
CMSC131

Data Structures: The Array

Arrays: The Concept
There are a wide variety of data structures that

we can use or create to attempt to hold data
in useful, organized, efficient ways.

The MaritanPolynomial class you created
as part of Project 4 is a simple data structure
in some ways. It holds three values; one
coefficient for each of the three terms.

An array is a linear, contiguous, homogenous
structure that can hold an arbitrary number of
elements (as long as we know how many we
want it to hold in advance).

Arrays: Some Properties
• Elements in an array of size n are numbered (some

languages do 1..n, many like Java use 0..n-1).
• We can use those numbers to directly access an

array position to read from or write into it.
• The data structure has a "first" and "last" position.
• In an array with more than 1 element, any position

other than the first has a "previous" position and
any position other than the last has a "next"
position.

• We generally need to specify how many elements
an array will have room for when we declare it.

Arrays in Java
• In Java, an array is an object and we will have a

variable serve as a reference to that object.
• We will indicate the type of elements that will be

stored when we declare it.
datatype[] arrayName;

• We will allocate the actual array.
arrayName = new datatype[size];

• We will access a position within an array by using
the name of the reference variable, square
brackets, with the position inside the brackets.

arrayName[position]= value;

Some Motivation
We have actually been using arrays quite a bit,

they've just been behind the scenes.

The String and StringBuffer classes both
hold characters in an array.

To better understand the efficiency example
we saw, we need to consider how arrays are
allocated and used.

A Simple Problem
What if I asked you to write a program that

would allow the user to specify how many
numbers they wanted to enter, then read
them in, and print them out backwards?

What might we need to do?
• Declare some variables like an integer to

store the answer when we ask the user how
many numbers they want to enter and a
variable to act as a reference to an array.

• Get the size request from the user.

• Allocate an array big enough to hold them
all.

• Allow the user to enter those numbers one at
a time and store them in the array.

• Traverse through the array backwards and
print them out.

What might we need to do?
• Declare some variables like an integer to

store the answer when we ask the user how
many numbers they want to enter and a
variable to act as a reference to an array.

• Get the size request from the user.

• Allocate an array big enough to hold them
all.

• Allow the user to enter those numbers one at
a time and store them in the array.

• Traverse through the array backwards and
print them out.

int[] dataArray;
int numberOfElements;

What might we need to do?
• Declare some variables like an integer to

store the answer when we ask the user how
many numbers they want to enter and a
variable to act as a reference to an array.

• Get the size request from the user.

• Allocate an array big enough to hold them
all.

• Allow the user to enter those numbers one at
a time and store them in the array.

• Traverse through the array backwards and
print them out.

int[] dataArray;
int numberOfElements;
numberOfElements = sc.nextInt();

What might we need to do?
• Declare some variables like an integer to

store the answer when we ask the user how
many numbers they want to enter and a
variable to act as a reference to an array.

• Get the size request from the user.

• Allocate an array big enough to hold them
all.

• Allow the user to enter those numbers one at
a time and store them in the array.

• Traverse through the array backwards and
print them out.

int[] dataArray;
int numberOfElements;
numberOfElements = sc.nextInt();
dataArray = new int[numberOfElements];

What might we need to do?
• Declare some variables like an integer to

store the answer when we ask the user how
many numbers they want to enter and a
variable to act as a reference to an array.

• Get the size request from the user.

• Allocate an array big enough to hold them
all.

• Allow the user to enter those numbers one at
a time and store them in the array.

• Traverse through the array backwards and
print them out.

int[] dataArray;
int numberOfElements;
numberOfElements = sc.nextInt();
dataArray = new int[numberOfElements];

for (int i=0; i<numberOfElements; i++) {
 dataArray[i] = sc.nextInt();
} //I am using “i” to make this fit page

What might we need to do?
• Declare some variables like an integer to

store the answer when we ask the user how
many numbers they want to enter and a
variable to act as a reference to an array.

• Get the size request from the user.

• Allocate an array big enough to hold them
all.

• Allow the user to enter those numbers one at
a time and store them in the array.

• Traverse through the array backwards and
print them out.

int[] dataArray;
int numberOfElements;
numberOfElements = sc.nextInt();
dataArray = new int[numberOfElements];

for (int i=0; i<numberOfElements; i++) {
 dataArray[i] = sc.nextInt();
} //I am using “i” to make this fit page

for (int i=numberOfElements-1; i>=0; i--){
 System.out.print(dataArray[i] + " ");
} //I am using “i” to make this fit page

Length of an Array
• After allocating an array, we could have a variable

that contains the size we requested.
• In some languages (including Java) an array will

have an instance variable within the object that
stores the size, but some other languages (like C+
+) do not, so we need to keep track of it.

• In Java, if you can access the size of the array via
the instance variable length.

arrayName.length

• The .length field is a read-only value, so you
cannot grow an array by changing this number!

Operations on an Array
• You can allocate and initialize an array at the

same time if you know all of the information in
advance.
int[] firstFivePrimes = {2,3,5,7,11};

• Remember that the variable we are using is a
reference to an object. The following just
makes a copy of the reference.
int[] notCopied = firstFivePrimes;

• We'll look at three types of copies a little later
in our discussion.

"Growing" an Array
• We can't really grow an array once it has been allocated.

• What we can do is allocate a new array, copy the
information from the old one into the new one, and move
the array reference to point to this new array object.

Imagine we have an array named myData and we want to
make it twice as large…

int[] tempName = new int[myData.length*2];

for (int i=0; i<myData.length; i++){

 tempName[i] = myData[i];
} //I am using “i” to make this fit page

myData = tempName;

Time consuming, isn't it…

Why StringBuffer was much faster!
• Every time we appended something onto our
String, a whole new String object was
created and the characters copied into it.

• With the StringBuffer, an initial size array
is allocated, and only when that size is going
to be exceeded by an operation is a new array
allocated and all of the information copied in.

• In the current Java implementation, each time
the size is going to be exceeded, the new
array allocated is twice as large!

• What are the pros and cons of this?

Arrays of Objects
Arrays elements can be references to objects as

well. If so, the array will hold the references to
those objects, not the actual objects.

String[] cands = {"Obama", "Romney"};

StringBuffer[] cands = new StringBuffer[2];

 cands[0] = new StringBuffer("Obama");

 cands[1] = new StringBuffer("Romney");

String[] voters = new String[15000000];

Reference, Shallow, Deep Copies
Reference Copy

Student[] array1 = new Student[10];

//some code here which fills in the array with data

Student[] array2 = array1;

Shallow Copy
Student[] array1 = new Student[10];

//some code here which fills in the array with data

Student[] array2 = new Student[array1.length];

for (int i=0; i<array1.length; i++) {

 array2[i] = array1[i];

} //I am using “i” to make this fit page

Reference, Shallow, Deep Copies
Deep Copy

Student[] array1 = new Student[10];

//some code here which fills in the array with data

Student[] array2 = new Student[array1.length];

for (int i=0; i<array1.length; i++) {

 array2[i] = new Student(array1[i]);

} //I am using “i” to make this fit page

What is the danger in the above approach that
neither reference nor shallow copies faced?

To what "value" are the elements of an array of
references automatically

initialized by default in Java?

1. zero

2. null

3. it depends on the data type

4. they aren’t initialized

19 of 21

Arrays class
There is a useful library class Arrays which

contains a variety of static methods.

One subset of these that can be useful when
exploring arrays is the group of toString()
methods which take an array and generates
an ASCII visualization of that array.

Another useful ability it provides is the ability to
sort the contents of an array. This works for
arrays of primitives and certain types of
objects (we will see more of this later).

Arrays as Arguments
A reference to an array can be passed as an

argument into a method.

You do NOT specify the size of the array since
the array itself isn't really being passed into
the method, just the reference to it.

Once the reference to the array is passed into
a method, that method can access and alter
the elements stored within the array.

Let’s look at ArrayParameter.java and
ArrayParameterDriver.java

initArray1

20 of 22

1. 999999999

2. 012345678

3. Not Sure

initArray2

20 of 22

1. 999999999

2. 012345678

3. Not Sure

"Privacy" Issues
• Even without arrays, object references create

certain "privacy" issues.
• Consider how references to objects work and what

it means when a method returns a reference to an
object.
– If it returns a reference to (for example) a private

instance variable then the "outside world" now has direct
access to it even though it is marked as private.

– This doesn't "really" matter for immutable objects, but for
mutable ones it would allow code from outside of the
class to alter the contents of private data.

• With arrays, even though the size of the array is
immutable, the contents aren't.

Multi-Dimensional Arrays
It is sometimes useful to have a multi-

dimensional structure for data storage.
– Consider representing things such as a chess

board or storage warehouse.

Declaring them as an "Array of Arrays"
– Allows us to have "ragged edged" arrays.

Declaring them as a "xD Array"
– Doesn't give any real advantage in Java as far as

I can tell but might depending on the language.

2D Arrays – Syntax Examples
Rectangular

int[][] arr = new int[rows][cols];

Ragged
int[][] arr = new int[rows][];

arr[0] = new int[colsInRow0];

arr[1] = new int[colsInRow1];

arr[2] = new int[colsInRow2];

arr[3] = new int[colsInRow3];

 :

 :

Upper Left-Hand Right Triangle
We want to create a structure in which we

store the distance from the "origin" to each
cell in the structure, but only for the upper
left-hand right triangle starting at that origin.

Rectangular array or Ragged array?

How do we make it work for a triangle with
sides of length triangleSize?

Dealing with Ragged Arrays Generically
int[][] reallyRagged;
reallyRagged = new int[5][];
reallyRagged[0] = new int[9];
reallyRagged[1] = new int[3];
reallyRagged[2] = new int[7];
reallyRagged[3] = new int[0]; //NOTE
reallyRagged[4] = new int[12];

How could you go in and perform an operation
on each element without having to hard-code
the different lengths?

Self-awareness
Recall that arrays know their own length!

counter = 0;

for (row=0; row<reallyRagged.length; row++) {

 for (col=0; col<reallyRagged[row].length; col++) {

 reallyRagged[row][col] = counter++;

 }

}

What would happen if we had used this?
reallyRagged[3] = null;

Copyright © 2012 : Evan Golub

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	PowerPoint Presentation

