
CMSC 131 – lecture Set 6

Lecture Set #6:
Encapsulaton, “this”,
junit testing and Libraries

1. Review of Parameter passing
2. this
3. public vs. private Choices
4. Libraries

1

Reference type Parameters
Recall that methods / constructors can have parameters

public int Student giveMore(Student s) {
if (numOfTokens > s.numOfTokens){
 s.numOfTokens += 3;

 } else{
 numOfTokens += 3;
 }

}

Trace Calling assume there are Student
objects stu1 and stu2

Where stu1 has 5 tokens and stu2 has 12 tokens

Called with

● stu1.giveMore(stu2);
● stu2.giveMore(stu1);

CMSC 131 – lecture Set 6 2

CMSC 131 – lecture Set 6 3

this

a reference to the current object. (Only makes sense in a non-static method.)
In an instance method, this is the object that is assumed

easy to refer to members (data or methods) using the assumed object

difficult to refer to the whole object without having a name to call it

Only use when needed – using it all the time makes the code more difficult to
read

CMSC 131 – lecture Set 6 4

Public Declarations

public variables/methods and classes
Keyword public used in declaration

Every user of an object can access any public element

Sometimes access should be restricted!
To avoid giving object users unnecessary info (keep API small)

To enforce consistency on instance variables

CMSC 131 – lecture Set 6 5

Private Declarations

private variables, methods and classes
private int tokenLevel = 3;

Private variables / members cannot be accessed outside the class definition
Declaring instance variables private means they can only be modified using
public methods
Now getters (accessors) and setters (mutators) are required

CMSC 131 – lecture Set 6 6

What Should Be Public /
Private?

Class interface = API = public variables / methods
Only make something public if there is a reason to
Why? Encapsulation

As long as interface is preserved, class can change without
breaking other code

The more limited the interface, the less there is to maintain

Rule of thumb
Make instance variables private

Implement set / get methods

Make auxiliary methods private

CMSC 131 – lecture Set 6 7

Separate:
API and the workings of the class

Design so that
you can change how the class works without having to change the API

the only things in the API are things the user will absolutely need (make
the interface as simple as possible)

Demonstrations in Class
Significantly Modifying the Student class – without changing the API (or
the driver)

The Cat class and its drivers
● with adding a copy constructor

Project 3
● API described – you are using those classes
● documentation / comments needed

CMSC 131 – lecture Set 6 8

The problem

Problems:
need to be able to make sure all parts are tested

need to know in testing exactly which part was not as expected

need to be able to keep the tests for modifications made later

Unit testing helps overcome this problems of making
sure everything is tested

Unit testing: test each class and each part of the class (unit)
individually

Goal is to eliminate inconsistencies between the API and the
actual working of the code

CMSC 131 – lecture Set 6 9

Floating Point Calculations
What will this print?

public class SimpleMath {
public static void main(String[] args) {

if (3.9 - 3.8 == 0.1) {
System.out.println("I am a very smart computer.");

} else {
System.out.println("I can't do simple arithmetic.");

}
}

}

à I can’t do simple arithmetic.
§ Why?
§ Conversion of floating point to binary leads to precision errors!
§ What can we do?

CMSC 131 – lecture Set 6 10

Floating Point Calculations
(cont.)

Two important rules:
You can never use == to compare floating point values. Instead, check if two
numbers are within a certain tolerance of each other.
Never use floating point values to represent money, e.g., 3.52 to represent
$3.52. Instead, use integer 352 to represent 352 pennies.

CMSC 131 – lecture Set 6 11

Documentation Types

Three Styles
// ...

/* ... */

/** ... */

Two Purposes
Internal – those reading code

External – those using the class

CMSC 131 – lecture Set 6 12

Javadoc Documentation
Standard
When documenting a method, list exceptions that method can throw

Use @exception tag

Be sure to include unhandled exceptions that operations in method may throw

Example:
/**

 * Returns the year part of a date string

 * @param d date string in mm/dd/yyyy format

 * @return an integer representing the date

 * @exception IndexOutOfBoundsException

 * @exception NumberFormatException

 */

public static int getYear(String d) {

 …

}

CMSC 131 – lecture Set 6 13

Libraries in Java
Library: implementation of useful routines that are shared by different programs
Java mechanism for creating libraries: packages

Package: group of related clases

Example: java.util (contains Scanner class)

To use a class from a package, you can use a fully qualified name (package name
+ class name):

java.util.Scanner s = new java.util.Scanner(System.in);

You can also import the class in the beginning of the file
import java.util.Scanner;

To import class in a package:
import java.util.*;

(Imports Scanner as well as other classes in package)

CMSC 131 – lecture Set 6 14

Package java.lang

A special package containing widely used classes:
String

Math

etc.

java.lang.* is automatically imported by every Java program

CMSC 131 – lecture Set 6 15

Package Management

A class can be added to a package by including:
package <name of package>;

in source file (usually very first line)
The variables / methods provided by a class / package are often
called its API (= Application Programmers Interface)
APIs should be documented
java.lang documentation:

http://java.sun.com/j2se/1.3/docs/api/java/lang/package-summary.html
On the resources page of the class web site – javadoc generated
descriptions.

http://java.sun.com/j2se/1.3/docs/api/java/lang/package-summary.html

CMSC 131 – lecture Set 6 16

String API & Math API

String implements lots of string functions
StringExample.java

Math implements lots of mathematical functions
MathExample.java

	Slide 1
	Reference type Parameters
	this
	Public Declarations
	Private Declarations
	What Should Be Public / Private?
	Separate:
API and the workings of the class
	The problem
	Floating Point Calculations
	Floating Point Calculations (cont.)
	Documentation Types
	Javadoc Documentation Standard
	Libraries in Java
	Package java.lang
	Package Management
	String API & Math API

