
CMSC 131 - Lecture Set #7

Lecture Set #7:
Exceptions
& Mutability Issues

1. Break and Continue for Loops
2. Exceptions
3. Mutability/Immutability
4. StringBuffer class

1

“this” – when in an instance method:
always represents the current object

optional to indicate an instance method or an
instance data member is of the current object
when you have a local variable or a parameter
named the same as a instance data member of the
same class, use “this” to override the default
when you need to pass the whole current object
as the argument to another method
when you are writing a constructor and want to call
a different constructor to construct the current
object

CMSC 131 - Lecture Set #7 2

CMSC 131 - Lecture Set #7
3

break from loops
break can also be used to exit immediately from any loop

while

do-while

for

e.g. “Read numbers from input until negative number encountered”
– Scanner sc = new Scanner (System.in);

– int n;

– while (true) {

– n = sc.nextInt ();

– if (n < 0) {

– break;

– } else {

– <process n>;

– }

– }

Loop only terminates when break executed

This only happens when n < 0

“breaks past” if statements

Always breaks to first enclosing loop

CMSC 131 - Lecture Set #7 4

Warning about break

Undisciplined use of break can make loops
impossible to understand

Termination of loops without break can be understood
purely by looking while, for parts

When break included, arbitrary termination behavior can be
introduced

Rule of thumb: use break only when loop condition is
always true (i.e. break is only way to terminate loop)
When you use it, make sure it has a good comment
explaining what is happening

CMSC 131 - Lecture Set #7 5

continue Statement
continue can also be used to affect loops

break halts loops

continue jumps to bottom of loop body

Following prints even numbers between 0 and 10
● for (int i = 0; i <= 10; i++){

● if (i % 2 == 1) {

● continue;

● }

● System.out.println (i);

● }

Effect of continue statement is to jump to bottom of loop immediately when i is odd

This bypasses println!

continue should be avoided
Confusing

Easy equivalents exist (e.g. if-else)

Included in Java mainly for historical reasons

When you use it, make sure it has a good comment explaining what is happening

CMSC 131 - Lecture Set #7 6

Exceptions
Programs can generate errors

Arithmetic

Divide by zero, overflows, …

Object / Array

Using a null reference, illegal array index, …

File and I/O

Nonexistent file, attempt to read past the end of the file, (we’ll see more about file I/O
later in course), …

Application-specific

Errors particular to application (e.g., attempt to remove a nonexistent customer from a
database)

In Java: something that is outside the norm = exception
What to do when an error occurs?

1. Basically ignore it: Print an error message and terminate?
2. Have the method handle it internally: Handle error in the code where the

problem lies as best you can.
3. Have the method pass it off to someone else to handle: Return “error code” so

that whoever called this function can handle it.
4. Modern language approach: Cause “exception” to be thrown (and caught (or

processed) by any function up the stack trace)

CMSC 131 - Lecture Set #7 7

Exception Behavior

If program generates (“throws”) exception then default
behavior is:

Java clobbers (“aborts”) the program

Stack trace is printed showing where exception was
generated (red and blue in Eclipse window)

Example
public int mpg(int miles, int gallons) {

return miles/gallons;

}

Throws an exception and terminates the program.

CMSC 131 - Lecture Set #7 8

Throwing Exceptions Yourself

To throw an exception, use throw command:
throw e;

e must evaluate to an exception object

You can create exceptions just like other objects, e.g.:
RuntimeException e = new RuntimeException(“Uh oh”);

RuntimeException is a class

Calling new this way invokes constructor for this class

RuntimeException generalizes other kinds of exceptions (e.g.
ArithmeticException)

CMSC 131 - Lecture Set #7 9

Exceptions, Classes and Types
Exceptions are objects
Some examples from the Java class library (mostly java.lang):

ArithmeticException: Used e.g. for divide by zero

NullPointerException: attempt to access an object with a null reference

IndexOutOfBoundsException: array or string index out of range

ArrayStoreException: attempting to store wrong type of object in array

EmptyStackException: attempt to pop an empty Stack (java.util)

IOException: attempt to perform an illegal input/output operation (java.io)

NumberFormatException: attempt to convert an invalid string into a number
(e.g., when calling Integer.parseInt())

RuntimeException: general run-time error (subsumes above)

Exception: The most generic type of exception

Throw Example

public int mpg(int miles, int gallons) {

 if (gallons == 0) {

 throw new NullPointerException();

 } else {

 return miles/gallons;

 }

}

CMSC 131 - Lecture Set #7 10

CMSC 131 - Lecture Set #7 11

Java Exceptions in Detail

Exceptions are (special) objects in Java
They are created from classes

The classes are derived (“inherit”) from a special class, Throwable

We will learn more about inheritance, etc., later

Every exception object / class has:
Exception(String message)

● Constructor taking an explanation as an argument

String getMessage()
● Method returning the embedded message of the exception

void printStackTrace()
● Method printing the call stack when the exception was thrown

CMSC 131 - Lecture Set #7 12

Handling Exceptions

Aborting program not always a good idea
E-mail: can’t lose messages

E-commerce: must ensure correct handling of private info in case of crash

Antilock braking, air-traffic control: must recover and keep working

Java provides the programmer with mechanisms for recovering from exceptions

CMSC 131 - Lecture Set #7 13

Java Exception Terminology

When an anomaly is detected during program execution,
the JVM throws a particular type of exception

There are built-in exceptions

Users can also define their own (more later)

To avoid crashing, a program can catch a thrown
exception (if it isn’t caught – you see the red and blue
messages – stack trace)
An exception generated by a piece of code can only be
caught if the program is alerted. This process is called
trying the piece of code.

Catch Example

try {
 System.out.println(“Start”);
 mpg(5, 0);
 System.out.println(“Finish”);
} catch (Exception e) {
 System.out.println("e = " + e);
}

CMSC 131 - Lecture Set #7 14

CMSC 131 - Lecture Set #7 15

Exception Propagation

Goes out to caller if not handled:
Exception thrown in one method …

… but caught in another

Java uses exception propagation to look for exception handlers

When an exception occurs, Java pops back up the call stack to each of
the calling methods to see whether the exception is being handled (by a
try-catch block). This is exception propagation

The first method it finds that catches the exception will have its catch
block executed. Execution resumes normally in the method after this
catch block

If we get all the way back to main and no method catches this exception,
Java catches it and aborts your program

CMSC 131 - Lecture Set #7 16

Finally Block

Always run:
When no exception has been thrown

When an exception has been thrown but the exception was
handled before that point in time

When an exception has been thrown but the exception was NOT
handled before that point in time

finally = ALWAYS

CMSC 131 - Lecture Set #7 17

Exception Handling: Example

DateReader.java
Prompts user for a date in mm/dd/yyyy format

Prints year

Program uses:
substring method

● May throw IndexOutOfBoundsException

Integer.parseInt method
● May throw NumberFormatException

getYear method (if d is null)

● May throw NullPointerException

How do we know about these exceptions? Javadoc!
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/package-summary.html

CMSC 131 - Lecture Set #7 18

What about Strings and
Aliasing?

String objects are immutable; fields cannot be
changed once created

Mutable objects: fields (values of instance variables) can be
changed by a call to some function (e.g. Cat, Student, etc.)

Immutable objects: fields (values of instance variables)
cannot be changed by any call to any function

See String API:
http://java.sun.com/j2se/1.3/docs/api/java/lang/package-summary.html

In the Cat and CatOwner example:
when one object is assigned to another, an alias is created

Cat a = new Cat(“Fluffy”);

Cat b = a;

http://java.sun.com/j2se/1.3/docs/api/java/lang/package-summary.html

CMSC 131 - Lecture Set #7 19

Which picture represents the current
status of memory?

Stack

cat

a

 Heap

b

cat

“Fred”

 Heap HeapStack

catcat

a

b

“Fred”

CMSC 131 - Lecture Set #7 20

Mutable Strings

Strings are immutable
Once a String object is created, it cannot be altered

Sometimes mutable strings would be handy
Sometimes a small change needs to be made to a string
(e.g. misspelled name)

Don’t want to create a whole new String object in this case

StringBuffer: Java’s class for mutable Strings

CMSC 131 - Lecture Set #7 21

StringBuffer Basics

See documentation at:
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/StringBuffer.html
Main methods

append: add characters to end

insert: add characters in middle

delete: remove characters

Note
append, insert return object of type StringBuffer

This is alias to object that the methods belong to!

See StringBufferExample.java

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/StringBuffer.html

	Slide 1
	Slide 2
	break from loops
	Warning about break
	continue Statement
	Exceptions
	Exception Behavior
	Throwing Exceptions Yourself
	Exceptions, Classes and Types
	Throw Example
	Java Exceptions in Detail
	Handling Exceptions
	Java Exception Terminology
	Catch Example
	Exception Propagation
	Finally Block
	Exception Handling: Example
	What about Strings and Aliasing?
	Which picture represents the current status of memory?
	Mutable Strings
	StringBuffer Basics

