
CMSC 131- Lecture Set #9

Lecture Set #9:
Arrays Intro

This lecture set:
l Intro to arrays
l Copying arrays and making arrays bigger
l Array lengths and out-of-bounds indexing
l Passing arrays and array elements to a

function
l Different levels of copy

1

CMSC 131- Lecture Set #9 2

Data Structures and Arrays
Data structures: mechanisms for storing data in a structured way
We have seen simple data structures implemented as classes:

Rational.java

● Rational number data stored as numerator / denominator pair

Arrays are a very useful data structure provided by Java and other programming languages
Array: sequence of variables of the same type

● homogeneous data structure

● size (quantity) fixed when space is allocated

● ordered

Individual elements of sequence can be referenced/updated/etc.

Arrays are objects (hence allocated on heap) with a reference on the stack

Like other objects, “instance variables” of array = cells in array are assigned default values
(0 / null / etc.) when array created

CMSC 131- Lecture Set #9 3

Array Indexing

Java provides a special syntax for uniformly accessing cells in an array
Declaration of a:

 int[] a;

Allocation of space for array named a:

 a = new int[5]; // or combined: int[] a = new int[5];

This creates five int variables “named”::a[0],a[1],a[2],a[3],a[4]

To modify contents of cell #2 to 6 and cell #1 to 74:

a[2] = 6;

a[1] = 74;

To use the contents of cell #2 and cell #1 :

System.out.println(“value = “ + (a[1]-a[2]));

This access mechanism to the individual elements is called array indexing
In Java / C / C++, array cells are indexed beginning at 0 and going up to n-1 (where n
is number of cells)

Beware: start at 0! and end at one less than the size!!

CMSC 131- Lecture Set #9 4

Square Brackets: [] and length

Three uses in Java:
Array variable declaration: int[] a

Array object creation: new int[10]

Array indexing: a[0]

array also has a.length holds the amount of space currently allocated for
that array

CMSC 131- Lecture Set #9 5

Alternate Declaration Syntax

To maintain consistency with C / C++, following
declaration of array variables also possible

● int grade[];

Compare to Java standard:

int[] grade;

Java standard generally preferred
“type[]” emphasizes array status

Alternative syntax sometimes handy:
int grade[], size, gpa[];

Declares two arrays of base type int: grade, gpa

Declares a single int variable: size

CMSC 131- Lecture Set #9 6

Summary of Arrays
Arrays are:

Sequences of cells holding values of the same type (“base type”)

Objects (hence created using new)

To define an array variable:
int[] a; // an array with base type int

To create an array object:
a = new int[10];

Creates an array of 10 cells on the heap

The base type is int

To access individual array cells: use indexing
a[0], a[1], …, a[9]

Cells are just like variables:

They may be read: x = a[3];

They may be written: a[2] = 7;

CMSC 131- Lecture Set #9 7

A Common Programming
Idiom

To process all elements in array …
Do the following:

● for (int i = 0; i < a.length; i++){

● …process the one element at a[i]…

● }

Use fresh loop counter to avoid overwriting another variable of same name
elsewhere

Remember:

● Use 0 as one end of the array, not 1

● Use i < a.length as the other end, not i <=
a.length

CMSC 131- Lecture Set #9 8

Copying Arrays

Does the following copy a into b?
● int[] a = new int[5];

● int[] b = a;

No: a, b are aliases

How to make a copy?
int[] a = new int[5];

int[] b = new int[a.length];

for (int i = 0; i < a.length; i++){

 b[i] = a[i];

}

CMSC 131- Lecture Set #9 9

Making Arrays Bigger

Suppose we want to make an array bigger by adding an
element.
Does the following work?

● int[] a = new int[5];
● a.length++;

No!
We get the following:

Exception in thread "main" java.lang.Error:
Unresolved compilation problem:

The final field array.length cannot be assigned

at Sample.main(Sample.java:15)

a.length is immutable

No assignment to it is allowed

CMSC 131- Lecture Set #9 10

To Make an Array Bigger…
Create a new larger array object
Copy old array contents into new object
Assign address of new object to variable

● int[] a = new int[5];
● {
● int[] temp = new int[a.length + 1];
● for (int i = 0; i < a.length; i++){
● temp[i] = a[i];
● }
● a = temp;
● }

New variable temp created to hold copy

New block created to ensure temp does not interfere with another variable of
the same name

Previous contents of a become garbage

CMSC 131- Lecture Set #9 11

Arrays As Arguments

Arrays = objects
Array variables = references
Array cells = variables of the base type (references or
primitives depending on what that base type is)
Both can be used as arguments to methods

Array cells: passed just like the variables of that base type

Array arguments: passed just like objects
● Reference to array is passed in
● If the method expects an array of doubles, an array of

doubles of any size can be passed
● Promotion does not apply. You cannot pass an int array when

an array of doubles is expected

CMSC 131- Lecture Set #9 12

Array Initializers

Arrays may be initialized at
declaration time!

int[] a = {5,0,1,2};

Java:
counts elements (here, 4);

creates correct size of array

copies elements into array

returns reference to array

See Array Example 3

HeapStack

a

5 0 1 2

CMSC 131- Lecture Set #9 13

Arrays of Objects
Class types can also be base types of arrays

e.g.

● String[] acc = new
String[3];

Array cells store references to objects

Array initializers can also be used
String[] acc = {“UMD”, “UNC”,
“Duke”};

HeapStack

acc

UMD

UNC

Duke

CMSC 131- Lecture Set #9 14

Arrays of Objects (continued)

More complicated example than strings:

Cat objects

Expressions can also appear in
initializers

Cat[] kennel = {

new Cat(“Joe”),

new Cat(“Jill”),

new Cat(“Fluffy”)

};

 HeapStack

kennel

Joe

Jill

Fluffy

CMSC 131- Lecture Set #9 15

Shallow Copying

Person[] d = {
 new Person(2.1,7, …),
 new Person(3.3,2, …)
};

Person[] e = new Person[d.length];
for (int i=0; i < d.length, i++){

e[i] = d[i];
}

HeapStack

d

e

3.3

2

2.1

7

CMSC 131- Lecture Set #9 16

Reference Copying

Person[] d = {
 new Person(2.1,7, …),
 new Person(3.3,2, …)
};

Person[] e = d;

HeapStack

d

e

3.3

2

2.1

7

CMSC 131- Lecture Set #9 17

Deep Copying

Person[] d = {
 new Person(2.1,7,…),
 new Person(3.3,2,…)
};

Person[] e = new Person[d.length];
for (int i=0; i<d.length; i++) {
 e[i] = new Person(d[i]);
}

HeapStack

d

e

3.3

2

2.1

7

3.3

2

2.1

7

CMSC 131- Lecture Set #9 18

Three Ways of Copying
CDCollector contains an array of CD’s;
ReCDCollector contains an array of rewritableCD’s;
Reference copy
public ReCD[] getCDsReferenceCopy() {

return myFavorites;
}
Shallow copy
public ReCD[] getCDsShallowCopy() {

ReCD[] copy = new ReCD[myFavorites.length];
for (int i = 0; i < copy.length; i++)

copy[i] = myFavorites[i];
return copy;

}
Deep copy
public ReCD[] getCDsDeepCopy() {

ReCD[] copy = new ReCD[myFavorites.length];
for (int i = 0; i < copy.length; i++)

copy[i] = new ReCD(myFavorites[i]);
return copy;

}

ReCDCollectionOwner p =
new RECD…;

ReCD[] a = p.getCD…();
a[0] = otherCDalreadycreated;
a[0].rewrite(“other”,”name”);

CMSC 131- Lecture Set #9 19

When To Use What Kind of
Copying?

Reference copying is usually a bad idea (not always but realize what you
are doing)
Deep copying provides maximal protection against aliasing (but takes a lot
of time and space if it was not necessary)
Storage space and time used

Reference: least

Shallow: middle

Deep: most

If the class is mutable, aliasing is something to be avoided and you must
have true copies to prevent privacy leaks and modifications outside.
If you know the class is immutable, aliasing doesn’t hurt but neither does
making true copies (except wasted space and time).
If storage is an issue, aliasing problems may be worth copying with but
must be well documented.

	Slide 1
	Data Structures and Arrays
	Array Indexing

	Square Brackets: [] and length
	Alternate Declaration Syntax
	Summary of Arrays
	A Common Programming Idiom
	Copying Arrays
	Making Arrays Bigger
	To Make an Array Bigger…
	Arrays As Arguments
	Array Initializers
	Arrays of Objects
	Arrays of Objects (continued)
	Shallow Copying
	Reference Copying
	Deep Copying
	Three Ways of Copying
	When To Use What Kind of Copying?

