
CMSC 131 - Lecture Set #8

Lecture Set #8:
Debugging

1. Complete Class Summary
2. The Eclipse Debugger
3. Common Error – Privacy Leaks

1

CMSC 131 - Lecture Set #8 2

Putting the pieces together

Constructors
default constructor

constructors with parameters

copy constructors

Data
data members: instance/static and public/private

local variables

stack and heap

null references

Methods
instance/static and public/private

overloading: toString and others

Libraries
importing and using methods from the library (the API)

JUnit Testing
Exceptions

Throwing, trying, catching

CMSC 131 - Lecture Set #8 3

The problem

Problem
JUnit can only tell if that passes or fails and where

Need a way to be able to see what is in memory (variables) at every step
to be able to do complete trace [like that call stack examples we have been
doing]

Solution
The debugger gives the ability to go through the code – displaying
additional information similar to the by-hand call stack that we have been
doing

CMSC 131 - Lecture Set #8 4

Terminology

Break Point
drop a marker into the code so when it runs the execution will stop
at that point

allows you to not have to go step by step through things you believe
are correct

Step Over
takes one step in the current method

if that step is a method call, it performs that whole method call and
steps to the next line in the current method

Step Into
takes one step in the current method

if that step is a method call, it steps into that method so that you can
then step through it before getting to the next line in the method you
were in

CMSC 131 - Lecture Set #8 5

Eclipse

Perspective
Debug Perspective

Java Perspective

Run
Debug As…

Run As…

Know if it is still running
Watch the red square – click it to kill

CMSC 131- Lecture Set #9 6

Foo object

Privacy Leaks
public class MutableThing {

…

public void mutateMe() {…};

}

public class Foo {

private MutableThing q

 = new MutableThing();

…
public MutableThing getQ(){

return q;

}

}

Consider following code
Foo f = new Foo ();
MutableThing m = f.getQ();
m.mutateMe();
After this executes, what happens?
This phenomenon is called a privacy leak

Private instance variables can be modified outside class

Behavior is due to aliasing

HeapStack

f

m

MutableThing
object

CMSC 131- Lecture Set #9 7

Fixing Privacy Leaks

Return copies of objects referenced
by instance variables

To fix getQ method in Foo:
● MutableThing getQ(){

● return new
MutableThing(q);

● }

This returns a copy of q

Changes made to this copy will
not affect original

HeapStack

f

m

Foo object

MutableThing
object

MutableThing
object

	Slide 1
	Putting the pieces together
	The problem
	Terminology
	Eclipse
	Privacy Leaks
	Fixing Privacy Leaks

