
Algorithms and Big-O

CMSC 131

Algorithms
What is an algorithm?

– Class discussion brought up ideas like recipes,
directions, steps to take to solve a problem and
the fact that we’ve been working with algorithms
all semester.

What types of algorithms exist?
– Class discussion brought up ideas like efficient

vs. inefficient or fast vs. slow, whether there is
randomness involved, algorithms designed by
other algorithms, and that some are based on
mathematical definitions.

Algorithm Question
• Input: 4 digit number n

• Do the following until you encounter a steady
state or a cycle:

n1=digits sorted in increasing order

n2=digits sorted in decreasing order

n=n2-n1

• We discussed the idea of trying to classify the
runtime of an algorithm.

• We saw that in the end there were only two
possible answers and how an efficient program
could take advantage of that.

Growth Rate of Functions
f(n) = 1
f(n) = logn
f(n) = nlogn
f(n) = n2

f(n) = 2n

f(n) = nn

• Which grows faster?
• How do you prove that?
• In CMSC351 this will be addressed and it will also be

shown that “for sufficiently large input sizes” any low-
order terms or even constant multiplicative factors are
insignificant in terms of relative growth rate.

Big-O

Big-O
Something that is used to capture this notion of growth rate is

“Big-O” classification.

The basic concept behind Big-O is to be able to show that the
growth rate of the runtime of a particular algorithm is no
worse than some basic function on the input size.

The input size might have to be “sufficiently large” to expose
this relationship (ie: for small inputs maybe algorithm A is
better, but is you expect to scale to large problems algorithm
B is better).

Since we are talking about growth rate, both 49n2 and n2-500n
are “Big-O of n2” (there is a precise mathematical definition
presented in 351).

Which of the following are Big-O of n2?

1. ½ n2

2. 50 n2

3. 100000 n

4. nlogn

5. 1/1000000th n3

0 of 30

60

When does input size matter?
In some problems it is known that there is a

threshold where you should switch from one
algorithm to another.

In the current Java sorting method for things like
sorting an array, the method uses the size of the
array being processed at various stages of to
decide between applying one of two different
sorting algorithms on that array.

Tower of Lego

• Assume we have a large supply of typical style
Lego blocks which are 1" cubes.

• We want to build a tower 20" tall (don't worry
about whether it will top over).

• We have to use special robot cranes to do it, and
these cranes can move one stack and place it on
top of another stack in 30 seconds if neither stack
is more than 10" high and 60 seconds if either is
more than 10" high.

• How do you build the 20" tall tower in the least
amount of time?

Tower of Lego

• Assume we have a large supply of typical style
Lego blocks which are 1" cubes.

• We want to build a tower 40" tall (don't worry
about whether it will top over).

• We have to use special robot cranes to do it, and
these cranes can move one stack and place it on
top of another stack in 30 seconds if neither stack
is more than 10" high and 60 seconds if either is
more than 10" high.

• How do you build the 40" tall tower in the least
amount of time?

Tower of Lego

• Assume we have a large supply of typical style
Lego blocks which are 1" cubes.

• We want to build a tower 80" tall (don't worry
about whether it will top over).

• We have to use special robot cranes to do it, and
these cranes can move one stack and place it on
top of another stack in 30 seconds if neither stack
is more than 10" high and 60 seconds if either is
more than 10" high.

• How do you build the 80" tall tower in the least
amount of time?

Copyright © 2012 : Evan Golub

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	PowerPoint Presentation

