
CMSC131

Introduction to your Introduction

to Java

Why Java?
• It’s a popular language in both industry and

introductory programming courses.

• It makes use of programming structures and
techniques that can be transferred to using a
variety of other languages.

• Development on different platforms without
platform-specific differences for what we will
be doing is more straight-forward.

Phrases you might hear…
• Garbage collection

– …when we talk about requesting memory to hold
information for our program to use…

• Cross-platform executables
– …the modules we build and even full

applications can be used under different
operating systems due to the Java virtual
machine…

The JVM
• The Java compiler does not compile to the

machine code of an actual physical machine
architecture, but rather to “bytecode” which is
run on a Java Virtual Machine.

• If you compile a JVM for a new operating
system, then (in theory) all of your existing
Java programs could run there too.

• There are times when (for efficiency) Java
bytecode is actually compiled to a specific
architecture’s machine code (no longer
portable).

Java to Bytecode to Execution

http://support.novell.com/techcenter/articles/img/ana1997070102.gif

How many bytes in a kilobyte?

1. 8

2. 128

3. 1000

4. 1024

5. none of the above

0 of 5

45

HelloWorld2.java example
public class HelloWorld2 {

 public static void main(String[] args) {

 System.out.println("Hello World!");

 myMethod("Hi", "There");

 }

 public static void myMethod(String first, String second)
{

 System.out.println(first+" "+second);

 System.out.println(second+" "+first);

 }

}

Methods (operations that can be performed)

public static void main(String[] args)

public static void myMethod(String first, String second)

HelloWorld2.java example
public class HelloWorld2 {

 public static void main(String[] args) {

 System.out.println("Hello World!");

 myMethod("Hi", "There");

 }

 public static void myMethod(String first, String second)
{

 System.out.println(first+" "+second);

 System.out.println(second+" "+first);

 }

}

Operands/Parameters (data the method uses)

String[] args

String first, String second

HelloWorld2.java example
public class HelloWorld2 {

 public static void main(String[] args) {

 System.out.println("Hello World!");

 myMethod("Hi", "There");

 }

 public static void myMethod(String first, String second)
{

 System.out.println(first+" "+second);

 System.out.println(second+" "+first);

 }

}

Output Commands (in this case to the console)
System.out.println("Hello World!");

System.out.println(first+" "+second);

System.out.println(second+" "+first);

Output
• We will see two basic output options for sending

text to the console:
System.out.println
System.out.print

• The difference between the two is that the first one
adds an “end of line” character at the end of
whatever it has sent to the console.

• You can request the contents of variables to be
displayed (which a variable may or may not
support) or you can ask for a literal string to be
displayed (contained in quotation marks in your
output command).

HelloWorld2.java example
public class HelloWorld2 {

 public static void main(String[] args) {

 System.out.println("Hello World!");

 myMethod("Hi", "There");

 }

 public static void myMethod(String first, String second)
{

 System.out.println(first+" "+second);

 System.out.println(second+" "+first);

 }

}

Method Call

myMethod("Hi", "There");

Method Signatures
public static void myMethod(String first, String second)

public: we will discuss “visibility” later

static: we will discuss this later as well

void: the “type” of the value the method will return (in this
case it does not return a value so we say the type is “void”)

myMethod: method name

String first, String second: defining memory spaces and local
names for values that will be passed into the method

public class DoSomeMath {
 public static void main(String[] args) {
 int x;
 int y;
 x = 17;
 y = 23;
 printSum(x,y);
 printProd(x,y);
 printQuot(x,y);
 printQuot(y,x);
 }
 public static void printSum(int first, int second){
 System.out.println(first+second);
 }
 public static void printProd(int alpha, int beta){
 System.out.println(alpha*beta);
 }
 public static void printQuot(int alpha, int second){
 System.out.println(alpha/second);
 }
}

DoSomeMath.java example

 Commands/Instructions

 Variable Declarations

Variables
In the DoSomeMath example, there were some local variables…

declared
 int x;
 int y;
assigned to
 x = 17;
 y = 23;
and used
 printSum(x,y);

In short, variables have a data type (such as int) and refer to
space within the computer’s memory where their values (such
as 17) are stored.

You can assign values to them and read those values back out
from them.

AddOne.java example
public class AddOne {

 public static void main(String[] args) {

 int x;

 x = 17;

 System.out.println(x);

 printPlus1(x);

 System.out.println(x);

 }

 public static void printPlus1(int val){

 val = val + 1;

 //NOTE: Due to how the int data type works,

 // x back in the calling method doesn't change!

 System.out.println(val);

 }

}

Comments
• There are times that you will want to leave

notes for yourself and other programmers
within the code without it being executed.

• This is where comments come in!

• There are two types of comments in Java:
/* comment goes until the “close” */

/* comment goes until the “close”

 which might not be on the same line

 as where the “open” appears */

// comment goes from “start” to the end of that line

Some Primitive Types
• Integer values (and how many bytes they get)

– byte (1), short (2), int (4), long (8)

• Real numbers (and how many bytes they get)
– float (4), double (8)

• Individual Unicode characters
– char (2)

• Boolean truth values
– boolean (1)

Range of Values
• The range of values depends on several things, one of

which is how much memory is available for storing the
value and another is how Java interprets the 0s and
1s stored in that memory.

• A byte is one byte in size and can store a value
between -128 and +127 but boolean is also one byte
in size yet it can only store two values; true or false.

• An int is four bytes in size and can store a value
between -2,147,483,648 and +2,147,483,647 but a
float is also four bytes in size yet it can store numbers
between (roughly) -3.4x1038 and 3.4x1038 (though only
with 7 digits of precision).

If a short integer holds values from -32,768 to 32,767,
what happens if it is holding 32,767 and you add one?

0 of 5

1. The program crashes.

2. The program automatically allocates
a larger integer to hold larger values.

3. The value becomes 32,767.

4. The value becomes -32,768.

5. The value becomes 0.

45

float -vs- double
By default, real number values are assumed to

be "double" values.

float val = 17.5; won't work… it needs to be
float val = 17.5F;

Some Math Operations
• Addition: +
• Subtraction: - (also used as unary “negative”)

• Multiplication: *
• Division: /

– Integer division discards remainder
 17 / 5 yields 3

• Modulus: %
– Returns what the remainder would be if the two

operands were “divided”
 17 % 5 yields 2

Numeric Comparison Operators
• Less than: <

• Greater than: >

• Less than or equal to: <=

• Greater than or equal to: >=

• Is equal to: ==

• Is not equal to: !=

NOTE = is for assignment, == is for comparison

Comps.java example
public class Comps {
 public static void main(String[] args)
{

 boolean flag;
 flag = (7<14);
 System.out.println(flag);
 flag = (17<14);
 System.out.println(flag);
 flag = (17=14); //THIS WON'T COMPILE
 }
}

The String type
• The String data type is not a primitive type.
• It is a Class and when we declare one to use, it is

called an Object (we will discuss these ideas more
later).

• As we saw earlier, you can concatenate two String
objects using the + operator.

• Note that the + operator can also be used for math
operations. The left operand "decides" which form
of + is being used.

"S" is a String of length 1
'S' is a char

Some Special Character Values
• single quote: \‘

• double quote: \”

• new line (crlf): \n

• tab: \t

• single backslash: \\

SomeStrings.java example
public class SomeStrings {
 public static void main(String[] args) {
 String name = "Sam";
 char letter = 'A';
 int number1 = 14;
 float number2 = 17.5F;

 System.out.println("Hi\nThere\tClass\\\\\n\n");

 System.out.println(name+letter+number1+number2);
 System.out.println(name+letter+(number1+number2));
 }
}

String Comparison
• String objects are compared using Methods

rather than Operators.
string1.equals(string2) will return a boolean value
string1.compareTo(string2) will return an integer

value using the following rules based on the
lexicographical order of the strings:

• If the result is less than 0 string1 precedes string2
• If the result is equal to 0 string1 matches string2
• If the result is greater than 0 string1 succeeds string2

NOTE the negative value doesn't have to be -1
and the positive value doesn't have to be +1

Input using the Scanner class
• The Scanner class is included as part of the

utility libraries available in Java 5.0 (or later)
but we need to import it to make use of it.
 import java.util.Scanner;

• It allows us to obtain data from an input
source (such as a keyboard) and also
convert that data into the format of different
Java types.

Creating and Using
• We will need to declare and create a Scanner

object:
 Scanner myScanner = new Scanner(System.in);

• We can then use any of Scanner's methods to
read and convert data, such as…
– nextBoolean()
– nextFloat()
– nextInt()
– next()

//reads/returns characters until next whitespace

– nextLine()
//reads/returns characters until the end of the input line

SimpleInput.java example
import java.util.Scanner;

public class SimpleInput {
 public static void main(String[] args) {
 Scanner myScanner = new Scanner(System.in);
 int i;
 float f;
 String s;

 i = myScanner.nextInt();
 System.out.println("The integer was a " + i);

 s = myScanner.next();
 System.out.println("The next \'word\' was " + s);

 s = myScanner.nextLine();
 System.out.println("Rest of the line was " + s);
 }
}

Copyright © 2012 : Evan Golub

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	PowerPoint Presentation

