
CMSC 131 - Lecture Outlines - set 2

Lecture Set 2:
Starting Java

1. Java Concepts
2. Java Programming Basics
3. User output
4. Variables and types
5. Expressions
6. User input
7. Uninitialized Variables

1

What a Java Project looks like
when checked out from CVS

In the CVS perspective – check out the project. DO NOT OPEN THE FILE HERE!
Switch to the Java Perspective to open and start editing
Note structure – class, main, statements, etc.
Note things in quotations marks
Run, change and run again (does compile for you)
Submit and see the submission on submit.cs.umd.edu

CMSC 131 - Lecture Outlines - set 2 2

CMSC 131 - Lecture Outlines - set 2 3

This Course: Intro to Procedural
Programming using Java

Why Java?
Popular modern language

Used in web, business, telecom applications

Developed in 1990s, incorporates many features from earlier languages

● Object-orientation

● Garbage collection

● Portability of object code

CMSC 131 - Lecture Outlines - set 2 4

Portability of Object Code?

Object code is 2GL (assembly) / 1GL (machine code)
Last time we said that 2GL / 1GL is architecture-specific
How can Java have portable object code?

Answer: Java Virtual Machine (JVM)

CMSC 131 - Lecture Outlines - set 2 5

Java Virtual Machine

Java includes definition of Java bytecode = “fake” machine code
for Java
Java compilers produce Java bytecode
To run Java bytecode, must have bytecode interpreter (“Java
Virtual Machine”) on client machine

.java
Java

compiler
.class

client

client

JVM

JVM

source code object code

CMSC 131 - Lecture Outlines - set 2 6

Facts about JVMs

For efficiency, JVMs often compile bytecode into native machine code
There are also “native” Java compilers (these compile Java directly to machine
code)

CMSC 131 - Lecture Outlines - set 2 7

Method Headers

main is a method = “operation”
Operations require operands = data to work on

Operations return new data (result)

Header gives information on form of operands, result for methods

For main:

Operand is collection of Strings

Result is “void” (= unimportant)

More later on “public”, “static”

Every program must have exactly one “main” method
(where execution begins)

CMSC 131 - Lecture Outlines - set 2 8

Output and Comments
Output to console

System.out.println

System.out.print

String Literals always use “quotation marks”

Comments: explanations added by programmer
ignored by the compiler

read by other people looking at the code

Two styles

● /* … */
● // to end of line…

Comments are essential for good programming!

CMSC 131 - Lecture Outlines - set 2 9

Objects

Bundles of data (“instance variables”) and methods (“functions”)
Created using classes as “templates”
We’ll learn more later this semester

CMSC 131 - Lecture Outlines - set 2 10

Java Program Organization

Class
Structure around which all Java programs are based

A typical Java program consists of many classes

Each class resides in its own file, whose name is based on the
class’s name

The class is delimited by curly braces { … }.

File name: Example1a.java:

public class Example1a {
… (contents of the class go here) …
}

A class consist of data (variables) and operations
(methods)

CMSC 131 - Lecture Outlines - set 2 11

Holding and calculating values

variables
declaration

initialization

assignment

value use

mathematical expressions
calculated to take on a value

based on values of literals and variables

CMSC 131 - Lecture Outlines - set 2 12

Java Program Organization

Methods
Where most computation takes place

Each method has a name, a list of arguments enclosed in (…), and
body (collection of statements) in {…}

 public static void main(String[] args) {
… (contents of the main method go here) …
}

Variables
Storage locations that program can operate on

Variables can store data of different forms (integers, for example)

int secondsPerMinute = 60;
int minutesPerLecture = 50;

CMSC 131 - Lecture Outlines - set 2 13

Java Program Organization

Statements: Many different types
Declarations – specify variable types (and optionally initialize)

int x, y, z; // three integer variables
String s = “Howdy”; // a character string variable
boolean isValid = true; // a boolean (true/false) variable

Assignments – assign variables new values
x = 13;

Method invocation – call other methods
System.out.println(“Print this message“);

Control flow – determine the order of statement execution. (These
include if-then-else, while, do-while, for. More later.)

Built-in Operators: For manipulating values (+, -, *, /, etc.)
i.e. String Concatenation for output

CMSC 131 - Lecture Outlines - set 2 14

Built-in (Primitive) Types
Type name Size (bytes)

Integers

byte 1

short 2

int 4

long 8

Reals
float 4

double 8

Other
char 2

boolean 1

CMSC 131 - Lecture Outlines - set 2 15

String Type

Elements of String type are sequences of characters
“abc” “Call me Ishmael” etc.

String type is not built-in
We will use it a lot
Useful operation:

 concatenation (+)

“abc” + “def” is equivalent to “abcdef”

CMSC 131 - Lecture Outlines - set 2 16

Writing Programs in Java

1. EXPRESSIONS: computations that carry a value
2. OPERATORS: symbols like +, *, -, etc.
3. Statements end with a semicolon
4. Types of statements:

a) DECLARATION (where a variable is created)
b) ASSIGNMENT (where a variable is given a value)
c) METHOD INVOCATIONS (where another method is called)
d) others - later

5. You can put blank lines in almost anytime you want
1. except not in the middle of an identifier or a keyword
2. and except not in a set of quotation marks

6. Proper indenting helps readability

CMSC 131 - Lecture Outlines - set 2 17

Variables …

… are named storage locations

Recall that memory is a sequence of bits
Question: How much memory to allocate for a variable’s value?
Answer: A variable must have a type specifying how much storage to allocate.

Variable Value

x 5

CMSC 131 - Lecture Outlines - set 2 18

Recall Java Built-in Types
Type name Size (bytes)

Integers

byte 1

short 2

int 4

long 8

Reals
float 4

double 8

Other
char 2

boolean 1

CMSC 131 - Lecture Outlines - set 2 19

Primitive Data Types In Detail

Integer Types:

byte 1 byte Range: -128 to +127

short 2 bytes Range: -32,000 to +32,000

int 4 bytes Range: -2 billion to +2 billion

long 8 bytes Range: -9 quintillion to +9 quintillion

Floating-Point Types:

float 4 bytes -3.4x1038 to 3.4x1038, 7 digits of precision

double 8 bytes -1.7x10308 to 1.7x10308, 15 digits of prec.

Other types:

boolean 1 byte true, false

char 2 bytes A single (Unicode) character

CMSC 131 - Lecture Outlines - set 2 20

Primitive-Type
Literals
Constants are also called literals
Integer types:

● byte
● short optional sign and digits (0-9): 12 -1 +234 0 1234567
● int
● long Same as above, but followed by ‘L’ or ‘l’: -1394382953L

Floating-point types:
● double Two allowable forms:

Decimal notation: 3.14159 -234.421 0.0042 -43.0

Scientific notation: (use E or e for base 10 exponent)
3.145E5 = 3.145 x 105 = 314500.0
1834.23e-6 = 1834.23 x 10-6 = 0.00183423

● float Same as double, but followed by ‘f’ or ‘F’: 3.14159F -43.2f

Note: By default, integer constants are int, unless ‘L’/‘l’ is used to indicate
they are long. Floating constants are double, unless ‘F’/‘f’ is used to
indicate they are float.

Avoid this lowercase L. It looks
too much like the digit ‘1’

CMSC 131 - Lecture Outlines - set 2 21

Character and String
Literals
Char literals: Single character in single quotes (‘…’) including:

Letters and digits: ‘A’, ‘B’, ‘C’, …, ‘a’, ‘b’, ‘c’, …, ‘0’, ‘1’, …, ‘9’

Punctuation symbols: ‘*’, ‘#’, ‘@’, ‘$’ (except ‘ and backslash ‘\’)

Escape sequences: (see below)

String literals: 0 or more characters in double quotes (“…”)
Escape sequences: Allows inclusion of special characters:

\” double quote \n new-line character (start a new line)

\’ single quote \t tab character

\\ backslash

Examples: char x = ’\’’; (x contains a single quote)
String s1=”\”Hi there!\””; s1 contains  ”Hi there!”
String s2= ”C:\\WINDOWS”; s2 contains  C:\WINDOWS

CMSC 131 - Lecture Outlines - set 2 22

Common Numeric Operators
Arithmetic operators:

Unary negation: -x

Addition/subtraction: x+yx-y

Multiplication/division: x*yx/y
● Division between integer types truncates to integer: 23/4  5
● x%y returns the remainder of x divided by y:23%4  3
● Division with real types yields a real result: 23.0/4.0  5.75

Comparison operators:
Equality/inequality: x == y x != y

Less than/greater than: x < y x > y

Less than or equal/greater than or equal: x <= y x >= y

These comparison operators return a boolean value: true or false.

CMSC 131 - Lecture Outlines - set 2 23

Common String Operators
String Concatenation: The ‘+’ operator concatenates (joins) two strings.

“Go” + “Terps”  “GoTerps”

When a string is concatenated with another type, the other type is first evaluated and
converted into its string representation.

(8*4) + “degrees”  “32degrees” (1 + 2) + “5” “ 35”

String Comparison: Strings have special comparison functions.
s.equals(t) : returns true if s and t have the same characters.

s.compareTo(t) : compares strings lexicographically (dictionary order)

result < 0 if s precedes t

result == 0 if s is equal to t

result > 0 if s follows t

“dilbert”.compareTo(“dogbert”)  -1 (which is < 0)

Note: Concatenation does
not add any space

Both functions are case-sensitive.

CMSC 131 - Lecture Outlines - set 2 24

User Input in Java

We've done output (System.out); what about input?
Java 5.0 includes the Scanner class feature

Can use Scanner to create “scanner objects”

Scanner objects convert user input into data

To use Scannner need to import a library:
import java.util.Scanner;

CMSC 131 - Lecture Outlines - set 2 25

Scanner Class Details
To create a scanner object:

 new Scanner(input_source);
Input source can be keyboard (System.in), files, etc.

Object must be assigned to a variable (e.g. sc)

Operations
nextBoolean()

nextByte()

nextDouble()

nextFloat()

nextInt()

nextLong()

nextShort()

next() Returns sequence of characters up to next whitespace

(space, carriage return, tab, etc.)

nextLine() Returns sequence of characters up to next carriage return

Operations
close() to close the connection for this scanner

Returns value of indicated type (reports
error if type mismatch

CMSC 131 - Lecture Outlines - set 2 26

Objects
From Posted Example:

 Scanner sc = new Scanner(System.in);
sc is a variable

Its type is …Scanner?

What’s going on?
Scanner is a class defined in java.util.Scanner

System.in is a predefined object for keyboard input

new Scanner(System.in) creates a new object in the Scanner class and assigns
it to sc

Object?
A bundle of data (instance variables) and operations (methods)

A class defines both instance variables and methods for objects

A class is also a type for objects

new creates new objects in the given class

We will learn (much) more about objects later

CMSC 131 - Lecture Outlines - set 2 27

Debugging Java Programs
Types of errors

“Compile time”: caught by Eclipse / Java compiler
● Syntax errors
● disobeys the rules of the language; violates language’s grammar
● Type errors: misuse of variables

“Run time”: appear during program execution
● Semantic errors
● obeys the rules of the language but does not express them meaning you intended;
● division by 0
● crash or hang or wrong outputs (because of mistakes in programming)

Eclipse helps catch compile time errors
Red: error

Yellow: warning

Debugging
process of finding and fixing problems

to minimize debugging frustration – use “unit” testing

● write a small part, thoroughly test it, cycle back

Uninitialized Variables

Caution
Local variables
Primitives vs Object References

public static void main(String[] args){
 int val1, val2=10;
 int val3 = val1+val2;
}

CMSC 131 - Lecture Outlines - set 2 28

	Slide 1
	What a Java Project looks like when checked out from CVS
	This Course: Intro to Procedural Programming using Java
	Portability of Object Code?
	Java Virtual Machine
	Facts about JVMs
	Method Headers
	Output and Comments
	Objects
	Java Program Organization
	Holding and calculating values
	Java Program Organization
	Java Program Organization
	Built-in (Primitive) Types
	String Type
	Writing Programs in Java
	Variables …
	Recall Java Built-in Types
	Primitive Data Types In Detail
	Primitive-Type
Literals
	Character and String
Literals
	Common Numeric Operators
	Common String Operators
	User Input in Java
	Scanner Class Details
	Objects
	Debugging Java Programs
	Uninitialized Variables

