, etc.

❖ Networking equipment
❖ How others communicate with your machine
❖ Networking “cards”, cables, etc.

7

Main Memory
❖ Computer data consists of off

and on pieces (often written
as 0’s and 1’s)

❖ bit: A single cell in main
memory that can hold either a
0 or 1

❖ byte: A sequence of 8 bits
❖ word: Unit of memory (size

varies by computer - often a
sequence of 4 bytes)

❖ Main memory: table of bytes
indexed by “addresses”

Address Byte value

1

2

3

4

8

1 0 0 1 1 1 0 1

0 0 0 1 1 0 0 1

1 1 1 1 1 1 0 1

1 1 0 0 0 1 0 0

CMSC 131 - Lecture Slides - set 1

CMSC 131- Lecture Slides – set 1

How Many Different Values can
be stored in a…
●Bit?
 2
●Two bits?
 4 = 2 x 2
●Byte?
 256 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 28
●Word?
 4,294,967,296 = 232

9

CMSC 131- Lecture Slides – set 1

Other Standard Terminology
One kilobyte is
approximates one
kibibyte which is
approx 1000 bytes
(actual 1024 bytes).
210 = 1024
220 = 10242
230 = 10243
230=1,073,741,824
!

10

CMSC 131- Lecture Slides – set 1

How Are Characters, Etc.,
Represented?
❖ Via encoding schemes
❖ Example: ASCII

❖ American Standard Code for Information
Interchange

❖ Early standard for encoding a single character in a bytes
❖ In ASCII:

❖ ‘A’ 01000001, ‘B’ 01000010, ‘C’ 01000011, …
❖ ‘a’ 01100001, ‘b’ 01100010, ‘c’ 01100011,…
❖ ’1’ 00110001, ‘2’ 00110010, ‘3’ 00110011, …
❖ ‘,’ 00101100
❖ etc.

11

CMSC 131- Lecture Slides – set 1

Other Character Encodings
●International support?

⇒Unicode
●Most common variation: UTF-8

●Backwards compatible with ASCII

12

Unicode Byte1 Byte2 Byte3 Byte4 Example

U+0000–U+007F
(0 to 127)

0xxxxxx
x

'$' U+0024
→ 00100100
→ 0x24

U+0080–U+07FF
(128 to 2,047)

110yyyx
x

10xxxxx
x

'¢' U+00A2
→ 11000010,10100010
→ 0xC2,0xA2

U+0800–U+FFFF
(2,048 to 65,535)

1110yyy
y

10yyyyx
x

10xxxxx
x

'€' U+20AC
→ 11100010,10000010,10101100
→ 0xE2,0x82,0xAC

U+10000–U
+10FFFF
(65,536 to
1,114,111)

11110zz
z

10zzyyy
y

10yyyyx
x

10xxxxx
x

'𠀀𠀁𠀂𠀃𠀄𠀅𠀆𠀇𠀈𠀉𠀊𠀋𠀌𠀍𠀎𠀏𠀐𠀑𠀒𠀓𠀔𠀕𠀖𠀗𠀘𠀙𠀚𠀛𠀜𠀝𠀞𠀟𠀠𠀡𠀢𠀣𠀤𠀥𠀦𠀧𠀨𠀩𠀪𠀫𠀬𠀭𠀮𠀯𠀰𠀱𠀲𠀳𠀴𠀵𠀶𠀷𠀸𠀹𠀺𠀻𠀼𠀽𠀾𠀿𠁀𠁁𠁂𠁃𠁄𠁅𠁆𠁇𠁈𠁉𠁊𠁋𠁌𠁍𠁎𠁏𠁐𠁑𠁒𠁓𠁔𠁕𠁖𠁗𠁘𠁙𠁚𠁛𠁜𠁝𠁞𠁟𠁠𠁡𠁢𠁣𠁤𠁥𠁦𠁧𠁨𠁩𠁪𠁫𠁬𠁭𠁮𠁯𠁰𠁱𠁲𠁳𠁴𠁵𠁶𠁷𠁸𠁹𠁺𠁻𠁼𠁽𠁾𠁿' U+024B62
→ 11110000,10100100,10101101,10100010
→ 0xF0,0xA4,0xAD,0xA2

CMSC 131- Lecture Slides – set 1

Software Overview
❖ Operating system: manages computer's resources; typically runs as soon as

computer is turned on.
 Typical responsibilities:

❖ Process management
❖ Determines when, how programs will run on CPU time

❖ Memory management
❖ Controls access to main memory

❖ I/O, window system, network control
❖ Performs low-level drawing, communication operations

❖ Security
❖ Manages user IDs, passwords, file protections, etc. !

❖ Applications: programs users interact directly with; usually are explicitly run.
Examples:

❖ Word processors
❖ Games
❖ Spreadsheets
❖ Music software,
❖ Etc

13

CMSC 131- Lecture Slides – set 1

Programming Languages
●Used to write programs that run on computers
●Generations of programming languages

●1st (1GL): machine code
●2nd (2GL): assembly code
●3rd (3GL): procedural languages
●4th (4GL): application-specific languages
●5th (5GL): constraint languages

14

CMSC 131- Lecture Slides – set 1

1st Generation: Machine Code
●Recall: computer data is 0’s and 1’s.
●In machine code, so are programs!

●Program: sequence of instructions
●Machine code: instructions consist of 0’s and 1’s

●Next slide: example machine code instruction from
MIPS (= “Microprocessor without interlocked pipeline
stages”) architecture

●Popular in mid-, late 90s
●Instructions are 4 bytes long

15

CMSC 131- Lecture Slides – set 1

Example MIPS Instruction
●“Add data in addresses 1, 2, store result in
address 6”:
 00000000001000100011000000100000
●broken into parts:
 000000 00001 00010 00110 00000 100000

16

opcode

1st address

2nd address

destination address

shift amount

function specifier

CMSC 131- Lecture Slides – set 1

Programming in 1GLs

17

Courtesy of Microsoft Encarta Encyclopedia Online. Copyright (c) Microsoft Encarta Online

http://encarta.msn.com/

CMSC 131- Lecture Slides – set 1

2nd Generation: Assembly
❖ Problem with 1GLs: Who can remember those

opcodes, addresses, etc. as 0’s, 1’s?
❖ Solution (1950s): assembly language

❖ mnemonics = descriptive character strings for opcodes
❖ Let programmers give descriptive names to addresses

❖ MIPS example revisited:
 add $1, $2, $6
instead of
 00000000001000100011000000100000
for “add contents of addresses 1, 2, store result in 6”

18

CMSC 131
Lecture Slides – set 1

Assemblers
❖ Computers still only work on machine code (1GL)
❖ Assembly language is not machine code
❖ Assemblers are programs that convert assembly

language to machine code (= “object code”)

19

asm assembler obj

CMSC 131- Lecture Slides – set 1

3rd Generation: Procedural
Languages
❖ Problems with 2GLs

❖ Platform dependency
❖ Different kinds (architectures) of computers use different

instruction formats
❖ E.g. x86, Pentium, 68K, MIPS, SPARC, etc.
❖ 1GL / 2GL programs written for one kind of machine will

not work on another
❖ Low level: programs difficult to understand
!

❖ Solution (1960s -- now): procedural languages
❖ Higher-level, “universal” constructs
❖ Examples: Cobol, Fortran, Algol, Pascal, C, C++, Java, C#

20

CMSC 131
Lecture Slides – set 1

Compilers
❖ Computers can only execute machine code
❖ Compilers are programs for translating 3GL

programs (“source code”) into assembler / machine
code

21

source compiler
asm

(or exe)

